Arxiv:1910.04634V1 [Math.DG] 10 Oct 2019 ˆ That E Sdnt by Denote Us Let N a En H Subbundle the Define Can One of Points Bundle
SPIN FRAME TRANSFORMATIONS AND DIRAC EQUATIONS R.NORIS(1)(2), L.FATIBENE(2)(3) (1) DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy (2)INFN Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy (3) Dipartimento di Matematica – University of Torino, via Carlo Alberto 10, I-10123 Torino, Italy Abstract. We define spin frames, with the aim of extending spin structures from the category of (pseudo-)Riemannian manifolds to the category of spin manifolds with a fixed signature on them, though with no selected metric structure. Because of this softer re- quirements, transformations allowed by spin frames are more general than usual spin transformations and they usually do not preserve the induced metric structures. We study how these new transformations affect connections both on the spin bundle and on the frame bundle and how this reflects on the Dirac equations. 1. Introduction Dirac equations provide an important tool to study the geometric structure of manifolds, as well as to model the behaviour of a class of physical particles, namely fermions, which includes electrons. The aim of this paper is to generalise a key item needed to formulate Dirac equations, the spin structures, in order to extend the range of allowed transformations. Let us start by first reviewing the usual approach to Dirac equations. Let (M,g) be an orientable pseudo-Riemannian manifold with signature η = (r, s), such that r + s = m = dim(M). R arXiv:1910.04634v1 [math.DG] 10 Oct 2019 Let us denote by L(M) the (general) frame bundle of M, which is a GL(m, )-principal fibre bundle.
[Show full text]