Upper Bad River Basin Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Floods in North and South Dakota Frequency and Magnitude
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY FLOODS IN NORTH AND SOUTH DAKOTA FREQUENCY AND MAGNITUDE By John A. McCabe and Orlo A. Crosby Prepared in cooperation with the NORTH DAKOTA STATE HIGHWAY DEPARTMENT AND THE SOUTH DAKOTA DEPARTMENT OF HIGHWAYS Open-file report Bismarck, North Dakota May 1959 DEC 15 1967 PREFACE This report was prepared by the U. S. Geological Survey in cooperation with the North Dakota State Highway Department and the South Dakota Department of Highways. The work was performed under the supervision of H. M. Erskine. District Engineer, Surface Water Branch. Water Resources Division, U. S. Geological Survey. The authors were assisted by R. E. West. Advice and review were furnished by the Floods Section. Surface Water Branch, Washington. D. C. The streamflow records used in this report were collected and compiled by the U. S. Geological Survey co operating with the following agencies: the North Dakota State Engineer and State Water Conservation Commission; pthe South Dakota State Engineer, State Geologist. State Fish and Game Commission, and State Water Resources Commission; the Corps of Engineers, Department of the Army; the Department of State; the Bureau of Reclamation and the Fish and Wildlife Service, Department of the Interior; the Soil Conservation Service, Department of Agriculture; and others. CONTENTS Page Page Abstract. .................. 1 Gaging-station records--Continued Introduction ................. 1 Red River of the North basin--Continued Description of the area .......... 1 Sheyenne River at West Fargo, Physiography ............ 1 N. Dak. (13). ........... 41 Climate ............... 1 Maple River at Mapleton, N. Dak. (14) . 42 Causes of floods ............. 1 Rush River at Amenia, N. -
Characteristics and Importance of Rill and Gully Erosion: a Case Study in a Small Catchment of a Marginal Olive Grove
Cuadernos de Investigación Geográfica 2015 Nº 41 (1) pp. 107-126 ISSN 0211-6820 DOI: 10.18172/cig.2644 © Universidad de La Rioja CHARACTERISTICS AND IMPORTANCE OF RILL AND GULLY EROSION: A CASE STUDY IN A SMALL CATCHMENT OF A MARGINAL OLIVE GROVE E.V. TAGUAS1*, E. GUZMÁN1, G. GUZMÁN1, T. VANWALLEGHEM1, J.A. GÓMEZ2 1Rural Engineering Department/ Agronomy Department, University of Cordoba, Campus Rabanales, Leonardo Da Vinci building, 14071 Córdoba, Spain. 2Institute for Sustainable Agriculture, CSIC, Apartado 4084, 14080 Córdoba, Spain. ABSTRACT. Measurements of gullies and rills were carried out in an olive or- chard microcatchment of 6.1 ha over a 4-year period (2010-2013). No tillage management allowing the development of a spontaneous grass cover was imple- mented in the study period. Rainfall, runoff and sediment load were measured at the catchment outlet. The objectives of this study were: 1) to quantify erosion by concentrated flow in the catchment by analysis of the geometric and geomor- phologic changes of the gullies and rills between July 2010 and July 2013; 2) to evaluate the relative percentage of erosion derived from concentrated runoff to total sediment yield; 3) to explain the dynamics of gully and rill formation based on the hydrological patterns observed during the study period; and 4) to improve the management strategies in the olive grove. Control sections in gullies were established in order to get periodic measurements of width, depth and shape in each campaign. This allowed volume changes in the concentrated flow network to be evaluated over 3 periods (period 1 = 2010-2011; period 2 = 2011-2012; and period 3 = 2012-2013). -
Erosion-1.Pdf
R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Erosion Erosion is the geological process in which earthen materials are worn away and transported by natural forces such as wind or water. G R A D E S 6 - 12+ S U B J E C T S Earth Science, Geology, Geography, Physical Geography C O N T E N T S 9 Images For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/erosion/ Erosion is the geological process in which earthen materials are worn away and transported by natural forces such as wind or water. A similar process, weathering, breaks down or dissolves rock, but does not involve movement. Erosion is the opposite of deposition, the geological process in which earthen materials are deposited, or built up, on a landform. Most erosion is performed by liquid water, wind, or ice (usually in the form of a glacier). If the wind is dusty, or water or glacial ice is muddy, erosion is taking place. The brown color indicates that bits of rock and soil are suspended in the fluid (air or water) and being transported from one place to another. This transported material is called sediment. Physical Erosion Physical erosion describes the process of rocks changing their physical properties without changing their basic chemical composition. Physical erosion often causes rocks to get smaller or smoother. Rocks eroded through physical erosion often form clastic sediments. -
Sustainable Drainage Systems Maximising the Potential for People and Wildlife
The RSPB is the UK charity working to secure a healthy environment for 978-1-905601-41-7 birds and wildlife, helping to create a better world for us all. Our Conservation Management Advice team works to improve the conservation status of priority habitats and species by promoting best- practice advice to land managers. www.rspb.org.uk The Wildfowl & Wetlands Trust (WWT) is one of the world’s largest and most respected wetland conservation organisations working globally to safeguard and improve wetlands for wildlife and people. Founded in 1946 by the late Sir Peter Scott, WWT also operates a unique UK-wide network of specialist wetland centres that protect over 2,600 hectares of important wetland habitat and inspire people to connect with and value wetlands and their wildlife. All of our work is supported by a much valued membership base of over 200,000 people. WWT’s mission is to save wetlands for wildlife and for people and we will achieve this through: • Inspiring people to connect with and value wetlands and their wildlife. • Demonstrating and promoting the importance and benefits of wetlands. • Countering threats to wetlands. • Creating and restoring wetlands and protecting key wetland sites. • Saving threatened wetland species. www.wwt.org.uk Supported by: Sustainable drainage systems Maximising the potential for people and wildlife A guide for local authorities and developers The Royal Society for the Protection of Birds (RSPB) is a registered charity: England & Wales no. 207076, Scotland no. SC037654 The Wildfowl & Wetlands Trust Limited is a charity (1030884 England and Wales, SC039410 Scotland) and a company limited by guarantee (2882729 England). -
VOLCANIC INFLUENCE OVER FLUVIAL SEDIMENTATION in the CRETACEOUS Mcdermott MEMBER, ANIMAS FORMATION, SOUTHWESTERN COLORADO
VOLCANIC INFLUENCE OVER FLUVIAL SEDIMENTATION IN THE CRETACEOUS McDERMOTT MEMBER, ANIMAS FORMATION, SOUTHWESTERN COLORADO Colleen O’Shea A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August: 2009 Committee: James Evans, advisor Kurt Panter, co-advisor John Farver ii Abstract James Evans, advisor Volcanic processes during and after an eruption can impact adjacent fluvial systems by high influx rates of volcaniclastic sediment, drainage disruption, formation and failure of natural dams, changes in channel geometry and changes in channel pattern. Depending on the magnitude and frequency of disruptive events, the fluvial system might “recover” over a period of years or might change to some other morphology. The goal of this study is to evaluate the preservation potential of volcanic features in the fluvial environment and assess fluvial system recovery in a probable ancient analog of a fluvial-volcanic system. The McDermott Member is the lower member of the Late Cretaceous - Tertiary Animas Formation in SW Colorado. Field studies were based on a southwest-northeast transect of six measured sections near Durango, Colorado. In the field, 13 lithofacies have been identified including various types of sandstones, conglomerates, and mudrocks interbedded with lahars, mildly reworked tuff, and primary pyroclastic units. Subsequent microfacies analysis suggests the lahar lithofacies can be subdivided into three types based on clast composition and matrix color, this might indicate different volcanic sources or sequential changes in the volcanic center. In addition, microfacies analysis of the primary pyroclastic units suggests both surge and block-and-ash types are present. -
Classifying Rivers - Three Stages of River Development
Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion. -
Stream Visual Assessment Manual
U.S. Fish & Wildlife Service Stream Visual Assessment Manual Cane River, credit USFWS/Gary Peeples U.S. Fish & Wildlife Service Conasauga River, credit USFWS Table of Contents Introduction ..............................................................................................................................1 What is a Stream? .............................................................................................................1 What Makes a Stream “Healthy”? .................................................................................1 Pollution Types and How Pollutants are Harmful ........................................................1 What is a “Reach”? ...........................................................................................................1 Using This Protocol..................................................................................................................2 Reach Identification ..........................................................................................................2 Context for Use of this Guide .................................................................................................2 Assessment ........................................................................................................................3 Scoring Details ..................................................................................................................4 Channel Conditions ...........................................................................................................4 -
Erosion and Sediment Transport Modelling in Shallow Waters: a Review on Approaches, Models and Applications
International Journal of Environmental Research and Public Health Review Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications Mohammad Hajigholizadeh 1,* ID , Assefa M. Melesse 2 ID and Hector R. Fuentes 3 1 Department of Civil and Environmental Engineering, Florida International University, 10555 W Flagler Street, EC3781, Miami, FL 33174, USA 2 Department of Earth and Environment, Florida International University, AHC-5-390, 11200 SW 8th Street Miami, FL 33199, USA; melessea@fiu.edu 3 Department of Civil Engineering and Environmental Engineering, Florida International University, 10555 W Flagler Street, Miami, FL 33174, USA; fuentes@fiu.edu * Correspondence: mhaji002@fiu.edu; Tel.: +1-305-905-3409 Received: 16 January 2018; Accepted: 10 March 2018; Published: 14 March 2018 Abstract: The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. -
Drainage Basin Morphology in the Central Coast Range of Oregon
AN ABSTRACT OF THE THESIS OF WENDY ADAMS NIEM for the degree of MASTER OF SCIENCE in GEOGRAPHY presented on July 21, 1976 Title: DRAINAGE BASIN MORPHOLOGY IN THE CENTRAL COAST RANGE OF OREGON Abstract approved: Redacted for privacy Dr. James F. Lahey / The four major streams of the central Coast Range of Oregon are: the westward-flowing Siletz and Yaquina Rivers and the eastward-flowing Luckiamute and Marys Rivers. These fifth- and sixth-order streams conform to the laws of drain- age composition of R. E. Horton. The drainage densities and texture ratios calculated for these streams indicate coarse to medium texture compa- rable to basins in the Carboniferous sandstones of the Appalachian Plateau in Pennsylvania. Little variation in the values of these parameters occurs between basins on igneous rook and basins on sedimentary rock. The length of overland flow ranges from approximately i mile to i mile. Two thousand eight hundred twenty-five to 6,140 square feet are necessary to support one foot of channel in the central Coast Range. Maximum elevation in the area is 4,097 feet at Marys Peak which is the highest point in the Oregon Coast Range. The average elevation of summits in the thesis area is ap- proximately 1500 feet. The calculated relief ratios for the Siletz, Yaquina, Marys, and Luckiamute Rivers are compara- ble to relief ratios of streams on the Gulf and Atlantic coastal plains and on the Appalachian Piedmont. Coast Range streams respond quickly to increased rain- fall, and runoff is rapid. The Siletz has the largest an- nual discharge and the highest sustained discharge during the dry summer months. -
Pleistocene Geology of Eastern South Dakota
Pleistocene Geology of Eastern South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Pleistocene Geology of Eastern South Dakota By RICHARD FOSTER FLINT GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Prepared as part of the program of the Department of the Interior *Jfor the development-L of*J the Missouri River basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $3 (paper cover) CONTENTS Page Page Abstract_ _ _____-_-_________________--_--____---__ 1 Pre- Wisconsin nonglacial deposits, ______________ 41 Scope and purpose of study._________________________ 2 Stratigraphic sequence in Nebraska and Iowa_ 42 Field work and acknowledgments._______-_____-_----_ 3 Stream deposits. _____________________ 42 Earlier studies____________________________________ 4 Loess sheets _ _ ______________________ 43 Geography.________________________________________ 5 Weathering profiles. __________________ 44 Topography and drainage______________________ 5 Stream deposits in South Dakota ___________ 45 Minnesota River-Red River lowland. _________ 5 Sand and gravel- _____________________ 45 Coteau des Prairies.________________________ 6 Distribution and thickness. ________ 45 Surface expression._____________________ 6 Physical character. _______________ 45 General geology._______________________ 7 Description by localities ___________ 46 Subdivisions. ________-___--_-_-_-______ 9 Conditions of deposition ___________ 50 James River lowland.__________-__-___-_--__ 9 Age and correlation_______________ 51 General features._________-____--_-__-__ 9 Clayey silt. __________________________ 52 Lake Dakota plain____________________ 10 Loveland loess in South Dakota. ___________ 52 James River highlands...-------.-.---.- 11 Weathering profiles and buried soils. ________ 53 Coteau du Missouri..___________--_-_-__-___ 12 Synthesis of pre- Wisconsin stratigraphy. -
Streams and Running Water Streams Are Part of the Hydrologic Cycle (Figure 10.1)
Streams and Running Water Streams are part of the hydrologic cycle (Figure 10.1) Stream: body of running water that is confined in a channel and moves downhill under the influence of gravity. Cross-section of a typical stream (Figure 10.2) 1) Channel Flow 2) Sheet Flow Drainage Basin: area of a stream and its’ tributaries. Tributary: small stream flowing into a large one. Divide: ridge seperating drainage basins. Drainage Patterns 1) Dendritic: resembles tree branches > occurs on uniformly resistant rock 2) Radial: streams diverge outward from a central point > occurs on conic shapes, like volcanoes 3) Rectangular: steams have sharp bends ¾ due to presence of faulting, river follows the fault 4) Trellis: Parallel main streams with right angle tributaries > occurs on valley and ridge geomorphologies Factors Affecting Stream Erosion and Deposition 1) Velocity = distance/time Fast = 5km/hr or 3mi/hr Flood = 25 km/hr or 15 mi/hr Figure 10.6: Fastest in the middle of the channel a) Gradient: downhill slope of the bed of the stream ¾ very high near the mountains ¾ 50-200 feet/ mile in highlands, 0.5 ft/mile in floodplain b) Channel Shape and Roughness (Friction) > Figure 10.9 ¾ Lots of fine particles – low roughness, faster river ¾ Lots of big particles – high roughness, slower river (more friction) High Velocity = erosion (upstream) Low Velocity = deposition (downstream) Figure 10.7 > Hjulstrom Diagram What do these lines represent? Salt and clay are hard to erode, and typically stay suspended 2) Discharge: amount of flow Q = width x depth -
TAHQUITZ CREEK TRAIL MASTER PLAN Background, Goals and Design Standards Tahquitz Creek Trail Master Plan
TAHQUITZ CREEK T RAIL MASTER PLAN PREPARED FOR: THE CITY OF PALM SPRINGS PARKS & RECREATION DEPARTMENT PREPARED BY: ALTA PLANNING + DESIGN WITH RBF CONSULTING MARCH 2010 ACKNOWLEDGEMENTS Deep appreciati on to the neighborhood groups and community members who conti nue to work ti relessly to bring the vision of the Tahquitz Creek Trail to fruiti on. Steering Committ ee Members Council Member Ginny Foat April Hildner Jim Lundin Bill Post Max Davila Lauri Aylaian Steve Sims Mike Hutchison Renee Cain Nanna D. A. Nanna Sharon Heider, Director City of Palm Springs Department of Parks and Recreati on 401 South Pavilion Way P.O. Box 2743 Palm Springs, CA 922-2743 George Hudson, Principal Karen Vitkay, Project Manager Alta Planning + Design, Inc. 711 SE Grand Avenue Portland, Oregon 97214 www.altaplanning.com RBF Consulti ng Brad Mielke, S.E., P.E. 74-130 Country Club Drive, Suite 201 Palm Desert, CA 92260-1655 www.RBF.com TABLE OF CONTENTS Background, Goals and Design and Standards .............................................1 Background ...................................................................................................... 2 Vision Statement .............................................................................................. 2 Goals and Objecti ves ........................................................................................ 3 Trail Design Standards .......................................................................................4 Multi -Use Trail Design ......................................................................................