Gravity, Spinors and Gauge-Natural Bundles

Total Page:16

File Type:pdf, Size:1020Kb

Gravity, Spinors and Gauge-Natural Bundles University of Southampton Gravity, spinors and gauge-natural bundles Paolo Matteucci, M.Sc. Faculty of Mathematical Studies A thesis submitted for the degree of Doctor of Philosophy February UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF MATHEMATICAL STUDIES MATHEMATICS Doctor of Philosophy GRAVITY, SPINORS AND GAUGE-NATURAL BUNDLES by Paolo Matteucci, M.Sc. The purpose of this thesis is to give a fully gauge-natural formulation of gravitation theory, which turns out to be essential for a correct geometrical formulation of the coupling between gravity and spinor fields. In Chapter 1 we recall the necessary background material from differential geometry and introduce the fundamental notion of a gauge- natural bundle. Chapter 2 is devoted to expounding the general theory of Lie derivatives, its specialization to the gauge-natural context and, in particular, to spinor structures. In Chapter 3 we describe the geometric approach to the calculus of variations and the theory of conserved quantities. Then, in Chapter 4 we give our gauge-natural formulation of the Einstein (-Cartan) -Dirac theory and, on applying the formalism developed in the previous chapter, derive a new gravitational superpotential, which exhibits an unexpected freedom of a functorial origin. Finally, in Chapter 5 we complete the picture by presenting the Hamiltonian counterpart of the Lagrangian formalism developed in Chapter 3, and proposing a multisymplectic derivation of bi-instantaneous dynamics. Appendices supplement the core of the thesis by providing the reader with useful background information, which would nevertheless disrupt the main development of the work. Appendix A is devoted to a concise account of categories and functors. In Ap- pendix B we review some fundamental notions on vector fields and flows, and prove a simple, but useful, proposition. In Appendix C we collect the basic results that we need on Lie groups, Lie algebras and Lie group actions on manifolds. Finally, Appendix D consists of a short introduction to Clifford algebras and spinors. Ai miei genitori Contents Acknowledgements xi Introduction 1 1 Background differential geometry 3 1.1 Preliminaries and notation . 3 1.2 Fibre bundles . 4 1.3 More on principal bundles . 7 1.3.1 Bundle of linear frames and G-structures . 12 1.4 Associated bundles . 13 1.5 Principal connections . 14 1.5.1 Linear connections . 17 1.6 Natural bundles . 19 1.7 Jets . 22 1.8 Horizontal and vertical differential . 23 1.8.1 Examples . 25 1.9 First order jet bundle . 26 1.10 Gauge-natural bundles . 27 1.10.1 Examples . 31 2 General theory of Lie derivatives 35 2.1 Generalized notion of a Lie derivative . 36 2.2 Lie derivatives and Lie algebras . 40 2.3 Reductive G-structures and their prolongations . 42 2.4 Split structures on principal bundles . 45 2.5 Lie derivatives on reductive G-structures: the Lie derivative of spinor fields 51 2.6 G-tetrads and G-tensors . 57 2.6.1 Holonomic gauge . 62 2.6.2 Lie derivative of a G-connection . 64 2.7 Critical review of some Lie derivatives . 66 2.7.1 Penrose’s Lie derivative of “spinor fields” . 66 2.7.2 Gauge-covariant Lie derivative of G-tensor valued q-forms . 69 2.7.3 Hehl et al.’s () “ordinary” Lie derivative . 69 vii Contents 3 Gauge-natural field theories 71 3.1 Variational principle . 71 3.1.1 Classical approach . 71 3.1.2 Geometric formulation on gauge-natural bundles . 73 3.2 Symmetries and conserved quantities . 77 3.2.1 Energy-momentum tensors . 83 3.3 Examples . 88 3.3.1 Classical mechanics . 88 3.3.2 Scalar fields . 89 3.3.3 Proca fields . 90 3.3.4 Yang-Mills and Maxwell fields . 91 3.3.5 General relativity . 94 4 Gauge-natural gravitation theory 99 4.1 Motivation . 99 4.2 Spin-tetrads, spin-connections and spinors . 101 4.3 Riemann-Cartan geometry on spin manifolds . 103 4.4 Einstein-Cartan-Dirac theory . 104 4.4.1 Natural approach . 108 4.5 Einstein-Dirac theory . 109 4.5.1 First order Einstein-Hilbert gravity . 110 4.6 The indeterminacy . 111 4.7 Comparison with Giachetta et al.’s () approach . 112 5 Multisymplectic derivation of bi-instantaneous dynamics 113 5.1 Motivation . 113 5.2 Multisymplectic formulation of a field theory . 114 5.3 Transition from the multisymplectic to the instantaneous formalism . 117 5.4 Bi-instantaneous dynamics . 122 5.5 Future work . 127 Conclusions and perspectives 129 A Categories and functors 131 A.1 Categories . 131 A.2 Functors . 133 B Vector fields and flows 135 B.1 General definitions . 135 B.2 A simple proposition . 137 C Lie groups and Lie algebras 139 C.1 Lie groups . 139 C.2 Lie algebras . 140 C.3 Lie group actions on manifolds . 143 viii Contents D Clifford algebras and spinors 145 D.1 Clifford algebra, γ matrices and spin group . 145 D.2 Spin structures and spinors . 146 D.3 2-spinors . 148 Bibliography 149 ix Acknowledgements It is a pleasure to acknowledge the supervision and constant encouragement of Prof. James A. Vickers throughout all the stages of this research project. The author would also like to express his deep gratitude to Dr. Marco Go- dina, University of Turin, Italy, for guidance and useful discussions on the more strictly geometrical aspects of the project. Moreover, some of the re- sults presented in this thesis are, in many respects, the climax of a long-term research project carried out over several years by the mathematical physics group of the Department of Mathematics of the University of Turin, whose indirect contribution to this work is hereby gratefully acknowledged. In partic- ular, the recent doctoral theses of Dr. Lorenzo Fatibene () and Dr. Marco Raiteri () have proved to be invaluable sources of background material. Finally, the author gladly acknowledges an EPSRC research studentship and a Faculty Research Studentship from the University of Southampton for fi- nancial support throughout his doctorate. xi Introduction Vos igitur, doctrinae et sapientiae filii, perquirite in hoc libro colli- gendo nostram dispersam intentionem quam in diversis locis propo- suimus et quod occultatum est a nobis in uno loco, manifestus fecimus illud in alio, ut sapientibus vobis patefiat. H. C. Agrippa von Nettesheim, De occulta philosophia, III, lxv It is commonly accepted nowadays that the appropriate mathematical arena for classical field theory is that of fibre bundles or, more precisely, of their jet prolongations (cf., e.g., Atiyah ; Trautman ; Saunders ; Giachetta et al. ). What is less often realized or stressed is that, in physics, fibre bundles are always considered together with some special class of morphisms, i.e. as elements of a particular category. In other words, fields are always considered together with a particular class of transformations. The category of natural bundles was introduced about thirty years ago and proved to be an extremely fruitful concept in differential geometry. But it was not until recently, when a suitable generalization was introduced, that of gauge-natural bundles, that the relevance of this functorial approach to physical applications began to be clearly per- ceived. The notion of naturality traditionally relates to the idea of coordinate invariance, or “covariance”. The more recent introduction of gauge invariance into physics gives rise to the very idea of gauge-natural bundles. Indeed, every classical field theory can be regarded as taking place on some jet pro- longation of some gauge-natural (vector or affine) bundle associated with some principal bundle over a given base manifold (Eck ; Kol´aˇr et al. ; Fatibene ). On the other hand, it is well known that one of the most powerful tools of Lagrangian field theory is the so-called “Noether theorem”. It turns out that, when phrased in modern geometrical terms, this theorem crucially involves the concept of a Lie derivative, and here is where the aforementioned functorial approach is not only useful, but also intrinsically unavoidable. By using the general theory of Lie derivatives, one can see that the concept of Lie differentiation is, crucially, a category-dependent one, and it makes a real difference in taking the Lie derivative of, say, a vector field if one regards the tangent bundle as a purely natural bundle or, alternatively, as a more general gauge-natural bundle associated with some suitable principal bundle (cf. Chapter 2). In Chapter 4 we shall show that this functorial approach is essential for a correct geometrical formulation of the Einstein (-Cartan) -Dirac theory and, at the same time, yields an unexpected freedom in the concept of conserved quantities. As we shall see, this freedom originates from the very fact that, when coupled with Dirac fields, Einstein’s general relativity can no longer be regarded as a purely natural theory, because, in order to incorporate spinors, one must enlarge the class of morphisms of the theory. 1 Introduction This is the general idea which underlies the present work. An interesting by-product of this analysis is the successful systematization of the long-debated concept of a Lie derivative of spinor fields. A synopsis of the thesis follows. In Chapter 1 we recall the necessary background material from differential geometry and introduce the fundamental notion of a gauge-natural bundle. Chapter 2 is devoted to expounding the general theory of Lie derivatives, its specialization to the gauge-natural context and, in particular, to spinor structures. In Chapter 3 we describe the geometric approach to the calculus of variations and the theory of conserved quantities. Then, in Chapter 4 we give our gauge-natural formulation of the Einstein (-Cartan) -Dirac theory and, on applying the formalism developed in the previous chapter, derive a new gravitational superpotential. Finally, in Chapter 5 we complete the picture by presenting the Hamiltonian counterpart of the Lagrangian formalism developed in Chapter 3, and proposing a multisymplectic derivation of “bi-instantaneous” dynamics, i.e.
Recommended publications
  • Arxiv:Math/0212058V2 [Math.DG] 18 Nov 2003 Nosbrusof Subgroups Into Rdc C.[Oc 00 Et .].Eape O Uhsae a Spaces Such for Examples 3.2])
    THE SPINOR BUNDLE OF RIEMANNIAN PRODUCTS FRANK KLINKER Abstract. In this note we compare the spinor bundle of a Riemannian mani- fold (M = M1 ×···×MN ,g) with the spinor bundles of the Riemannian factors (Mi,gi). We show that - without any holonomy conditions - the spinor bundle of (M,g) for a special class of metrics is isomorphic to a bundle obtained by tensoring the spinor bundles of (Mi,gi) in an appropriate way. For N = 2 and an one dimensional factor this construction was developed in [Baum 1989a]. Although the fact for general factors is frequently used in (at least physics) literature, a proof was missing. I would like to thank Shahram Biglari, Mario Listing, Marc Nardmann and Hans-Bert Rademacher for helpful comments. Special thanks go to Helga Baum, who pointed out some difficulties arising in the pseudo-Riemannian case. We consider a Riemannian manifold (M = M MN ,g), which is a product 1 ×···× of Riemannian spin manifolds (Mi,gi) and denote the projections on the respective factors by pi. Furthermore the dimension of Mi is Di such that the dimension of N M is given by D = i=1 Di. The tangent bundle of M is decomposed as P ∗ ∗ (1) T M = p Tx1 M p Tx MN . (x0,...,xN ) 1 1 ⊕···⊕ N N N We omit the projections and write TM = i=1 TMi. The metric g of M need not be the product metric of the metrics g on M , but L i i is assumed to be of the form c d (2) gab(x) = Ai (x)gi (xi)Ai (x), T Mi a cd b for D1 + + Di−1 +1 a,b D1 + + Di, 1 i N ··· ≤ ≤ ··· ≤ ≤ In particular, for those metrics the splitting (1) is orthogonal, i.e.
    [Show full text]
  • Introduction to Gauge Theory Arxiv:1910.10436V1 [Math.DG] 23
    Introduction to Gauge Theory Andriy Haydys 23rd October 2019 This is lecture notes for a course given at the PCMI Summer School “Quantum Field The- ory and Manifold Invariants” (July 1 – July 5, 2019). I describe basics of gauge-theoretic approach to construction of invariants of manifolds. The main example considered here is the Seiberg–Witten gauge theory. However, I tried to present the material in a form, which is suitable for other gauge-theoretic invariants too. Contents 1 Introduction2 2 Bundles and connections4 2.1 Vector bundles . .4 2.1.1 Basic notions . .4 2.1.2 Operations on vector bundles . .5 2.1.3 Sections . .6 2.1.4 Covariant derivatives . .6 2.1.5 The curvature . .8 2.1.6 The gauge group . 10 2.2 Principal bundles . 11 2.2.1 The frame bundle and the structure group . 11 2.2.2 The associated vector bundle . 14 2.2.3 Connections on principal bundles . 16 2.2.4 The curvature of a connection on a principal bundle . 19 arXiv:1910.10436v1 [math.DG] 23 Oct 2019 2.2.5 The gauge group . 21 2.3 The Levi–Civita connection . 22 2.4 Classification of U(1) and SU(2) bundles . 23 2.4.1 Complex line bundles . 24 2.4.2 Quaternionic line bundles . 25 3 The Chern–Weil theory 26 3.1 The Chern–Weil theory . 26 3.1.1 The Chern classes . 28 3.2 The Chern–Simons functional . 30 3.3 The modui space of flat connections . 32 3.3.1 Parallel transport and holonomy .
    [Show full text]
  • Arxiv:1910.04634V1 [Math.DG] 10 Oct 2019 ˆ That E Sdnt by Denote Us Let N a En H Subbundle the Define Can One of Points Bundle
    SPIN FRAME TRANSFORMATIONS AND DIRAC EQUATIONS R.NORIS(1)(2), L.FATIBENE(2)(3) (1) DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy (2)INFN Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy (3) Dipartimento di Matematica – University of Torino, via Carlo Alberto 10, I-10123 Torino, Italy Abstract. We define spin frames, with the aim of extending spin structures from the category of (pseudo-)Riemannian manifolds to the category of spin manifolds with a fixed signature on them, though with no selected metric structure. Because of this softer re- quirements, transformations allowed by spin frames are more general than usual spin transformations and they usually do not preserve the induced metric structures. We study how these new transformations affect connections both on the spin bundle and on the frame bundle and how this reflects on the Dirac equations. 1. Introduction Dirac equations provide an important tool to study the geometric structure of manifolds, as well as to model the behaviour of a class of physical particles, namely fermions, which includes electrons. The aim of this paper is to generalise a key item needed to formulate Dirac equations, the spin structures, in order to extend the range of allowed transformations. Let us start by first reviewing the usual approach to Dirac equations. Let (M,g) be an orientable pseudo-Riemannian manifold with signature η = (r, s), such that r + s = m = dim(M). R arXiv:1910.04634v1 [math.DG] 10 Oct 2019 Let us denote by L(M) the (general) frame bundle of M, which is a GL(m, )-principal fibre bundle.
    [Show full text]
  • THE DIRAC OPERATOR 1. First Properties 1.1. Definition. Let X Be A
    THE DIRAC OPERATOR AKHIL MATHEW 1. First properties 1.1. Definition. Let X be a Riemannian manifold. Then the tangent bundle TX is a bundle of real inner product spaces, and we can form the corresponding Clifford bundle Cliff(TX). By definition, the bundle Cliff(TX) is a vector bundle of Z=2-graded R-algebras such that the fiber Cliff(TX)x is just the Clifford algebra Cliff(TxX) (for the inner product structure on TxX). Definition 1. A Clifford module on X is a vector bundle V over X together with an action Cliff(TX) ⊗ V ! V which makes each fiber Vx into a module over the Clifford algebra Cliff(TxX). Suppose now that V is given a connection r. Definition 2. The Dirac operator D on V is defined in local coordinates by sending a section s of V to X Ds = ei:rei s; for feig a local orthonormal frame for TX and the multiplication being Clifford multiplication. It is easy to check that this definition is independent of the coordinate system. A more invariant way of defining it is to consider the composite of differential operators (1) V !r T ∗X ⊗ V ' TX ⊗ V,! Cliff(TX) ⊗ V ! V; where the first map is the connection, the second map is the isomorphism T ∗X ' TX determined by the Riemannian structure, the third map is the natural inclusion, and the fourth map is Clifford multiplication. The Dirac operator is clearly a first-order differential operator. We can work out its symbol fairly easily. The symbol1 of the connection r is ∗ Sym(r)(v; t) = iv ⊗ t; v 2 Vx; t 2 Tx X: All the other differential operators in (1) are just morphisms of vector bundles.
    [Show full text]
  • Linearization Via the Lie Derivative ∗
    Electron. J. Diff. Eqns., Monograph 02, 2000 http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp) Linearization via the Lie Derivative ∗ Carmen Chicone & Richard Swanson Abstract The standard proof of the Grobman–Hartman linearization theorem for a flow at a hyperbolic rest point proceeds by first establishing the analogous result for hyperbolic fixed points of local diffeomorphisms. In this exposition we present a simple direct proof that avoids the discrete case altogether. We give new proofs for Hartman’s smoothness results: A 2 flow is 1 linearizable at a hyperbolic sink, and a 2 flow in the C C C plane is 1 linearizable at a hyperbolic rest point. Also, we formulate C and prove some new results on smooth linearization for special classes of quasi-linear vector fields where either the nonlinear part is restricted or additional conditions on the spectrum of the linear part (not related to resonance conditions) are imposed. Contents 1 Introduction 2 2 Continuous Conjugacy 4 3 Smooth Conjugacy 7 3.1 Hyperbolic Sinks . 10 3.1.1 Smooth Linearization on the Line . 32 3.2 Hyperbolic Saddles . 34 4 Linearization of Special Vector Fields 45 4.1 Special Vector Fields . 46 4.2 Saddles . 50 4.3 Infinitesimal Conjugacy and Fiber Contractions . 50 4.4 Sources and Sinks . 51 ∗Mathematics Subject Classifications: 34-02, 34C20, 37D05, 37G10. Key words: Smooth linearization, Lie derivative, Hartman, Grobman, hyperbolic rest point, fiber contraction, Dorroh smoothing. c 2000 Southwest Texas State University. Submitted November 14, 2000.
    [Show full text]
  • 3. Introducing Riemannian Geometry
    3. Introducing Riemannian Geometry We have yet to meet the star of the show. There is one object that we can place on a manifold whose importance dwarfs all others, at least when it comes to understanding gravity. This is the metric. The existence of a metric brings a whole host of new concepts to the table which, collectively, are called Riemannian geometry.Infact,strictlyspeakingwewillneeda slightly di↵erent kind of metric for our study of gravity, one which, like the Minkowski metric, has some strange minus signs. This is referred to as Lorentzian Geometry and a slightly better name for this section would be “Introducing Riemannian and Lorentzian Geometry”. However, for our immediate purposes the di↵erences are minor. The novelties of Lorentzian geometry will become more pronounced later in the course when we explore some of the physical consequences such as horizons. 3.1 The Metric In Section 1, we informally introduced the metric as a way to measure distances between points. It does, indeed, provide this service but it is not its initial purpose. Instead, the metric is an inner product on each vector space Tp(M). Definition:Ametric g is a (0, 2) tensor field that is: Symmetric: g(X, Y )=g(Y,X). • Non-Degenerate: If, for any p M, g(X, Y ) =0forallY T (M)thenX =0. • 2 p 2 p p With a choice of coordinates, we can write the metric as g = g (x) dxµ dx⌫ µ⌫ ⌦ The object g is often written as a line element ds2 and this expression is abbreviated as 2 µ ⌫ ds = gµ⌫(x) dx dx This is the form that we saw previously in (1.4).
    [Show full text]
  • Hamilton's Ricci Flow
    The University of Melbourne, Department of Mathematics and Statistics Hamilton's Ricci Flow Nick Sheridan Supervisor: Associate Professor Craig Hodgson Second Reader: Professor Hyam Rubinstein Honours Thesis, November 2006. Abstract The aim of this project is to introduce the basics of Hamilton's Ricci Flow. The Ricci flow is a pde for evolving the metric tensor in a Riemannian manifold to make it \rounder", in the hope that one may draw topological conclusions from the existence of such \round" metrics. Indeed, the Ricci flow has recently been used to prove two very deep theorems in topology, namely the Geometrization and Poincar´eConjectures. We begin with a brief survey of the differential geometry that is needed in the Ricci flow, then proceed to introduce its basic properties and the basic techniques used to understand it, for example, proving existence and uniqueness and bounds on derivatives of curvature under the Ricci flow using the maximum principle. We use these results to prove the \original" Ricci flow theorem { the 1982 theorem of Richard Hamilton that closed 3-manifolds which admit metrics of strictly positive Ricci curvature are diffeomorphic to quotients of the round 3-sphere by finite groups of isometries acting freely. We conclude with a qualitative discussion of the ideas behind the proof of the Geometrization Conjecture using the Ricci flow. Most of the project is based on the book by Chow and Knopf [6], the notes by Peter Topping [28] (which have recently been made into a book, see [29]), the papers of Richard Hamilton (in particular [9]) and the lecture course on Geometric Evolution Equations presented by Ben Andrews at the 2006 ICE-EM Graduate School held at the University of Queensland.
    [Show full text]
  • On Lie Derivation of Spinors Against Arbitrary Tangent Vector Fields
    On Lie derivation of spinors against arbitrary tangent vector fields Andras´ LASZL´ O´ [email protected] Wigner RCP, Budapest, Hungary (joint work with L.Andersson and I.Rácz) CERS8 Workshop Brno, 17th February 2018 On Lie derivation of spinors against arbitrary tangent vector fields – p. 1 Preliminaries Ordinary Lie derivation. Take a one-parameter group (φt)t∈R of diffeomorphisms over a manifold M. Lie derivation against that is defined on the smooth sections χ of the mixed tensor algebra of T (M) and T ∗(M), with the formula: L φ∗ χ := ∂t φ∗ −t χ t=0 It has explicit formula: on T (M) : Lu(χ)=[u,χ] , a on F (M) := M× R : Lu(χ)= u da (χ) , ∗ a a on T (M) : Lu(χ)= u da (χ) + d(u χa), where u is the unique tangent vector field underlying (φt)t∈R. The map u 7→ Lu is faithful Lie algebra representation. On Lie derivation of spinors against arbitrary tangent vector fields – p. 2 Lie derivation on a vector bundle. Take a vector bundle V (M) over M. Take a one-parameter group of diffeomorphisms of the total space of V (M), which preserves the vector bundle structure. The ∂t() against the flows of these are vector bundle Lie derivations. t=0 (I.Kolár,P.Michor,K.Slovák:ˇ Natural operations in differential geometry; Springer 1993) Explicit expression: take a preferred covariant derivation ∇, then over the sections χ of V (M) one can express these as ∇ A a A A B L χ = u ∇a χ − CB χ (u,C) That is: Lie derivations on a vector bundle are uniquely characterized by their horizontal a A part u ∇a and vertical part CB .
    [Show full text]
  • Symbol Table for Manifolds, Tensors, and Forms Paul Renteln
    Symbol Table for Manifolds, Tensors, and Forms Paul Renteln Department of Physics California State University San Bernardino, CA 92407 and Department of Mathematics California Institute of Technology Pasadena, CA 91125 [email protected] August 30, 2015 1 List of Symbols 1.1 Rings, Fields, and Spaces Symbol Description Page N natural numbers 264 Z integers 265 F an arbitrary field 1 R real field or real line 1 n R (real) n space 1 n RP real projective n space 68 n H (real) upper half n-space 167 C complex plane 15 n C (complex) n space 15 1.2 Unary operations Symbol Description Page a¯ complex conjugate 14 X set complement 263 jxj absolute value 16 jXj cardinality of set 264 kxk length of vector 57 [x] equivalence class 264 2 List of Symbols f −1(y) inverse image of y under f 263 f −1 inverse map 264 (−1)σ sign of permutation σ 266 ? hodge dual 45 r (ordinary) gradient operator 73 rX covariant derivative in direction X 182 d exterior derivative 89 δ coboundary operator (on cohomology) 127 δ co-differential operator 222 ∆ Hodge-de Rham Laplacian 223 r2 Laplace-Beltrami operator 242 f ∗ pullback map 95 f∗ pushforward map 97 f∗ induced map on simplices 161 iX interior product 93 LX Lie derivative 102 ΣX suspension 119 @ partial derivative 59 @ boundary operator 143 @∗ coboundary operator (on cochains) 170 [S] simplex generated by set S 141 D vector bundle connection 182 ind(X; p) index of vector field X at p 260 I(f; p) index of f at p 250 1.3 More unary operations Symbol Description Page Ad (big) Ad 109 ad (little) ad 109 alt alternating map
    [Show full text]
  • Intrinsic Differential Geometry with Geometric Calculus
    MM Research Preprints, 196{205 MMRC, AMSS, Academia Sinica No. 23, December 2004 Intrinsic Di®erential Geometry with Geometric Calculus Hongbo Li and Lina Cao Mathematics Mechanization Key Laboratory Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100080, China Abstract. Setting up a symbolic algebraic system is the ¯rst step in mathematics mechanization of any branch of mathematics. In this paper, we establish a compact symbolic algebraic framework for local geometric computing in intrinsic di®erential ge- ometry, by choosing only the Lie derivative and the covariant derivative as basic local di®erential operators. In this framework, not only geometric entities such as the curva- ture and torsion of an a±ne connection have elegant representations, but their involved local geometric computing can be simpli¯ed. Keywords: Intrinsic di®erential geometry, Cli®ord algebra, Mathematics mecha- nization, Symbolic geometric computing. 1. Introduction Mathematics mechanization focuses on solving mathematical problems with symbolic computation techniques, particularly on mathematical reasoning by algebraic manipulation of mathematical symbols. In di®erential geometry, the mechanization viz. mechanical the- orem proving, is initiated by [7] using local coordinate representation. On the other hand, in modern di®erential geometry the dominant algebraic framework is moving frames and di®erential forms [1], which are independent of local coordinates. For mechanical theorem proving in spatial surface theory, [3], [4], [5] proposed to use di®erential forms and moving frames as basic algebraic tools. It appears that di®erential geometry bene¯ts from both local coordinates and global invariants [6]. For extrinsic di®erential geometry, [2] proposed to use Cli®ord algebra and vector deriva- tive viz.
    [Show full text]
  • 3. Algebra of Vector Fields. Lie Derivatives
    INTRODUCTION TO MANIFOLDS | III Algebra of vector fields. Lie derivative(s). 1. Notations. The space of all C1-smooth vector ¯elds on a manifold M is n denoted by X(M). If v 2 X(M) is a vector ¯eld, then v(x) 2 TxM ' R is its value at a point x 2 M. The flow of a vector ¯eld v is denoted by vt: 8t 2 R vt : M ! M is a smooth map (automorphism) of M taking a point x 2 M into the point vt(x) 2 M which is the t-endpoint of an integral trajectory for the ¯eld v, starting at the point x. | Problem 1. Prove that the flow maps for a ¯eld v on a compact manifold M form a one-parameter group: 8t; s 2 R vt+s = vt ± vs = vs ± vt; and all vt are di®eomorphisms of M. | Problem 2. What means the formula ¯ ¯ d ¯ s ¯ v = v ds s=0 and is it true? 2. Star conventions. The space of all C1-smooth functions is denoted by C1(M). If F : M ! M is a smooth map (not necessary a di®eomorphism), then there appears a contravariant map F ¤ : C1(M) ! C1(M);F ¤ : f 7! F ¤f; F ¤(x) = f(F (x)): If F : M ! N is a smooth map between two di®erent manifolds, then F ¤ : C1(N) ! C1(M): Note that the direction of the arrows is reversed! | Problem 3. Prove that C1(M) is a commutative associative algebra over R with respect to pointwise addition, subtraction and multiplication of functions.
    [Show full text]
  • A Mathematica Package for Doing Tensor Calculations in Differential Geometry User's Manual
    Ricci A Mathematica package for doing tensor calculations in differential geometry User’s Manual Version 1.32 By John M. Lee assisted by Dale Lear, John Roth, Jay Coskey, and Lee Nave 2 Ricci A Mathematica package for doing tensor calculations in differential geometry User’s Manual Version 1.32 By John M. Lee assisted by Dale Lear, John Roth, Jay Coskey, and Lee Nave Copyright c 1992–1998 John M. Lee All rights reserved Development of this software was supported in part by NSF grants DMS-9101832, DMS-9404107 Mathematica is a registered trademark of Wolfram Research, Inc. This software package and its accompanying documentation are provided as is, without guarantee of support or maintenance. The copyright holder makes no express or implied warranty of any kind with respect to this software, including implied warranties of merchantability or fitness for a particular purpose, and is not liable for any damages resulting in any way from its use. Everyone is granted permission to copy, modify and redistribute this software package and its accompanying documentation, provided that: 1. All copies contain this notice in the main program file and in the supporting documentation. 2. All modified copies carry a prominent notice stating who made the last modifi- cation and the date of such modification. 3. No charge is made for this software or works derived from it, with the exception of a distribution fee to cover the cost of materials and/or transmission. John M. Lee Department of Mathematics Box 354350 University of Washington Seattle, WA 98195-4350 E-mail: [email protected] Web: http://www.math.washington.edu/~lee/ CONTENTS 3 Contents 1 Introduction 6 1.1Overview..............................
    [Show full text]