Plant Conservation Alliance®S Alien Plant Working Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thistles of Colorado
Thistles of Colorado About This Guide Identification and Management Guide Many individuals, organizations and agencies from throughout the state (acknowledgements on inside back cover) contributed ideas, content, photos, plant descriptions, management information and printing support toward the completion of this guide. Mountain thistle (Cirsium scopulorum) growing above timberline Casey Cisneros, Tim D’Amato and the Larimer County Department of Natural Resources Weed District collected, compiled and edited information, content and photos for this guide. Produced by the We welcome your comments, corrections, suggestions, and high Larimer County quality photos. If you would like to contribute to future editions, please contact the Larimer County Weed District at 970-498- Weed District 5769 or email [email protected] or [email protected]. Front cover photo of Cirsium eatonii var. hesperium by Janis Huggins Partners in Land Stewardship 2nd Edition 1 2 Table of Contents Introduction 4 Introduction Native Thistles (Pages 6-20) Barneyby’s Thistle (Cirsium barnebyi) 6 Cainville Thistle (Cirsium clacareum) 6 Native thistles are dispersed broadly Eaton’s Thistle (Cirsium eatonii) 8 across many Colorado ecosystems. Individual species occupy niches from Elk or Meadow Thistle (Cirsium scariosum) 8 3,500 feet to above timberline. These Flodman’s Thistle (Cirsium flodmanii) 10 plants are valuable to pollinators, seed Fringed or Fish Lake Thistle (Cirsium 10 feeders, browsing wildlife and to the centaureae or C. clavatum var. beauty and diversity of our native plant americanum) communities. Some non-native species Mountain Thistle (Cirsium scopulorum) 12 have become an invasive threat to New Mexico Thistle (Cirsium 12 agriculture and natural areas. For this reason, native and non-native thistles neomexicanum) alike are often pulled, mowed, clipped or Ousterhout’s or Aspen Thistle (Cirsium 14 sprayed indiscriminately. -
Milk Thistle
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
Thistle Identification
Oklahoma Cooperative Extension Service PSS-2776 Thistle Identification January 2021 Laura Goodman Extension Rangeland Ecology Specialist Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Tom Royer extension.okstate.edu Extension Entomologist Alex Rocateli can often develop. The current Thistle Law includes three of Forage Systems Extension Specialist the five species. However, all introduced thistles should be considered invasive. Oklahoma’s Noxious Weed Law, first enacted in 1994 in four counties in northeastern Oklahoma (Code 35:30-36-13) Thistles Listed in the Noxious Weed Law was amended in 1995, 1998 and 1999. The current law de- Canada thistle (Cirsium arvense) is an introduced peren- clares musk, scotch and Canada thistles to be noxious weeds nial thistle widely distributed in Nebraska and other northern and public nuisances in all counties of the state. states. At present, it does not appear to be a major threat in There are about a dozen purple-flowered spiny thistle Oklahoma. Several plants were collected in the panhandle species that occur in Oklahoma. Oklahoma’s Noxious Weed counties in the 1950s and several more in Bryan County in Law can raise concern among landowners if they do not the 1970s, but currently, no infestations are known to exist in know which thistles on their land they are required to control. the state. In a 1998 survey of noxious weeds in Meade County The purpose of this publication is to describe the introduced Kansas, north of Beaver County, Oklahoma, reported a small thistles, selected common native thistles and provide infor- infestation of Canada thistle. -
Cirsium Arvense (L.) Scop
NEW YORK NON -NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Cirsium arvense (L.) Scop. (C. setosum, C. incanum, Carduus arvensis, Serratula arvensis & all varieties of C. arvense) USDA Plants Code: CIAR4 Common names: Creeping thistle, Californian thistle, Canada thistle, field thistle Native distribution: Eurasia Date assessed: April 28, 2009 Assessors: Gerry Moore Reviewers: LIISMA SRC Date Approved: May 13, 2009 Form version date: 3 March 2009 New York Invasiveness Rank: High (Relative Maximum Score 70.00-80.00) Distribution and Invasiveness Rank ( Obtain from PRISM invasiveness ranking form ) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Widespread High 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 ( 40 ) 20 2 Biological characteristic and dispersal ability 25 ( 25 ) 21 3 Ecological amplitude and distribution 25 ( 25 ) 21 4 Difficulty of control 10 ( 10 ) 9 Outcome score 100 ( 100 )b 71 a † Relative maximum score 71.00 § New York Invasiveness Rank High (Relative Maximum Score 70.00-80.00) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places. -
Ecology and Management of Canada Thistle [Cirsium Arvense (L.) Scop
United States Department of Agriculture NATURAL RESOURCES CONSERVATION SERVICE Invasive Species Technical Note No. MT-5 September 2006 Ecology and Management of Canada thistle [Cirsium arvense (L.) Scop.] by Jim Jacobs, NRCS Invasive Species Specialist, Bozeman, MT Joanna Sciegienka, Graduate Research Assistant, Montana State University, Bozeman, MT Fabian Menalled, Extension Cropland Weeds Specialist, Montana State University, Bozeman, MT Abstract A member of the Aster family, Canada thistle is a vigorous, highly competitive species. Occurring in a large range of habitats including croplands, ditch banks and riparian areas, gardens and pastures, this category 1 noxious perennial weed is particularly hard to control because of its deep, creeping, reproductive root system forming colonies. In general, infestations start on disturbed ground, with plants being able to colonize 10 to 12 feet per year. Canada thistle can grow in a variety of habitats, but it is best adapted to deep, well-aerated and productive soils. It prefers sunny and warm areas with 15 to 30 or more inches of precipitation or irrigation per year, but it can grow on dryer cropland and pasture sites with 12 to 13 inches of precipitation per year. When temperatures exceed 85º F for extended periods of time, it stops growing. Canada thistle threatens productivity in both crop and non-croplands. In cropland, Canada thistle causes extensive yield losses through competition for light, nutrients, and moisture. It also increases harvesting problems due to seed and forage contamination. In Montana, it is estimated that two shoots per square yard can reduce wheat yield by 15 percent and 25 shoots per square yard can reduce wheat yield by 60 percent. -
Barrowhill, Otterpool and East Stour River)
Folkestone and Hythe Birds Tetrad Guide: TR13 D (Barrowhill, Otterpool and East Stour River) The tetrad TR13 D is an area of mostly farmland with several small waterways, of which the East Stour River is the most significant, and there are four small lakes (though none are publically-accessible), the most northerly of which is mostly covered with Phragmites. Other features of interest include a belt of trees running across the northern limit of Lympne Old Airfield (in the extreme south edge of the tetrad), part of Harringe Brooks Wood (which has no public access), the disused (Otterpool) quarry workings and the westernmost extent of Folkestone Racecourse and. The northern half of the tetrad is crossed by the major transport links of the M20 and the railway, whilst the old Ashford Road (A20), runs more or less diagonally across. Looking south-west towards Burnbrae from the railway Whilst there are no sites of particular ornithological significance within the area it is not without interest. A variety of farmland birds breed, including Kestrel, Stock Dove, Sky Lark, Chiffchaff, Blackcap, Lesser Whitethroat, Yellowhammer, and possibly Buzzard, Yellow Wagtail and Meadow Pipit. Two rapidly declining species, Turtle Dove and Spotted Flycatcher, also probably bred during the 2007-11 Bird Atlas. The Phragmites at the most northerly lake support breeding Reed Warbler and Reed Bunting. In winter Fieldfare and Redwing may be found in the fields, whilst the streams have attracted Little Egret, Snipe and, Grey Wagtail, with Siskin and occasionally Lesser Redpoll in the alders along the East Stour River. Corn Bunting may be present if winter stubble is left and Red Kite, Peregrine, Merlin and Waxwing have also occurred. -
Reference Plant List
APPENDIX J NATIVE & INVASIVE PLANT LIST The following tables capture the referenced plants, native and invasive species, found throughout this document. The Wildlife Action Plan Team elected to only use common names for plants to improve the readability, particular for the general reader. However, common names can create confusion for a variety of reasons. Common names can change from region-to-region; one common name can refer to more than one species; and common names have a way of changing over time. For example, there are two widespread species of greasewood in Nevada, and numerous species of sagebrush. In everyday conversation generic common names usually work well. But if you are considering management activities, landscape restoration or the habitat needs of a particular wildlife species, the need to differentiate between plant species and even subspecies suddenly takes on critical importance. This appendix provides the reader with a cross reference between the common plant names used in this document’s text, and the scientific names that link common names to the precise species to which writers referenced. With regards to invasive plants, all species listed under the Nevada Revised Statute 555 (NRS 555) as a “Noxious Weed” will be notated, within the larger table, as such. A noxious weed is a plant that has been designated by the state as a “species of plant which is, or is likely to be, detrimental or destructive and difficult to control or eradicate” (NRS 555.05). To assist the reader, we also included a separate table detailing the noxious weeds, category level (A, B, or C), and the typical habitats that these species invade. -
An Inventory of Tortoise Beetles (Cassidinae) in Post Harvest Rice Field Ecosystem Area, Serdang Menang Village, Sirah Pulau Padang Sub- District
An Inventory of Tortoise Beetles (Cassidinae) in Post Harvest Rice Field Ecosystem Area, Serdang Menang Village, Sirah Pulau Padang Sub- district Ari Sugiarto Email: [email protected] Abstract Diversity of plants species in post harvest rice field ecosystem area tends to be higher compared to before harvest. Tortoise beetles can be a threat to plants species that exist in rice field ecosystem area. Serdang Menang Village has a fairly extensive rice field ecosystem area. An inventory of tortoise beetles in rice field ecosystem area, Serdang Menang Village will be very helpful in potential estimating of tortoise beetles to plants that exist in rice field ecosystem area, Serdang Menang Village. Determination of this sampling location was done randomly in post harvest rice field ecosystem area, Serdang Menang Village. The sampling method uses small insecting net and hand picking methods. Species of tortoise beetles found were 5 species (Aspidomorpha miliaris, Cassida subreticulata, Cassida circumdata, Cassida sp., dan Doloyala sp.) of a total 3 genera. Cassida circumdata and Aspidomorpha miliaris is tortoise beetles species that easiest to be found in this rice field ecosystem area which indicates that population is more than any species of tortoise beetles found. Cassida circumdata and Aspidomorpha miliaris can be major threat in rice field ecosystem area compared any species of tortoise beetles that found because a population is estimated to be more. Keywords: Post harvest rice field ecosystem area, Potential threat, Tortoise beetles 1. Introduction Tortoise beetles are insects included in 2015). Chemical control can be carried out the subfamily Cassidinae. Tortoise beetles using H2O and MeOH solvents, proven to have a role in controlling certain plant reduce the ability of shields in tortoise populations. -
Canada Thistle (Cirsium Arvense)
Canada Thistle (Cirsium arvense) Description A colony-forming, aggressive perennial, that spreads primarily by its creeping root system. Stems are grooved, upright, hollow and woody, branching near the top, and grow to 1.5 m tall. Leaves are lance-shaped, dark green, shiny on the surface and occur alternately, slightly clasping the stem. Lower leaves are largest and decrease in size upward along the stems. Leaf edges can vary from smooth with no spines to irregularly lobed with sharp spines. Flowers form at the ends of stems in clusters of one to several. The flower head is urn-shaped and the bracts are spineless. The color of the flowers may vary from plant to plant, being purple, pink or white. Seeds are borne in an achene to 4 mm long which is tufted. Key Identifiers Deep creeping roots Irregularly-lobed leaves with spines on margins only Male and female flowers on separate plants Location in Canada Canada Thistle has been reported in all Canadian provinces with the exception of Nunavut. Resources http://www.invasiveplants.ab.ca/Downloads/FS-CanadaThistle.pdf http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/prm2585 Similar species Cirsium spp - Marsh thistle (Cirsium palustre), Bull Thistle (Cirsium vulgare), Wavy leaf thistle (Cirsium undulatum) - Canada thistle is distinguished from other Cirsium spp thistles by its deep- running perennial rootstocks, stems not conspicuously spiny-winged, and small compact dioecious flower heads. Carduus spp - Nodding Thistle (Carduus nutans), Plumeless Thistle (Carduus acanthiodes) Welted Thistle (Carduus crispus) flowers have spines or prickles and stems have winged appendages. Scotch thistle (Onopordum acanthium)- covered with white woolly hairs and with the lower surface more densely covered than the upper. -
Unexpected Ecological Effects of Distributing the Exotic Weevil, Larinus Planus (F.), for the Biological Control of Canada Thistle
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Svata M. Louda Publications Papers in the Biological Sciences 6-2002 Unexpected Ecological Effects of Distributing the Exotic Weevil, Larinus planus (F.), for the Biological Control of Canada Thistle Svata M. Louda University of Nebraska - Lincoln, [email protected] Charles W. O'Brien Florida A & M University, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscilouda Part of the Ecology and Evolutionary Biology Commons Louda, Svata M. and O'Brien, Charles W., "Unexpected Ecological Effects of Distributing the Exotic Weevil, Larinus planus (F.), for the Biological Control of Canada Thistle" (2002). Svata M. Louda Publications. 28. https://digitalcommons.unl.edu/bioscilouda/28 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Svata M. Louda Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Conservation Biology 16:3 (June 2002), pp. 717–727; doi: 10.1046/j.1523-1739.2002.00541.x Copyright © 2002 Society for Conservation Biology. Used by permission. Submitted December 18, 2001; revised and accepted June 14, 2001; published online May 28, 2002. Unexpected Ecological Effects of Distributing the Exotic Weevil, Larinus planus (F.), for the Biological Control of Canada Thistle Svaťa M. Louda School of Biological Sciences University of Nebraska–Lincoln Lincoln, NE 68588–0118, U.S.A., email [email protected] Charles W. O’Brien Center for Biological Control Florida A & M University Tallahassee, FL 32307–4100, U.S.A. -
Cirsium Arvense
Cirsium arvense Cirsium arvense Canada thistle Introduction The genus Cirsium is comprised of approximately 250–300 species distributed in Asia, Europe, North Africa, and both North and Central America. More than 50 species belonging to eight sections have been reported from China[104]. Species of Cirsium in China Flowers of Cirsium arvense. (Photo by Chris Evans, UGA.) Scientific Name Scientific Name or elliptic-lanceolate, 7-17 cm long and C. alatum (S. G. Gmel.) Bobr. C. leo. Nakai. et. Kitag. 1.5-4.5 cm wide, pinnatifid, with a short C. alberti Rgl. et Schmalh. C. lidjiangense Petrak ex Hand.-Mazz. petiole. Leaf margins are dentate with C. argyrancanthum DC. C. lineare (Thunb.) Sch.-Bip. two to three spines bearing spinules 5 C. arvense (L.) Scop. C. maackii Maxim. mm long. The upper leaves are sessile, C. bracteiferum Shih C. monocephalum (Vant.) Lévl. similar in division to the lower stem C. chinense Gardn. et Champ. C. muliense Shih leaves, but turning slightly upwards C. chlorolepis Petrak C. pendulum Fisch. ex DC. on the stem. Most heads are arranged C. chrysolepis Shih C. periacanthaceum Shih terminally in an umbel. The involucre is C. eriophoroides (Hook. f.) Petrak C. racemiforme Ling et Shih ovate or ovate-oblong, sparsely arachnoid C. sairamense (C. Winkl.) O. et B. or glabrous, 1.5-2 cm in diameter. Five C. esculentum (Sievers) C. A. Mey. Fedtsch. rows of bracts are imbricate, spinule- C. fangii Petrak. C. salicifolium (Kitag.) Shih bearing, and different in shape. Florets C. fanjingshanense Shih C. schantarense Trautv. et Mey. have purplish-red corollas and filiform C. -
Taxon Group Common Name Taxon Name First Recorded Last
First Last Taxon group Common name Taxon name recorded recorded amphibian Common Frog Rana temporaria 1987 2017 amphibian Common Toad Bufo bufo 1987 2017 amphibian Smooth Newt Lissotriton vulgaris 1987 1987 annelid Alboglossiphonia heteroclita Alboglossiphonia heteroclita 1986 1986 annelid duck leech Theromyzon tessulatum 1986 1986 annelid Glossiphonia complanata Glossiphonia complanata 1986 1986 annelid leeches Erpobdella octoculata 1986 1986 bird Bullfinch Pyrrhula pyrrhula 2016 2017 bird Carrion Crow Corvus corone 2017 2017 bird Chaffinch Fringilla coelebs 2015 2017 bird Chiffchaff Phylloscopus collybita 2014 2016 bird Coot Fulica atra 2014 2014 bird Fieldfare Turdus pilaris 2015 2015 bird Great Tit Parus major 2015 2015 bird Grey Heron Ardea cinerea 2013 2017 bird Jay Garrulus glandarius 1999 1999 bird Kestrel Falco tinnunculus 1999 2015 bird Kingfisher Alcedo atthis 1986 1986 bird Mallard Anas platyrhynchos 2014 2015 bird Marsh Harrier Circus aeruginosus 2000 2000 bird Moorhen Gallinula chloropus 2015 2015 bird Pheasant Phasianus colchicus 2017 2017 bird Robin Erithacus rubecula 2017 2017 bird Spotted Flycatcher Muscicapa striata 1986 1986 bird Tawny Owl Strix aluco 2006 2015 bird Willow Warbler Phylloscopus trochilus 2015 2015 bird Wren Troglodytes troglodytes 2015 2015 bird Yellowhammer Emberiza citrinella 2000 2000 conifer Douglas Fir Pseudotsuga menziesii 2004 2004 conifer European Larch Larix decidua 2004 2004 conifer Lawson's Cypress Chamaecyparis lawsoniana 2004 2004 conifer Scots Pine Pinus sylvestris 1986 2004 crustacean