Manhattan Project Sites, Draft Special Resource Study/Environmental Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Doctor Atomic
What to Expect from doctor atomic Opera has alwayS dealt with larger-than-life Emotions and scenarios. But in recent decades, composers have used the power of THE WORK DOCTOR ATOMIC opera to investigate society and ethical responsibility on a grander scale. Music by John Adams With one of the first American operas of the 21st century, composer John Adams took up just such an investigation. His Doctor Atomic explores a Libretto by Peter Sellars, adapted from original sources momentous episode in modern history: the invention and detonation of First performed on October 1, 2005, the first atomic bomb. The opera centers on Dr. J. Robert Oppenheimer, in San Francisco the brilliant physicist who oversaw the Manhattan Project, the govern- ment project to develop atomic weaponry. Scientists and soldiers were New PRODUCTION secretly stationed in Los Alamos, New Mexico, for the duration of World Alan Gilbert, Conductor War II; Doctor Atomic focuses on the days and hours leading up to the first Penny Woolcock, Production test of the bomb on July 16, 1945. In his memoir Hallelujah Junction, the American composer writes, “The Julian Crouch, Set Designer manipulation of the atom, the unleashing of that formerly inaccessible Catherine Zuber, Costume Designer source of densely concentrated energy, was the great mythological tale Brian MacDevitt, Lighting Designer of our time.” As with all mythological tales, this one has a complex and Andrew Dawson, Choreographer fascinating hero at its center. Not just a scientist, Oppenheimer was a Leo Warner and Mark Grimmer for Fifty supremely cultured man of literature, music, and art. He was conflicted Nine Productions, Video Designers about his creation and exquisitely aware of the potential for devastation Mark Grey, Sound Designer he had a hand in designing. -
The Smithsonian and the Enola Gay: the Crew
AFA’s Enola Gay Controversy Archive Collection www.airforcemag.com The Smithsonian and the Enola Gay From the Air Force Association’s Enola Gay Controversy archive collection Online at www.airforcemag.com The Crew The Commander Paul Warfield Tibbets was born in Quincy, Ill., Feb. 23, 1915. He joined the Army in 1937, became an aviation cadet, and earned his wings and commission in 1938. In the early years of World War II, Tibbets was an outstanding B-17 pilot and squadron commander in Europe. He was chosen to be a test pilot for the B-29, then in development. In September 1944, Lt. Col. Tibbets was picked to organize and train a unit to deliver the atomic bomb. He was promoted to colonel in January 1945. In May 1945, Tibbets took his unit, the 509th Composite Group, to Tinian, from where it flew the atomic bomb missions against Japan in August. After the war, Tibbets stayed in the Air Force. One of his assignments was heading the bomber requirements branch at the Pentagon during the development of the B-47 jet bomber. He retired as a brigadier general in 1966. In civilian life, he rose to chairman of the board of Executive Jet Aviation in Columbus, Ohio, retiring from that post in 1986. At the dedication of the National Air and Space Museum’s Udvar- Hazy Center in December 2003, the 88-year-old Tibbets stood in front of the restored Enola Gay, shaking hands and receiving the high regard of visitors. (Col. Paul Tibbets in front of the Enola Gay—US Air Force photo) The Enola Gay Crew Airplane Crew Col. -
Building 9731 – Secret City Festival’S Y-12 Public Tour Or: Building 9731 to Be Featured in Secret City Festival's Public Tour (Title Provided by the Oak Ridger)
Building 9731 – Secret City Festival’s Y-12 public tour Or: Building 9731 to be featured in Secret City Festival's public tour (title provided by The Oak Ridger) In March 1943 the very first structure to be completed at the newly emerging Y-12 Electromagnetic Separation Plant was Building 9731. It was only a little over a month earlier that ground had been broken for the first of nine major buildings designed to hold cautrons (CALifornia University Cyclotron). But the real push had been to complete the construction of a smaller building, one with a high bay and especially designed to house four very special units of newly designed equipment using huge magnets. The Alpha Calutron magnets stand well over 20 feet tall and are still standing there today―the only ones in the world! For the first time ever, the public will have a chance to see these huge magnets and will also be able to tour inside historic Building 9731. This historic event is a part of the Secret City Festival this year. On Saturday, June 19, 2010, from 9:00 AM to 4:00 PM, a major part of the Y-12 public tour will include Building 9731. The public will be allowed to see inside the historic structure and view the magnets of both the two Alpha and two Beta calutrons. These calutron magnets have been designated as Manhattan Project Signature Artifacts by the Depart- ment of Energy’s Federal Preservation Officer in the DOE Office of History and Heritage Resources. The building is being submitted for Historical Landmark status on the National Register of Historic Places. -
The Making of an Atomic Bomb
(Image: Courtesy of United States Government, public domain.) INTRODUCTORY ESSAY "DESTROYER OF WORLDS": THE MAKING OF AN ATOMIC BOMB At 5:29 a.m. (MST), the world’s first atomic bomb detonated in the New Mexican desert, releasing a level of destructive power unknown in the existence of humanity. Emitting as much energy as 21,000 tons of TNT and creating a fireball that measured roughly 2,000 feet in diameter, the first successful test of an atomic bomb, known as the Trinity Test, forever changed the history of the world. The road to Trinity may have begun before the start of World War II, but the war brought the creation of atomic weaponry to fruition. The harnessing of atomic energy may have come as a result of World War II, but it also helped bring the conflict to an end. How did humanity come to construct and wield such a devastating weapon? 1 | THE MANHATTAN PROJECT Models of Fat Man and Little Boy on display at the Bradbury Science Museum. (Image: Courtesy of Los Alamos National Laboratory.) WE WAITED UNTIL THE BLAST HAD PASSED, WALKED OUT OF THE SHELTER AND THEN IT WAS ENTIRELY SOLEMN. WE KNEW THE WORLD WOULD NOT BE THE SAME. A FEW PEOPLE LAUGHED, A FEW PEOPLE CRIED. MOST PEOPLE WERE SILENT. J. ROBERT OPPENHEIMER EARLY NUCLEAR RESEARCH GERMAN DISCOVERY OF FISSION Achieving the monumental goal of splitting the nucleus The 1930s saw further development in the field. Hungarian- of an atom, known as nuclear fission, came through the German physicist Leo Szilard conceived the possibility of self- development of scientific discoveries that stretched over several sustaining nuclear fission reactions, or a nuclear chain reaction, centuries. -
Kimmo Mäkilä Tuhoa, Tehoa Ja Tuhlausta
JYVÄSKYLÄ STUDIES IN HUMANITIES 84 Kimmo Mäkilä Tuhoa, tehoa ja tuhlausta Helsingin Sanomien ja New York Timesin ydinaseuutisoinnin tarkastelua diskurssianalyyttisesta näkökulmasta 1945–1998 Esitetään Jyväskylän yliopiston humanistisen tiedekunnan suostumuksella julkisesti tarkastettavaksi yliopiston Villa Ranan Paulaharjun salissa joulukuun 15. päivänä 2007 kello 12. JYVÄSKYLÄN YLIOPISTO JYVÄSKYLÄ 2007 Tuhoa, tehoa ja tuhlausta Helsingin Sanomien ja New York Timesin ydinaseuutisoinnin tarkastelua diskurssianalyyttisesta näkökulmasta 1945–1998 JYVÄSKYLÄ STUDIES IN HUMANITIES 84 Kimmo Mäkilä Tuhoa, tehoa ja tuhlausta Helsingin Sanomien ja New York Timesin ydinaseuutisoinnin tarkastelua diskurssianalyyttisesta näkökulmasta 1945–1998 JYVÄSKYLÄN YLIOPISTO JYVÄSKYLÄ 2007 Editors Raimo Salokangas Department of Communication, University of Jyväskylä Pekka Olsbo, Marja-Leena Tynkkynen Publishing Unit, University Library of Jyväskylä Jyväskylä Studies in Humanities Editorial Board Editor in Chief Heikki Hanka, Department of Art and Culture Studies, University of Jyväskylä Petri Karonen, Department of History and Ethnology, University of Jyväskylä Matti Rahkonen, Department of Languages, University of Jyväskylä Petri Toiviainen, Department of Music, University of Jyväskylä Minna-Riitta Luukka, Centre for Applied Language Studies, University of Jyväskylä Raimo Salokangas, Department of Communication, University of Jyväskylä Cover Picture by Janne Ikonen ISBN 978-951-39-2988-6 ISSN 1459-4323 Copyright ©2007 , by University of Jyväskylä Jyväskylä -
The Manhattan Project and Its Legacy
Transforming the Relationship between Science and Society: The Manhattan Project and Its Legacy Report on the workshop funded by the National Science Foundation held on February 14 and 15, 2013 in Washington, DC Table of Contents Executive Summary iii Introduction 1 The Workshop 2 Two Motifs 4 Core Session Discussions 6 Scientific Responsibility 6 The Culture of Secrecy and the National Security State 9 The Decision to Drop the Bomb 13 Aftermath 15 Next Steps 18 Conclusion 21 Appendix: Participant List and Biographies 22 Copyright © 2013 by the Atomic Heritage Foundation. All rights reserved. No part of this book, either text or illustration, may be reproduced or transmit- ted in any form by any means, electronic or mechanical, including photocopying, reporting, or by any information storage or retrieval system without written persmission from the publisher. Report prepared by Carla Borden. Design and layout by Alexandra Levy. Executive Summary The story of the Manhattan Project—the effort to develop and build the first atomic bomb—is epic, and it continues to unfold. The decision by the United States to use the bomb against Japan in August 1945 to end World War II is still being mythologized, argued, dissected, and researched. The moral responsibility of scientists, then and now, also has remained a live issue. Secrecy and security practices deemed necessary for the Manhattan Project have spread through the govern- ment, sometimes conflicting with notions of democracy. From the Manhattan Project, the scientific enterprise has grown enormously, to include research into the human genome, for example, and what became the Internet. Nuclear power plants provide needed electricity yet are controversial for many people. -
Wahlen, R. K. History of 100-B Area
WHC-EP-0273 History of 100-B Area R. K. Wahlen Date Published October 1989 Prepared for the U.S. Department of Energy Assistant Secretary for Management and Administration w Westinghouse P.O. Box 1970 0- Hanford mpany Richland, Washington &I352 Hanford Operations and Engineering Contractor for the U.S. Department of Energy under Contract DE-ACO6-87RLlOg30 WHC-EP-0273 EXECUTIVE SUMMARY In August 1939, Albert Einstein wrote a letter to President Roosevelt that informed him of the work that had been done by Enrico Fermi and L. Szilard on converting energy from the element uranium. He also informed President Roosevelt that there was strong evidence that the Germans were also working on this same development. This letter initiated a program by the United States to develop an atomic bomb. The U.S. Army Corps of Engineers, under the Department of Defense, was assigned the task. The program, which involved several locations in the United States, was given the code name, Manhattan Project. E. I. du Pont de Nemours & Company (Du Pont) was contracted to build and operate the reactors and chemical separations plants for the production of plutonium. On December 14, 1942, officials of Du Pont met in Wilmington, Delaware, to develop a set of criteria for the selection of a site for the reactors and separations plants. The basic criteria specified four requirements: (1) a large supply of clean water, (2) a large supply of electricity, (3) a large area with low population density, and (4) an area that would cover at least 12 by 16 mi. -
The Hanford Laboratories and the Growth of Environmental Research in the Pacific Northwest
AN ABSTRACT OF THE THESIS OF D. Erik Ellis for the degree of Master of Science in History of Science, presented on December 17,2002. Title: The Hanford Laboratories and the Growth of Environmental Research in the Pacific Northwest. 1943 to 1965. Redacted for privacy Abstract approved: William G. Robbins The scientific endeavors that took place at Hanford Engineer Works, beginning in World War II and continuing thereafter, are often overlooked in the literature on the Manhattan Project, the Atomic Energy Commission, and in regional histories. To historians of science, Hanford is described as an industrial facility that illustrates the perceived differences between academic scientists on the one hand and industrial scientists and engineers on the other. To historians of the West such as Gerald Nash, Richard White, and Patricia Limerick, Hanford has functioned as an example of the West's transformation during in World War II, the role of science in this transformation, and the recurring impacts of industrialization on the western landscape. This thesis describes the establishment and gradual expansion of a multi-disciplinary research program at Hanford whose purpose was to assess and manage the biological and environmental effects of plutonium production. By drawing attention to biological research, an area in which Hanford scientists gained distinction by the mid 1950s, this study explains the relative obscurity of Hanford's scientific research in relation to the prominent, physics- dominated national laboratories of the Atomic Energy Commission. By the mid 1960s, with growing public concern over radiation exposure and changes in the government's funding patterns for science, Hanford's ecologically relevant research provided a recognizable and valuable identity for the newly independent, regionally-based research laboratory. -
“Dropping the A-Bomb on Cities Was Mistake”—Father of Health Physics (As Published in the Oak Ridger’S Historically Speaking Column the Week of June 29, 2020)
“Dropping the A-bomb on cities was mistake”—Father of Health Physics (As published in The Oak Ridger’s Historically Speaking column the week of June 29, 2020) A friend and fellow historian, Alex Wellerstein, has just written in his blog, Restricted Data, The Nuclear Secrecy Blog, an entry entitled, What journalists should know about the atomic bombings. In this blog entry he notes that as we approach the 75th anniversary of the atomic bombings of Hiroshima and Nagasaki we will surely see increased emphasis in the news regarding the atomic bombs. This is understandable and especially so in Oak Ridge, Los Alamos and Hanford. While my focus on Oak Ridge history in Historically Speaking may vary from time to time, the atomic bombs and what has resulted from the nuclear age over the years is never far from my mind. In these articles researched and written by Carolyn Krause, I am attempting to bring Historically Speaking readers perspectives that might well not normally be expressed. Not that I intend to alter your thinking regarding the use of the atomic bombs, as generally each of us have made our decision already. However, seeing the issue from different perspectives is worthwhile. For example, this particular article features comments and perspectives of Karl Z. Morgan. Some of you may even have known him. If that is the case, you likely already know his opinions. If you are being introduced to him for the first time reading this, it will be good for you to appreciate his perspective, even if you disagree with his conclusions. -
Mflfihflttflfi PROJECT
MflfiHflTTflfi PROJECT U.S. DEPARTMENT OF ENERGY The Hanford Site began as part and the reactor stack are the ofthe United States Manhattan only facilities that remain. Project to research, test and build atomic weapons during World War II. Today, the U.S. Department The original 670-square mile ofEnergy (DOE) Richland Hanford Site, then known as Operations Office offers escorted the Hanford Engineer Works, public access to B Reactor along a was the last ofthree top-secret designated tour route. The National sites constructed in order to Park Service (NPS) is studying produce enriched uranium and preservation and interpretation plutonium for the world's first options for sites associated with nuclear weapons. the Manahattan Project. A draft is expected in summer 2009. A final report will recommend whether B Reactor, located about 45 the B Reactor, along with other miles northwest ofRichland, Manhattan Project facilities, should Washington, is the world's first be preserved, and ifso, what roles full-scale nuclear reactor. the DOE, the NPS and community Not only was B Reactor a first partners will play in preservation of-a-kind engineering structure, and public education. it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in south eastern Washington State held nine nuclear reactors at the height ofHanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department ofEnergy began removing B Reactor's support facilities. The reactor B Reactor operating in 1945 building, the river pumphouse 2 ! N 200 West 200 East Area Area _1-+....&+04.01 B Reactor today, looking west with Umtanum Ridge in the background MRNHI\TTI\N ~~~.,". -
Los Alamos Visitors Guide
OFFICIAL VISITOR GUIDE 800.444.0707 • VISITLOSALAMOS.ORG Discover Los Alamos • VisitLosAlamos.org • 800.444.0707 Los Alamos Visitor Center White Rock Visitor Center 505.662.8105 505.672.3183 109 Central Park Square 115 State Road 4 Los Alamos, NM 87544 White Rock, NM 87547 HOURS HOURS 7 days a week Mon–Fri: 9am–5pm mid-May to mid-Oct Sat: 9am–4pm 8am–6pm Sun: 10am–3pm mid-Oct to mid-May 10am–2pm Come See the “Secret City” Los Alamos, New Mexico is a scenic mountain town located just 33 miles northwest of Santa Fe. Built on mesa tops, you’ll find 360-degree views of canyons, mountains, forests and the New Mexico sky. Site of the top-secret Manhattan Project, the historic guard tower and replica of the guard gate at the town’s entrance provide a glimpse of the area’s once-classified World War II beginnings and the rich historical attractions beyond. In addition, outdoor enthusiasts marvel at the abundance of recreation opportunities available year-round, including hiking, mountain biking, skiing, snowshoeing, ice skating, golfing and swimming. Home to Los Alamos National Laboratory, this small town of 18,000 people attracts top talent from around the globe. Scientists develop groundbreaking innovations to solve national security challenges, as well as advancements in the areas of medicine, energy and food security around the world. Read on to learn more about how Los Alamos evolved from a Secret City to a destination for curious minds and big adventurers. All photos by Leslie Bucklin unless otherwise noted “50 Best Cities in the U.S. -
Trivia Questions
TRIVIA QUESTIONS Submitted by: ANS Savannah River - A. Bryson, D. Hanson, B. Lenz, M. Mewborn 1. What was the code name used for the first U.S. test of a dry fuel hydrogen bomb? Castle Bravo 2. What was the name of world’s first artificial nuclear reactor to achieve criticality? Chicago Pile-1 (CP-1), I also seem to recall seeing/hearing them referred to as “number one,” “number two,” etc. 3. How much time elapsed between the first known sustained nuclear chain reaction at the University of Chicago and the _____ Option 1: {first use of this new technology as a weapon} or Option 2: {dropping of the atomic bomb in Hiroshima} A3) First chain reaction = December 2nd 1942, First bomb-drop = August 6th 1945 4. Some sort of question drawing info from the below tables. For example, “what were the names of the other aircraft that accompanied the Enola Gay (one point for each correct aircraft name)?” Another example, “What was the common word in the call sign of the pilots who flew the Japanese bombing missions?” A4) Screenshots of tables from the Wikipedia page “Atomic bombings of Hiroshima and Nagasaki” Savannah River Trivia / Page 1 of 18 5. True or False: Richard Feynman’s name is on the patent for a nuclear powered airplane? (True) 6. What is the Insectary of Bobo-Dioulasso doing to reduce the spread of sleeping sickness and wasting diseases that affect cattle using a nuclear technique? (Sterilizing tsetse flies; IAEA.org) 7. What was the name of the organization that studied that radiological effects on people after the atomic bombings? Atomic Bomb Casualty Commission 8.