Vol. 80, Issue 1

Total Page:16

File Type:pdf, Size:1020Kb

Vol. 80, Issue 1 Volume 80, Issue 1 Spring/Summer 2003 Call for Manuscripts and Peer-reviewers Ethical Behavior President’s Message Highlights from the AIC Board of Directors Meeting List of Contributors Cobalt (I) Salt Formation in Hydroformylation Catalysis Using the Senses to Turn Students Onto Chemistry: A Comparison Between The United States and Japan Book Reviews Books Available for Review Manuscript Style Guide AIC Board of Directors and Committee Chairs ETHICAL BEHAVIOR A Story Mr. Albert C. Holler, FAIC As CEO of a large company, do I take stock • Your accountants and outside options, my high salary, etc., for my consultants will not “cook the books.” compensation for the year? This total will be • Why not divide the 120 million dollars 120 million dollars. As the CEO, I know that among your employees? It may not be the company is “bleeding” with a debt of 26 very much for each but you will have billion dollars! their respect for an ethical leader. They will do anything for you! I have over the years “wined” and “dined” ethics. Now knocking at the door is “greed.” Greed Which do I choose? The door has no latch on Does “greed” overshadow “ethics”? Only you the outside. Do I open it for my “greedy” self or can help your employees bring back a healthy keep it shut for my loyal employees? Is the life to your company. Your “greed” will not do word “ethics” still to be my goal and behavior it! Help them! now and in the future or does “greed” keep • A couple of asterisk remarks: knocking at the door and I in a moment of o It all comes out even at the end weakness let him in? of the day! (Winston Churchill) o The mills of the god’s grind Let’s look briefly at each for a moment: slowly but exceedingly fine! (A Chinese proverb) Ethics “Greed” leads its distrust and disgust for you. Since childhood, I (ACH) have learned about Ethical behavior leads to a well-lived fair play, sportsmanship, honesty, integrity and respectable life for you. to be trustworthy, believe in God are the ways to go through life. Treat other people, your Do you as a member of the American Institute of employees, and associates the way you would Chemists subscribe and put into practice the AIC like to be treated. Nice things happen to ethical Code of Ethics? persons. • You can sleep at nights! Reread it and give it some deep thought. Note • No federal agents or other people will especially the items 1 thru 11. Don’t let “greed” come to you with subpoenas to open into your life! your books and financial files. AIC PRESIDENT’S MESSAGE… EVOLVING PERCEPTIONS David Riley Communications is an important aspect of the that we have. Or it may be due to some Institute. One aspect of this is the desire of our experience that we have had. This is why we members to search for answers to the complex need to have technical articles in The Chemist. topic of professionalism. We attempt to do this Otherwise, the journal would simply be called in many different forms, one of which being The “The Thought.” After all, even though we may Chemist. Yes, we have some technical papers in have widely divergent interests and activities, our journal because there must be a connection we are all chemists. between the ethereal aspect of professionalism and the real scientific world of activity; The premise, then, is a conceivably pertinent however, we must also set the pattern for idea or direction. How do we judge the value of interpretation of all elements of our technical a premise? We inspect the various aspects of the life. The professional aspect of the American premise and try to ascertain if it might have Institute of Chemists is copied by many others some reason for further thought. In mathematics, (this is the leadership quality of professionalism) it is quite clear that an exact answer can then be and involves not only our Code of Ethics and the derived. This is why, in scientific terms, the quality of our professional life, but also how rigor of mathematics is desired and needed. This well we apply the Scientific Method to all our is also why it is necessary for someone skilled in endeavors. How, you say, does the Method the art to develop the simplest terms for become our way of life (look at the means by expressing the relationships involved in a which we run our lives)? Do we take what we premise. Mathematics also allows us to express see for granted (and make unreasonable errors as these relationships in measurable terms, such as a consequence)? Or, do we look to see if there levels of uncertainty or, more commonly, by are other sides to all questions? Indeed, the standard deviations. latter case is our mode for life—it is to our inane curiosity. Furthermore, we also test what we do For example; 40 years ago, I was employed by a and ask for pertinent information that applies to branch of AT&T known as Western Electric. each subject, no matter how trivial it is. Some of Western Electric hired me to study its extruders us have a penchant for measuring how well an and the processing of poly(vinyl chloride), or answer represents what we want to do with it. PVC. PVC is the primary insulation for wires and cables. No one had been able to get Since it is near and dear to our hearts, let us look consistent processing of PVC or even run a melt at the basis of the Scientific Method. Our every flow test on PVC because it was inherently day activity might be clearer if we looked at this unstable. I bought $150,000 worth of equipment technique. How do we start? A premise (or including an Instron capillary rheometer, an figment of our imagination) occurs to us. This infrared spectrometer, a gas chromatograph, a premise can be world-shaking or simply a new roll mill, and a melt indexer. I also joined the venture in a usually technical topic. It usually American Society of Testing and Materials requires some rational thought or direction. It is (ASTM) to learn as much as I could. After a few conceivably untenable after we think about it; months of study, I concluded that, with the hence, the premise is discarded as useless. In Instron Capillary rheometer and information contrast, there usually is some basis of reasoning from the infrared spectrophotometer, the most as to why we initially conjured up the premise. meaningful information I could get was from the Frequently, the reason for the thought is some melt indexer. I could, with this simple tool, technical program, need, or basic knowledge determine the degree of instability with a long land die and a low temperature (175°C), a high tetrahydrofuran (a good solvent for PVC) weight on the ram (20 kg), and a low charge in decreased directly as the temperature increase the bore (2.15 g). I found that the PVC, after (QED). Of course, the definition of a polymer being sheared in an extruder, first decreased in being crosslinked is that the polymer be totally molecular weight (increase in flow in the melt insoluble in a good solvent. Therefore, I indexer) and then significantly increased in developed the term “incipient crosslinking” to molecular weight through more shearing indicate this progressively increasing measure of (decreased flow in the melt indexer). My basic molecular growth. premise was that the shearing initially caused the molecules of PVC to be broken apart into In conjunction with this increasing insolubility, I smaller pieces, then eventually, the free radicals observed a progressive change in the color I of the broken fragments would recombine into could associate with the increase in consecutive larger, more complex but stable molecules. double bond formation in the PVC structure that Everything I tested gave me the same results; so is indicative of the controlled selective process after a few thousand of these tests, I concluded I of removing HCl from adjacent vinyl chloride was right and began to publish my results, segments of the polymer. After the double bond expounding the data as a purported hypothesis. formation reaches six to ten members, a This is the next step of building a theory. But progressive color formation occurs, indicating a even with this remarkable amount of data, I selective and controlled process of molecular knew I needed additional corroboration. As a change. This fit with my theory of molecular new technique, I extracted the plasticizer and shifting and potential growth. found the viscosity of the extract increased over that of the original plasticizer. If I dissolved For 30 years, I observed this same phenomenon PVC in the plasticizer, I found that a small with tens of thousands of samples and thought percentage increased the viscosity over that of my theory was secure. Only two flies appeared the original plasticizer by the amount equal to in the ointment. When the plasticizer content got that of the extracted material. I therefore to be almost 50% of the formulation, the plastic concluded the hypothesis proven. I now had a could be sheared as much as one could apply to real theory. it without change in molecular structure. And, when one of my clients used specific fire I went to ASTM and developed the technique retardants aluminum oxide trihydrate combined for running both the melt indexer and the with molybdenum disulfide, the molecular extraction as standard methods; the importance structure had no severe crosslinking; only some of this was that it employed a round robin increase in the rate of flow, indicating that the system to prove others could get the same fire retardants were capable of controlling the answers.
Recommended publications
  • Contemporary Organosilicon Chemistry
    Contemporary organosilicon chemistry Edited by Steve Marsden Generated on 05 October 2021, 02:13 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Contemporary organosilicon chemistry Steve Marsden Editorial Open Access Address: Beilstein Journal of Organic Chemistry 2007, 3, No. 4. School of Chemistry, University of Leeds, Leeds LS2 9JT, UK doi:10.1186/1860-5397-3-4 Email: Received: 06 February 2007 Steve Marsden - [email protected] Accepted: 08 February 2007 Published: 08 February 2007 © 2007 Marsden; licensee Beilstein-Institut License and terms: see end of document. Abstract Editorial for the Thematic Series on Contemporary Organosilicon Chemistry. The field of organosilicon chemistry has a rich and varied the 1990s, and equivalent to the number appearing in the much history, and has long since made the progression from chemical longer established field of organoboron chemistry
    [Show full text]
  • Herbert Charles Brown, a Biographical Memoir
    NATIONAL ACADEMY OF SCIENCES H E R B E R T Ch ARLES BROWN 1 9 1 2 — 2 0 0 4 A Biographical Memoir by E I-I CH I N EGIS HI Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph Credit Here. HERBERT CHARLES BROWN May 22, 1912–December 19, 2004 BY EI -ICH I NEGISHI ERBERT CHARLES BROWN, R. B. Wetherill Research Profes- Hsor Emeritus of Purdue University and one of the truly pioneering giants in the field of organic-organometallic chemistry, died of a heart attack on December 19, 2004, at age 92. As it so happened, this author visited him at his home to discuss with him an urgent chemistry-related matter only about 10 hours before his death. For his age he appeared well, showing no sign of his sudden death the next morn- ing. His wife, Sarah Baylen Brown, 89, followed him on May 29, 2005. They were survived by their only child, Charles A. Brown of Hitachi Ltd. and his family. H. C. Brown shared the Nobel Prize in Chemistry in 1979 with G. Wittig of Heidelberg, Germany. Their pioneering explorations of boron chemistry and phosphorus chemistry, respectively, were recognized. Aside from several biochemists, including V. du Vigneaud in 1955, H. C. Brown was only the second American organic chemist to win a Nobel Prize behind R. B. Woodward, in 1965. His several most significant contribu- tions in the area of boron chemistry include (1) codiscovery of sodium borohyride (1972[1], pp.
    [Show full text]
  • Sonochemical and Sonoelectrochemical Production of Hydrogen-An Overview 2 Md Hujjatul Islam, Odne S
    1 1 Sonochemical and Sonoelectrochemical Production of Hydrogen-An Overview 2 Md Hujjatul Islam, Odne S. Burheim and Bruno G. Pollet* 3 4 Department of Energy and Process Engineering, 5 Faculty of Engineering, 6 Norwegian University of Science and Technology (NTNU), 7 NO-7491 Trondheim, Norway 8 *[email protected] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 2 36 Abstract 37 38 Reserves of fossil fuel such as coal, oil and natural gas on earth are finite. Also, the continuous use 39 and burning of these fossil resources in industrial, domestic and transport sectors results in the 40 extremely high emission of greenhouse gases into the atmosphere. Therefore, it is necessary to 41 explore pollution free and more efficient energy sources in order to replace depleting fossil fuels. 42 The use of hydrogen as an alternative fuel source is particularly attractive due to its very high 43 specific energy compared to other conventional fuels. Hydrogen can be produced through various 44 process technologies such as thermal, electrolytic and photolytic processes. Thermal processes 45 include gas reforming, renewable liquid and biooil processing, biomass and coal gasification; 46 however, these processes release a huge amount of greenhouse gases. Production of hydrogen from 47 water using ultrasound could be a promising technique to produce clean hydrogen. Also, using 48 ultrasound in water electrolysis could be a promising method to produce hydrogen where 49 ultrasound enhances electrolytic process in several ways such as enhanced mass transfer, removal 50 of bubbles and activation of the electrode surface.
    [Show full text]
  • MICROREVIEW Reactivity of Polar Organometallic Compounds In
    MICROREVIEW Reactivity of Polar Organometallic Compounds in Unconventional Reaction Media: Challenges and Opportunities Joaquin García-Álvarez,*[a] Eva Hevia,*[b] and Vito Capriati*[c] This paper is gratefully dedicated to the memory of Dr. Guy Lavigne Abstract: Developing new green solvents in designing chemical chemicals in chemical transformations is, indeed, solvents used products and processes or successfully employing the already as reaction media, which account for 80–90% of mass utilization existing ones is one of the key subjects in Green Chemistry and is in a typical pharmaceutical/fine chemical operational process. especially important in Organometallic Chemistry, which is an Thus, the solvent itself is often a critical parameter especially in interdisciplinary field. Can we advantageously use unconventional drug product manufacturing and is as well responsible for most reaction media in place of current harsh organic solvents also for waste generated in the chemical industries and laboratories.[3] polar organometallic compounds? This Microreview critically Following these considerations, some of the most critical analyses the state-of-the-art on this topic and showcases recent and intriguing questions that arise are: Can we get traditional developments and breakthroughs which are becoming new research organic solvents out of organometallic reactions?[4] Can we use directions in this field. Because metals cover a vast swath of the protic, recyclable, biodegradable, and cheap unconventional periodic table, the content is organised into three Sections solvents also for highly reactive organometallic compounds? discussing the reactivity of organometallic compounds of s-, p- and Answering these questions would not only mean to break new d-block elements in unconventional solvents.
    [Show full text]
  • Ultrasound in Electrochemical Degradation of Pollutants
    Chapter 10 Ultrasound in Electrochemical Degradation of Pollutants Gustavo Stoppa Garbellini Additional information is available at the end of the chapter http://dx.doi.org/10.5772/47755 1. Introduction The increase of industrial activities and intensive use of chemical substances such as petroleum oil, polycyclic aromatic hydrocarbons, BTEX (benzene, toluene, ethylbenzene and xylenes), chlorinated hydrocarbons as polychlorinated biphenyls, trichloroethylene and perchloroethylene, pesticides, dyes, dioxines and heavy metals have been contributing to environmental pollution with dramatic consequences in atmosphere, waters and soils (Martínez-Huitle & Ferro, 2006; Megharaj et al., 2011). Electrochemical technologies have been extensively used for degradation of toxic compounds since these technologies present some advantages, among them: versatility, environmental compatibility and potential cost effectiveness (Martínez-Huitle & Ferro, 2006; Chen, 2004; Ghernaout et al., 2011; Panizza & Cerisola, 2009). However, a loss in the efficiency of such degradation processes is observed due to the adsorption and/or insolubilization of the oxidation and/or reduction products on the electrodes surfaces (Garbellini et al., 2010; Lima Leite et al., 2002). In this sense, power ultrasound has been employed to overcome such electrode fouling problem (passivation) due to the ultrasound ability for cleaning the electrode surface, called sonoelectrochemistry (Compton et al., 1997). The production of ultrasound is a physical phenomenon based on the process of creating, growing and imploding cavities of steam and gases, known as cavitation. During the compression step, the pressure is positive, while the expansion results in vacuum called negative pressure formed in a compression-expansion cycle that generates cavities (Mason, 1990; Martines et al., 2000). In chemistry, ultrasound has been used in organic synthesis, polymerization, sonolysis, preparation of catalysts and sonoelectrosynthesis (Mason, 1990; Martines et al., 2000).
    [Show full text]
  • The Synthesis and Thermochemistry of Organoboron and Phosphorus
    The Synthesis and Thermochemistry of Organoboron and Phosphorus Compounds A Thesis submitted by KHAWAJA SABIR HÜ3SAIR in candidature for the degree of Doctor of Philosophy of the University of London Royal Holloway College, Englefleld Green, Surrey. March, 1970. (U.K.;. CLASS N l / V u j AGO. No. I DA ft ACa â u L j j L À ProQuest Number: 10123886 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10123886 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 "To all those who wished me to reach this stage" AOKNOlVLEDGmmTS The author wishes to express his gratitude to Dr# Arthur Finch for his Invaluable official supervision and encouragement. He Is highly thankful to Dr. P.J. Gardner for his entire supervision, unfailing encouragement and friendly advice. He Is also thankful to all the academic, technical and clerical staff, of the Chemistry Department, Royal Holloway College, for their co-operation and assistance. He wishes to thank the Petroleum Research Fund for a maintenance grant. ABSTRACT The synthesis and standard heats of formation of some substituted arylboroxlnes are reported.
    [Show full text]
  • Présentation Powerpoint
    R-M R-R’ R’-X Cross-Coupling Reactions R-M Functionnalized Organometallic Reagents R-X-R’ R-X-M C-N, C-O and C-S Bond Formation R-B(R’)2 Introduction to Organoboron Chemistry R-Si(R’)3 Introduction to Organosilicon Chemistry Carbometallation Reactions R-M R-R’ R’-X Introduction to Organosilicon Chemistry Generalities R-M Synthesis of Organosilicon Compounds R-X-R’ Hydrosilylation of Unsaturated Systems R-X-M Hiyama Cross-Coupling Hosomi-Sakurai Allylations R-B(R’)2 Brook Rearrangement R-Si(R’)3 Anion-Relay Chemistry (ARC) R-M R-R’ Introduction to Organosilicon Chemistry R’-X Generalities R-M Electronegativity s-Bond strengths (kcal.mol-1) Average Bond Length (Å) Si 1,7 C-C 83 R-X-R’ C-Si 76 C-C 1,54 Si-Si 53 C-Si 1,87 R-X-M H 2,1 C-H 83 C 2,5 Si-H 76 C-O 1,43 R-B(R’)2 Si-O 1,66 Cl 3,0 C-O 86 Si-O 108 N 3,0 R-Si(R’)3 C-N 83 O 3,5 Si-N 76 C-F 116 F 4,0 Si-F 135 R-M R-R’ Introduction to Organosilicon Chemistry R’-X Generalities R-M Electronegativity s-Bond strengths (kcal.mol-1) Average Bond Length (Å) Si 1,7 C-C 83 R-X-R’ C-Si 76 C-C 1,54 Si-Si 53 C-Si 1,87 R-X-M H 2,1 C-H 83 C 2,5 Si-H 76 C-O 1,43 R-B(R’)2 Si-O 1,66 Cl 3,0 C-O 86 Si-O 108 N 3,0 R-Si(R’)3 C-N 83 O 3,5 Si-N 76 C-F 116 F 4,0 Si-F 135 R-M R-R’ Introduction to Organosilicon Chemistry R’-X Generalities R-M Electronegativity s-Bond strengths (kcal.mol-1) Average Bond Length (Å) Si 1,7 C-C 83 R-X-R’ C-Si 76 C-C 1,54 Si-Si 53 C-Si 1,87 R-X-M H 2,1 C-H 83 C 2,5 Si-H 76 C-O 1,43 R-B(R’)2 Si-O 1,66 Cl 3,0 C-O 86 Si-O 108 N 3,0 R-Si(R’)3 C-N 83 O 3,5 Si-N 76 C-F 116 F 4,0 Si-F 135 R-M
    [Show full text]
  • Divalent Nonaqueous Metal-Air Batteries
    REVIEW published: 12 February 2021 doi: 10.3389/fenrg.2020.602918 Divalent Nonaqueous Metal-Air Batteries Yi-Ting Lu 1,2, Alex R. Neale 1, Chi-Chang Hu 2 and Laurence J. Hardwick 1* 1Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool, United Kingtom, 2Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan In the field of secondary batteries, the growing diversity of possible applications for energy storage has led to the investigation of numerous alternative systems to the state-of-the-art lithium-ion battery. Metal-air batteries are one such technology, due to promising specific energies that could reach beyond the theoretical maximum of lithium-ion. Much focus over the past decade has been on lithium and sodium-air, and, only in recent years, efforts have been stepped up in the study of divalent metal-air batteries. Within this article, the opportunities, progress, and challenges in nonaqueous rechargeable magnesium and calcium-air batteries will be examined and critically reviewed. In particular, attention will be focused on the electrolyte development for reversible metal deposition and the positive electrode chemistries (frequently referred to as the “air cathode”). Synergies between two cell chemistries will be described, along with the present impediments required to be overcome. Scientific advances in understanding fundamental cell (electro)chemistry and Edited by: Jian Liu, electrolyte development are crucial to surmount these barriers in order to edge these University of British Columbia technologies toward practical application. Okanagan, Canada Reviewed by: Keywords: metal-air batteries, divalent cations, magnesium batteries, calcium batteries, metal electroplating, oxygen electrochemistry Liqiang Mai, Wuhan University of Technology, China Vincenzo Baglio, INTRODUCTION National Research Council (CNR), Italy *Correspondence: Energy storage technologies are under extensive investigation because they could contribute towards Laurence J.
    [Show full text]
  • Chemoselective Oxidation of Aryl Organoboron Systems Enabled by Boronic Acid-Selective Phase Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Chemoselective oxidation of aryl organoboron systems enabled by boronic acid-selective phase Cite this: Chem. Sci.,2017,8,1551 transfer† John J. Molloy,a Thomas A. Clohessy,ab Craig Irving,a Niall A. Anderson,b Guy C. Lloyd-Jonesc and Allan J. B. Watson*a We report the direct chemoselective Brown-type oxidation of aryl organoboron systems containing two oxidizable boron groups. Basic biphasic reaction conditions enable selective formation and phase transfer of a boronic acid trihydroxyboronate in the presence of boronic acid pinacol (BPin) esters, while avoiding speciation equilibria. Spectroscopic investigations validate a base-promoted phase-selective discrimination of organoboron species. This phenomenon is general across a broad range of organoboron compounds and can also be used to invert conventional protecting group strategies, Received 7th September 2016 enabling chemoselective oxidation of BMIDA species over normally more reactive BPin substrates. We Accepted 25th October 2016 Creative Commons Attribution 3.0 Unported Licence. also demonstrate the selective oxidation of diboronic acid systems with chemoselectivity predictable DOI: 10.1039/c6sc04014d a priori. The utility of this method is exemplified through the development of a chemoselective oxidative www.rsc.org/chemicalscience nucleophile coupling. Introduction the broadly similar reactivity prolesofboronicacidsand esters,11 and the added complication of speciation equilibria,11–13 The use of di- and multi-boron containing systems has become establishing chemoselective control within mixed organoboron a powerful approach for the rapid synthesis of highly func- systems represents a signicant challenge. However, the identi- This article is licensed under a tionalized molecules from readily accessible starting mate- cation of new chemoselective control mechanisms would be rials.1,2 Chemoselectivity in these systems is currently achieved a fundamental advance, enabling the design and development of using only two approaches.
    [Show full text]
  • Electrochemistry with Ultrasound
    ELECTROCHEMISTRY WITH ULTRASOUND University of Coventry. UK University of Oxford. UK University of Southampton. UK Academy of Sciences of the Czech Republic. Czech Republic Département de Chimie. Ecole Normale Supérieure.Paris. France University of Franché-Comte. France University of Alicante. Spain ELECTROCHEMISTRY WITH ULTRASOUND Environmental applications *Improved strategies for waste minimisation: obviation of environmentall-unfriendly systems in synthesis sonoelectrochemical reactor design *Degradation of pollutants and enhanced environmental clean-up using sonoelectrochemistry New systems *Novel electrosynthesis reactions with applications in organic and biochemistry *Novel functional materials and their practical applications, including nanoparticles and conducting polymers. *Development of new electrode materials and the understanding of surface processes in these processes Technological applications *Improved methods for electrodeposition, electrodissolution, including effects on morphology, hardness, microestructure... *Scale-up form micro-scale to pilot-plant scale Electroanalysis *Development of enhanced elecroanalytical procedures that are effective in real media, leading to imporved sensors and biosensors * Sensitive electroanalyses for metal ions and other deleterious electroactive species in the environment WORK PROGRAMME FOR THIS TERM Events Kick off COST D-32 Meeting, held in Alicante, July 2004. Kick off Working Group Meeting , held in Alicante, December 2004. Annual Working Group Meeting , held in Prague, November
    [Show full text]
  • Sonoelectrochemistry – the Application of Ultrasound to Electrochemical Systems
    Issue in Honor of Dr. Douglas Lloyd ARKIVOC 2002 (iii) 198-218 Sonoelectrochemistry – The application of ultrasound to electrochemical systems David J. Walton School of Science and the Environment, Coventry University, Priory Street, Coventry CV1 5FB, UK E-mail: [email protected] This paper is dedicated to Douglas Lloyd on the occasion of his eightieth birthday Abstract This paper comprises the text of a review lecture on the subject of the effects of ultrasound upon mass transport, upon electrode surface phenomena, upon the behaviour of species and upon reaction mechanisms, and selected examples of the benefits of insonation in electroanalysis, electrosynthesis, electrodeposition and electrochemiluminescence are discussed. Keywords: Sonoelectrochemistry, ultrasound, acoustics, electrosynthesis, electroanalysis, voltammetry, conducting polymers, electrodeposition, cavitation, reaction mechanisms Introduction Electrochemistry is an old discipline. Faraday worked through the 1830’s, and Kolbe reported his electroorganic synthetic reaction in 1849.1 The vibration of electrochemical cells is likewise a concept of some standing, and Moriguchi reported the improvement of water electrolysis by insonation in 1934.2. Thereafter, sporadic reports can be found on sonoelectrochemistry, although this term was not used as a descriptor until more recently. This period included an extensive study by Yeager upon the physicochemical parameters of ionic solutions.3 Ultrasound ISSN 1424-6376 Page 198 ©ARKAT USA, Inc Issue in Honor of Dr. Douglas Lloyd
    [Show full text]
  • Synthesis of Organofluorine Compounds and Allenylboronic Acids - Applications Including Fluorine-18 Labelling Denise N
    Denise N. Meyer Synthesis of Organofluorine Compounds and Allenylboronic Synthesis of Organofluorine Compounds and Allenylboronic Acids - Applications Including Fluorine-18 Labelling Applications Acids - Allenylboronic Synthesis of Organofluorine Compounds and Acids - Applications Including Fluorine-18 Labelling Denise N. Meyer Denise N. Meyer Raised in Lauterecken, South-West Germany, Denise studied chemistry at Johannes Gutenberg University Mainz where she obtained her Bachelor's and Master's degree. In 2017, she moved to Stockholm where she pursued her doctoral studies with Prof. Kálmán J. Szabó. ISBN 978-91-7911-490-9 Department of Organic Chemistry Doctoral Thesis in Organic Chemistry at Stockholm University, Sweden 2021 Synthesis of Organofluorine Compounds and Allenylboronic Acids - Applications Including Fluorine-18 Labelling Denise N. Meyer Academic dissertation for the Degree of Doctor of Philosophy in Organic Chemistry at Stockholm University to be publicly defended on Friday 4 June 2021 at 10.00 in Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B. Abstract This work is focused on two areas: the chemistry of organofluorine and organoboron compounds. In the first chapter, a copper-catalysed synthesis of tri- and tetrasubstituted allenylboronic acids is presented. Extension of the same method leads to allenylboronic esters. The very reactive and moisture-sensitive allenylboronic acids are further applied to the reaction with aldehydes, ketones and imines to form homopropargyl alcohols and amines. In addition, an enantioselective reaction catalysed by a BINOL organocatalyst was developed to form tertiary alcohols with adjacent quaternary carbon stereocenters. The second chapter specialises in the functionalisation of 2,2-difluoro enol silyl ethers with electrophilic reagents under mild reaction conditions.
    [Show full text]