Download Article (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Download Article (PDF) Main Group Metal Chemistry Vol. 25, No. 10, 2002 (POLYFLUOROORGANO)HALOBORANES AND (POLYFLUOROORGANO)FLUOROBORATE SALTS: PREPARATION, NMR SPECTRA AND REACTIVITY Vadim V. Bardin1 and Hermann-Josef Frohn2 * 1 Ν. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia 2 Institute of Chemistry, Inorganic Chemistry, Gerhard-Mercator-Universität Duisburg, Lotharstr. 1, D-47048 Duisburg, Germany <[email protected]> ABSTRACT New developments concerning the preparation and reactivity of (polyfluoroorgano)haloboranes RFBX2, (RF)2BX (X = F, CI, Br), some of their adducts (RF)NBX,. · Base (n = 1 - 3), and their related fluoroborate salts Μ [(RF)nBF4.„] were reviewed. Significant 'B and F NMR spectroscopic patterns of all three classes were described. CONTENTS 1. Introduction 2. Preparation of (polyfluoroorgano)haloboranes RFBX2 and (RF)2BX (X = F, CI, Br) 2.1. From (polyfluoroorgano)metallic precursors 2.2. From other (polyfluoroorgano)boron compounds 2.3. By various procedures 3. Preparation of (polyfluoroorgano)fluoroborate salts Μ [(RF)nBF4_n] 4. The NMR spectra of (polyfluoroorgano)haloboranes, their complexes with bases and (polyfluoroorgano)fluoroborate salts 5. "The reactivity of (polyfluoroorgano)haloboranes 5.1. Thermal stability 5.2. Reactions with bases and nucleophiles 5.3. Reactions with anhydrous HF 5.4. Conversion of(RF)„BX3.n into (RF)nBF3_n (X = CI, Br) 5.5. Reactions of (polyfluoroorgano)haloboranes with hypervalent fluorine-element-fluorine bonds in xenon fluorides, bromine trifluoride, and organoiodine difluorides 5.6. Reactions of (polyfluoroorgano)haloboranes with selected organoelement compounds. 6. The reactivity of (polyfluoroorgano)fluoroborate salts 7. Conclusions 8. References 1. INTRODUCTION (Organo)dihaloboranes RBX2 and di(organo)haloboranes R2BX (X = F, CI, Br, I) are well-established compounds and their preparations and reactivities were reviewed in fundamental monographs [1, 2]. However, the replacement of all or the majority of hydrogen atoms in the organic group R by fluorine caused significant changes of properties. In fact, the synthetic approaches to the polyfluorinated organoboranes and -borate salts as well as the reactivity of these compounds have a number of peculiarities which combine the specific properties of both roots, organofluorine and organoboron chemistry, and their co-operation. The intensive development of the organofluorine chemistry in 1960s also initiated the research in the field of polyfluorinated organometallics and organo element compounds including the borderline element boron. In 1960 - 1970, the first representatives of perfluorinated alkyl-, alkenyl-, and arylboron compounds were obtained but during the next two decades they remained only "chemical exotics". The situation changed in the 1980s when the high efficiency of (C6F5)3B and of some Μ [(C6F5)4B] salts as co-catalysts in the homogeneous olefin polymerisation was discovered. This caused an "explosive" number of publications on the chemistry of tris(pentafluorophenyl)borane, tetrakis(pentafluorophenyl)borate salts, and related (perfluoroaryl)boron compounds. The application of perfluorinated tri(aryl)boranes as versatile Lewis acids and suitable co-catalysts in the olefin polymerization stimulated the research on this class of acids. Consequently, the tetrakis(polyfluoroaryl)borate anions (often attributed as "non-coordinating anions") attracted interest as counter anions of low nucleophilicity for stabilizing salts with electrophilic cations and similar purposes. The recent advances in these fields (synthesis, reactivity, and practical application) were surveyed in reviews [3,4, 5], actual original papers [6, 7, 8, 9 ], and in the references cited there. Hermann-Josef Frohn et al. (Polyfluoroorgano)haloboranes and (Polyfluororgano) fluoroborate Salts: Preparation, NMR Spectra and Reactivity The initial achievements in the chemistry of (poiyfluoroorgano)boron compounds were collected in reviews [1, 3, 10, 11] which covered the literature until 1983. Advances in the chemistry of the (trifluoromethyl)boron compounds R(CF3)nBX2_ and Μ [R(CF3)„BX3_„] (η = 1 - 3, X = F, CI, ...) were discussed by Pawelke and Buerger [5], and the preparation of the first tetrakis(trifluoromethyl)borate salts was reported in 2001 [12], When our review had been finished, a paper of Chivers [13] on pentafluorophenylboron halides appeared. The recent advances in the synthesis and reactivity of polyfluorinated mono- and di(organo)haloboranes (Rf^BXj^, their adducts (RF)„BX3_n · Base, and the related salts Μ [(Rf)„F4_„] where RF represents polyfluorinated alkyl-, alk-1-enyl-, and aryl groups, and X fluorine, chlorine, and bromine, are the scope of this review. Poly- and perfluorinated (alkyl)haloboranes RFBX2, (RF)2BX (X = CI, Br, I), (alk-1- ynyl)haloboranes (RFC-C)„BX3_n (X = F, CI, Br, I), the corresponding fluoroborates Μ [(RFC-C)„BF^„] (n = 1,2), and (polyfluoroorgano)haioborates Μ [(RF)nBX4_J (X = CI, Br, I) are still unknown compounds. 2. PREPARATION OF (POLYFLUOROORGANO)HALOBORANES RFBX2 AND (RF)2BX (X = F, CI, Br) 2.1. From (polyfluoroorgano)metallic precursors A common approach to (organo)haloboranes is the reaction of boron trihalides with organotin or organomercury compounds (borodemetalation) [1, 2]. This route was successfully used to prepare some polyfluorinated (aryl)- and (ethenyl)haloboranes. The treatment of trimethylpentafluorophenyltin or dimethylbis(pentafluorophenyl)tin with boron trichloride in excess gave (pentafluorophenyl)dichloroborane in a high yield [14, 15]. In a similar way, (pentafluorophenyl)dibromoborane (low yield) [16] and (pentafluorophenyl)difluoroborane [15] were obtained (Eqs. (1) - (3)). BC13 (excess) C6F5SnMe2R * C6F5BCI2 + Me2RSnCl (1) -20 °C, 12 h R = CH3 (96 %), C6F5 (74 %) BBr3 (excess) (C6Fs)2SnBu2 » C6F5BBr2 + Bu2SnBr2 (2) 90 °C, 3 h 22 % BF3 (excess), CC14 C6F5SnMe3 » C6F5BF2 + FSnMe3 + "[Me3Sn] [BF4]" (3) 20 °C, 60 h The preparation of perfluorinated di(aryl)chloro- and di(aryl)bromoboranes and related compounds required the use of stoichiometric amounts of boron trihalides. The continuous heating of (C6F5)2SnMe2 with BC13 (1 : 1) at 100 to 120 °C led to the formation of bis(pentafluorophenyl)chloroborane (Eq. (4)) [15, 17], A similar replacement of the >SnMe2 fragment by >BBr occurred in the reaction of 9,9-dimethylperfluoro-9- stannafluorene with BBr3 (Eq.(5)) [9]. The reagent (C6F5)4Sn did not react either with boron tribromide (reflux, 24 h) [16] or boron trifluoride (130 °C, 65 h) [18]. This is in contrast to the hydrocarbon analogues, tetraalkyl- and tetraphenyltin, which were easily converted into the corresponding (organo)dihaloboranes when heated with BX3 (X = Br, I) [19]. (C6Fs)2SnMe2 + BC13 • (C6F5)2BC1 + Me2SnCl2 (4) 100 °C, 2 h 36% [15] or 120 °C, 48 h 68 % [17] 590 Main Group Metal Chemistry Vol. 25, No. 10, 2002 benzene SnMs2 + BBr3 BBr (5) -78 to 20 °C 4 h The first (polyfluoroalk-l-enyl)haloboranes, (trifluoroethenyl)difluoroborane, (trifluoroethenyl)dichloro- borane, and bis(trifluoroethenyl)chloroborane, were prepared by borodestannylation of bis(trifluoroethenyl)- dimethyltin with BX3 (X = F, CI). The formation of (trifluoroethenyl)dichloroborane proceeded in a high yield whereas the corresponding difluoroborane was obtained in 18 % yield only (Eq. (6)). The successful synthesis of di(perfluoroethenyl)chloroborane (CF2=CF)2BC1 was performed by heating of (CF2=CF)2SnMe2 with one equivalent of boron trichloride (Eq. (7)) [20]. (CF2=CF)2SnMe2 + 2BX3 2 CF,=CFBX, + Me,SnX, (6) 20 to 70 °C, 1 h X = F(18 %), CI (93 %) (CF2=CF)2SnMe2 + BC13 (CF2=CF)2BC1 + Me2SnCl2 (7) 20 to 70 °C, 1 h 85% In some cases, the isolation of the (polyfluoroorgano)haloboranes from the reaction mixtures was hindered because of the similar boiling points of the boranes and the resulting alkyltin halides. This problem could be overcome by using other (organo)metal precursors, polyfluorinated aryl- or ethenylmercury derivatives. The reaction of the latter with boron trihalides resulted in less or non-volatile organomercury halides. (Pentafluorophenyl)dihaloboranes C6F5BC12 and C6F5BBr2 were obtained from pentafluorophenyl- mercury derivatives C6F5HgR and boron trihalide (Eqs. (8) - (10)) [15,21, 22], BC13 (excess) C6F5HgMe C6F5BC12 + MeHgCl (8) 20 °C, 24 h 84% BBr3, CH2C12 C6F5HgEt C6F5BBr2 + EtHgBr (9) -50 to 20 °C 82% BBr3, toluene C6F5HgBr C6F5BBr2 + HgBr2 (10) reflux, 2 days 80% Borodemercuration of the cyclic trimer f(C6F4)Hg]3 with BBr3 at 120 °C led to 1,2-bis(dibromoboryl)- tetrafluorobenzene in 82 % yield (Eq. (11)) [23], Surprisingly, boron trichloride reacted with [(C6F4)Hg]3 under the same conditions [23] or with l,2-bis(trimethylstannyl)tetrafluorobenzene at 180 eC to give decafluoro-9,10-dichloro-9,10-diboraanthracene (53 % yield) (Eq. (12)) [6] instead of the expected 1,2- bis(dichloroboryl)tetrafluorobenzene. BBr2 BBr3, benzene (11) 120 °C, 1 h BBr2 82% 591 Hermann-Josef Frohn et al. (Polyfluoroorgano)haloboranes and (Polyfluororgano) fluoroborate Salts: Preparation, NMR Spectra and Reactivity HG ψHg BCI3, benzene 5 120°C, 1 h Hg Φ: "" » 180 B^^^ C, 18 h SnMe3 CI The treatment of bis(trifluoroethenyl)mercury with BC13 smoothly led to (trifluoroethenyl)dichloro- borane (Eq. (13)) [24], xylene (CF2=CF)2Hg + 2 BC13 • 2 CF2=CFBC12 + HgCl2 (13) 4 °C, 1 h 41 % Attempts to use other polyfluorinated organoelement compounds as precursors for polyfluorinated (aryl)haloboranes gave unsatisfactory results. Bochmann et al reported that the fluorine-pentafluorophenyl
Recommended publications
  • Contemporary Organosilicon Chemistry
    Contemporary organosilicon chemistry Edited by Steve Marsden Generated on 05 October 2021, 02:13 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Contemporary organosilicon chemistry Steve Marsden Editorial Open Access Address: Beilstein Journal of Organic Chemistry 2007, 3, No. 4. School of Chemistry, University of Leeds, Leeds LS2 9JT, UK doi:10.1186/1860-5397-3-4 Email: Received: 06 February 2007 Steve Marsden - [email protected] Accepted: 08 February 2007 Published: 08 February 2007 © 2007 Marsden; licensee Beilstein-Institut License and terms: see end of document. Abstract Editorial for the Thematic Series on Contemporary Organosilicon Chemistry. The field of organosilicon chemistry has a rich and varied the 1990s, and equivalent to the number appearing in the much history, and has long since made the progression from chemical longer established field of organoboron chemistry
    [Show full text]
  • Herbert Charles Brown, a Biographical Memoir
    NATIONAL ACADEMY OF SCIENCES H E R B E R T Ch ARLES BROWN 1 9 1 2 — 2 0 0 4 A Biographical Memoir by E I-I CH I N EGIS HI Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph Credit Here. HERBERT CHARLES BROWN May 22, 1912–December 19, 2004 BY EI -ICH I NEGISHI ERBERT CHARLES BROWN, R. B. Wetherill Research Profes- Hsor Emeritus of Purdue University and one of the truly pioneering giants in the field of organic-organometallic chemistry, died of a heart attack on December 19, 2004, at age 92. As it so happened, this author visited him at his home to discuss with him an urgent chemistry-related matter only about 10 hours before his death. For his age he appeared well, showing no sign of his sudden death the next morn- ing. His wife, Sarah Baylen Brown, 89, followed him on May 29, 2005. They were survived by their only child, Charles A. Brown of Hitachi Ltd. and his family. H. C. Brown shared the Nobel Prize in Chemistry in 1979 with G. Wittig of Heidelberg, Germany. Their pioneering explorations of boron chemistry and phosphorus chemistry, respectively, were recognized. Aside from several biochemists, including V. du Vigneaud in 1955, H. C. Brown was only the second American organic chemist to win a Nobel Prize behind R. B. Woodward, in 1965. His several most significant contribu- tions in the area of boron chemistry include (1) codiscovery of sodium borohyride (1972[1], pp.
    [Show full text]
  • WO 2015/095882 Al 25 June 2015 (25.06.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/095882 Al 25 June 2015 (25.06.2015) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.0 1) C12Q 1/70 (2006.0 1) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/07 1963 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 22 December 2014 (22. 12.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/ 19,663 20 December 201 3 (20. 12.20 13) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: THE REGENTS OF THE UNIVERSITY GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, OF CALIFORNIA [US/US]; 1111 Franklin Street, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Twelfth Floor, Oakland, CA 94607-5200 (US).
    [Show full text]
  • MICROREVIEW Reactivity of Polar Organometallic Compounds In
    MICROREVIEW Reactivity of Polar Organometallic Compounds in Unconventional Reaction Media: Challenges and Opportunities Joaquin García-Álvarez,*[a] Eva Hevia,*[b] and Vito Capriati*[c] This paper is gratefully dedicated to the memory of Dr. Guy Lavigne Abstract: Developing new green solvents in designing chemical chemicals in chemical transformations is, indeed, solvents used products and processes or successfully employing the already as reaction media, which account for 80–90% of mass utilization existing ones is one of the key subjects in Green Chemistry and is in a typical pharmaceutical/fine chemical operational process. especially important in Organometallic Chemistry, which is an Thus, the solvent itself is often a critical parameter especially in interdisciplinary field. Can we advantageously use unconventional drug product manufacturing and is as well responsible for most reaction media in place of current harsh organic solvents also for waste generated in the chemical industries and laboratories.[3] polar organometallic compounds? This Microreview critically Following these considerations, some of the most critical analyses the state-of-the-art on this topic and showcases recent and intriguing questions that arise are: Can we get traditional developments and breakthroughs which are becoming new research organic solvents out of organometallic reactions?[4] Can we use directions in this field. Because metals cover a vast swath of the protic, recyclable, biodegradable, and cheap unconventional periodic table, the content is organised into three Sections solvents also for highly reactive organometallic compounds? discussing the reactivity of organometallic compounds of s-, p- and Answering these questions would not only mean to break new d-block elements in unconventional solvents.
    [Show full text]
  • The Synthesis and Thermochemistry of Organoboron and Phosphorus
    The Synthesis and Thermochemistry of Organoboron and Phosphorus Compounds A Thesis submitted by KHAWAJA SABIR HÜ3SAIR in candidature for the degree of Doctor of Philosophy of the University of London Royal Holloway College, Englefleld Green, Surrey. March, 1970. (U.K.;. CLASS N l / V u j AGO. No. I DA ft ACa â u L j j L À ProQuest Number: 10123886 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10123886 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 "To all those who wished me to reach this stage" AOKNOlVLEDGmmTS The author wishes to express his gratitude to Dr# Arthur Finch for his Invaluable official supervision and encouragement. He Is highly thankful to Dr. P.J. Gardner for his entire supervision, unfailing encouragement and friendly advice. He Is also thankful to all the academic, technical and clerical staff, of the Chemistry Department, Royal Holloway College, for their co-operation and assistance. He wishes to thank the Petroleum Research Fund for a maintenance grant. ABSTRACT The synthesis and standard heats of formation of some substituted arylboroxlnes are reported.
    [Show full text]
  • Présentation Powerpoint
    R-M R-R’ R’-X Cross-Coupling Reactions R-M Functionnalized Organometallic Reagents R-X-R’ R-X-M C-N, C-O and C-S Bond Formation R-B(R’)2 Introduction to Organoboron Chemistry R-Si(R’)3 Introduction to Organosilicon Chemistry Carbometallation Reactions R-M R-R’ R’-X Introduction to Organosilicon Chemistry Generalities R-M Synthesis of Organosilicon Compounds R-X-R’ Hydrosilylation of Unsaturated Systems R-X-M Hiyama Cross-Coupling Hosomi-Sakurai Allylations R-B(R’)2 Brook Rearrangement R-Si(R’)3 Anion-Relay Chemistry (ARC) R-M R-R’ Introduction to Organosilicon Chemistry R’-X Generalities R-M Electronegativity s-Bond strengths (kcal.mol-1) Average Bond Length (Å) Si 1,7 C-C 83 R-X-R’ C-Si 76 C-C 1,54 Si-Si 53 C-Si 1,87 R-X-M H 2,1 C-H 83 C 2,5 Si-H 76 C-O 1,43 R-B(R’)2 Si-O 1,66 Cl 3,0 C-O 86 Si-O 108 N 3,0 R-Si(R’)3 C-N 83 O 3,5 Si-N 76 C-F 116 F 4,0 Si-F 135 R-M R-R’ Introduction to Organosilicon Chemistry R’-X Generalities R-M Electronegativity s-Bond strengths (kcal.mol-1) Average Bond Length (Å) Si 1,7 C-C 83 R-X-R’ C-Si 76 C-C 1,54 Si-Si 53 C-Si 1,87 R-X-M H 2,1 C-H 83 C 2,5 Si-H 76 C-O 1,43 R-B(R’)2 Si-O 1,66 Cl 3,0 C-O 86 Si-O 108 N 3,0 R-Si(R’)3 C-N 83 O 3,5 Si-N 76 C-F 116 F 4,0 Si-F 135 R-M R-R’ Introduction to Organosilicon Chemistry R’-X Generalities R-M Electronegativity s-Bond strengths (kcal.mol-1) Average Bond Length (Å) Si 1,7 C-C 83 R-X-R’ C-Si 76 C-C 1,54 Si-Si 53 C-Si 1,87 R-X-M H 2,1 C-H 83 C 2,5 Si-H 76 C-O 1,43 R-B(R’)2 Si-O 1,66 Cl 3,0 C-O 86 Si-O 108 N 3,0 R-Si(R’)3 C-N 83 O 3,5 Si-N 76 C-F 116 F 4,0 Si-F 135 R-M
    [Show full text]
  • Chemoselective Oxidation of Aryl Organoboron Systems Enabled by Boronic Acid-Selective Phase Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Chemoselective oxidation of aryl organoboron systems enabled by boronic acid-selective phase Cite this: Chem. Sci.,2017,8,1551 transfer† John J. Molloy,a Thomas A. Clohessy,ab Craig Irving,a Niall A. Anderson,b Guy C. Lloyd-Jonesc and Allan J. B. Watson*a We report the direct chemoselective Brown-type oxidation of aryl organoboron systems containing two oxidizable boron groups. Basic biphasic reaction conditions enable selective formation and phase transfer of a boronic acid trihydroxyboronate in the presence of boronic acid pinacol (BPin) esters, while avoiding speciation equilibria. Spectroscopic investigations validate a base-promoted phase-selective discrimination of organoboron species. This phenomenon is general across a broad range of organoboron compounds and can also be used to invert conventional protecting group strategies, Received 7th September 2016 enabling chemoselective oxidation of BMIDA species over normally more reactive BPin substrates. We Accepted 25th October 2016 Creative Commons Attribution 3.0 Unported Licence. also demonstrate the selective oxidation of diboronic acid systems with chemoselectivity predictable DOI: 10.1039/c6sc04014d a priori. The utility of this method is exemplified through the development of a chemoselective oxidative www.rsc.org/chemicalscience nucleophile coupling. Introduction the broadly similar reactivity prolesofboronicacidsand esters,11 and the added complication of speciation equilibria,11–13 The use of di- and multi-boron containing systems has become establishing chemoselective control within mixed organoboron a powerful approach for the rapid synthesis of highly func- systems represents a signicant challenge. However, the identi- This article is licensed under a tionalized molecules from readily accessible starting mate- cation of new chemoselective control mechanisms would be rials.1,2 Chemoselectivity in these systems is currently achieved a fundamental advance, enabling the design and development of using only two approaches.
    [Show full text]
  • Reactive Chlorine Compounds in the Atmosphere
    CHAPTER 1 Reactive Bromine Compounds O.N.Singh 1 · P.Fabian 2 1 Department of Applied Physics, Institute of Technology, Banaras Hindu University, Varanasi- 221 005, India. E-mail: [email protected] 2 University of Munich, Lehrstuhl für Bioklimatologie und Immissionsforschung, Am Hochanger 13, D-85354 Freising-Weihenstephan, Germany. E-mail: [email protected] Bromine, a minor constituent in the Earth’s atmosphere – with its 50-fold higher efficiency of ozone destruction compared to chlorine – contributes significantly to the ozone hole formation and wintertime stratospheric ozone depletion over northern mid and high latitudes.In addition ozone episodes observed in the Arctic during polar sunrise are solely due to atmospheric bromine.CH3Br, CH2Br2 and CHBr3 are the major brominated gases in the atmosphere, of which CH3Br being most abundant, contributes about 50% and CH2Br2 around 7 to 10% of the total organic stratospheric bromine.Bromocarbons with shorter lifetimes like CHBr3 ,CH2BrCl, CHBr2Cl, CHBrCl2 and CH2BrI decompose before reaching the stratosphere, and are responsible for the ozone episodes.But for 3CHBr, which has also significant anthropogenic sources, all the aforementioned bromocarbons are mostly of marine origin.Halons (H-1211, H-1301, H-2402, H-1202) are solely anthropogenic and are far more stable.They decompose only after reaching the stratosphere.It is estimated that 39% of the stratospheric organic bromine (ª 7 pptv) loading is due to these halons.Increa- ses are being still registered in the atmospheric abundance of halons in spite of production restrictions.Though extensively investigated,the existing knowledge with regard to the pro- duction and degradation of atmospheric bromine gases, is not commensurate with its importance.
    [Show full text]
  • Synthesis of Organofluorine Compounds and Allenylboronic Acids - Applications Including Fluorine-18 Labelling Denise N
    Denise N. Meyer Synthesis of Organofluorine Compounds and Allenylboronic Synthesis of Organofluorine Compounds and Allenylboronic Acids - Applications Including Fluorine-18 Labelling Applications Acids - Allenylboronic Synthesis of Organofluorine Compounds and Acids - Applications Including Fluorine-18 Labelling Denise N. Meyer Denise N. Meyer Raised in Lauterecken, South-West Germany, Denise studied chemistry at Johannes Gutenberg University Mainz where she obtained her Bachelor's and Master's degree. In 2017, she moved to Stockholm where she pursued her doctoral studies with Prof. Kálmán J. Szabó. ISBN 978-91-7911-490-9 Department of Organic Chemistry Doctoral Thesis in Organic Chemistry at Stockholm University, Sweden 2021 Synthesis of Organofluorine Compounds and Allenylboronic Acids - Applications Including Fluorine-18 Labelling Denise N. Meyer Academic dissertation for the Degree of Doctor of Philosophy in Organic Chemistry at Stockholm University to be publicly defended on Friday 4 June 2021 at 10.00 in Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B. Abstract This work is focused on two areas: the chemistry of organofluorine and organoboron compounds. In the first chapter, a copper-catalysed synthesis of tri- and tetrasubstituted allenylboronic acids is presented. Extension of the same method leads to allenylboronic esters. The very reactive and moisture-sensitive allenylboronic acids are further applied to the reaction with aldehydes, ketones and imines to form homopropargyl alcohols and amines. In addition, an enantioselective reaction catalysed by a BINOL organocatalyst was developed to form tertiary alcohols with adjacent quaternary carbon stereocenters. The second chapter specialises in the functionalisation of 2,2-difluoro enol silyl ethers with electrophilic reagents under mild reaction conditions.
    [Show full text]
  • Welcome to the 18Th Radiochemical Conference. the Conference Is Held
    Czech Chem. Soc. Symp. Ser. 16, 49-257 (2018) RadChem 2018 elcome to the 18th Radiochemical Conference. The conference is held in Mariánské Lázne,ˇ the second largest W Czech spa and the largest and most beautiful city – garden in the Czech Republic. RadChem 2018 aims at maintaining the more than 55 year tradition of radiochemical conferences (the 1st Radiochemical Conference was held in 1961), dealing with all aspects of nuclear- and radiochemistry, organised in the Czech Republic (or formerly in Czechoslovakia). We strive to continue in the tradition of organising a fruitful and well attended platform for contacts between experts working in both basic and applied research in all aspects of nuclear- and radiochemistry. More than 300 scientists from 36 countries registered for the conference. The verbal sessions, where more than 170 plenary, invited and contributed presentations are scheduled to be presented, will be complemented by the corre- sponding poster sessions. Selected “hot topics” in nuclear- and radiochemistry will be covered in six plenary opening lectures delivered by invited recognized experts. These talks will include laureate lectures by winners of two pres- tigious medals – Ioannes Marcus Marci Medal awarded by the Ioannes Marcus Marci Spectroscopic Society (won by Dr. Peter Bode) and Vladimír Majer Medal awarded by the Czech Chemical Society (won by Prof. Jukka K. Lehto). In conjunction with the technical programme, an exhibition covering technologies, equipment, technical and management services in areas pertaining to the theme of the conference will be held. The extensive social programme is expected to provide an opportunity for informal contacts and discussions among the participants.
    [Show full text]
  • A General, Modular Method for the Catalytic Asymmetric Synthesis of Alkylboranes
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Science Manuscript Author . Author manuscript; Manuscript Author available in PMC 2017 December 09. Published in final edited form as: Science. 2016 December 09; 354(6317): 1265–1269. doi:10.1126/science.aai8611. A General, Modular Method for the Catalytic Asymmetric Synthesis of Alkylboranes Jens Schmidt, Junwon Choi, Albert Tianxing Liu, Martin Slusarczyk, and Gregory C. Fu* Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States Abstract Due to the critical role of stereochemistry in determining properties such as biological activity, as well as growing interest in sustainability, there is a strong impetus to develop catalytic and enantioselective methods for synthesis. Alkylboranes are an important family of target compounds, serving as useful intermediates, as well as endpoints (medicines such as Velcade™), in fields such as pharmaceutical science and organic chemistry. Because C–B bonds can be transformed into a wide variety of C–X bonds (e.g., X = C, N, O, and halogen) with stereochemical fidelity, the ability to generate enantioenriched alkylboranes in which boron is bound to a stereogenic carbon represents an extremely powerful tool in synthesis, providing access to an enormous array of valuable classes of chiral molecules, including alcohols, amines, and alkyl halides. Despite progress in recent years, there is still a need for more versatile methods for the catalytic asymmetric synthesis of enantioenriched alkylboranes. In this report, we describe a novel approach toward this objective, specifically, the use of a chiral nickel catalyst to achieve stereoconvergent couplings of readily available racemic α-haloboranes with organozinc reagents under mild conditions.
    [Show full text]
  • C-H Borylation of Terminal Alkynes, the Reductive Cyclization
    C-H BORYLATION OF TERMINAL ALKYNES, THE REDUCTIVE CYCLIZATION OF ALKYNYLBORONATES, AND THE SYNTHESIS AND ANALYSIS OF PINCER-LIGATED RHODIUM COMPLEXES A Dissertation by CHRISTOPHER JAMES PELL Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Oleg V. Ozerov Committee Members, Michael B. Hall Franҫois P. Gabbaї Perla B. Balbuena Head of Department, Simon W. North December 2017 Major Subject: Chemistry Copyright 2017 Christopher J. Pell ABSTRACT Due to the utility of organoboron reagents in the synthesis of pharmaceuticals and other industrially relevant compounds, the transition metal-catalyzed C-H borylation of organic molecules has become a very popular area of research. Since the Ozerov group’s initial discovery of an iridium complex that can perform catalytic dehydrogenative borylation of terminal alkynes (DHBTA), we have made further investigations into the C-H borylation of terminal alkynes and the synthetic applications of the alkynylboronate products. Here we describe a pincer-ligated palladium complex as the first group 10 catalyst for DHBTA. Unlike the iridium systems, the palladium catalyst also catalyzed a competing alkyne hydrogenation reaction, which could be suppressed using elemental mercury or phosphines as additives. We then turned our attention to (PNP)Ir complexes as catalysts for the DHBTA of 1,6-enynes and 1,6-diynes. These substrates could be borylated and isolated in moderate to excellent yields, and they could serve as substrates for rhodium-catalyzed reductive cyclization to form five-membered cyclic compounds containing pendant C-B bonds.
    [Show full text]