The Evolution and Ecology of Drosophila Sigma Viruses Ben

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution and Ecology of Drosophila Sigma Viruses Ben The evolution and ecology of Drosophila sigma viruses Ben Longdon PhD University of Edinburgh 2011 Declaration The work within this thesis is my own, except where clearly stated. Chapters 2-5 are published or submitted manuscripts and so have kept the use of “we”. Chapters 1 and 6 were written purely as thesis chapters and so use “I”. Ben Longdon ii Thesis abstract Insects are host to a diverse range of vertically transmitted micro-organisms, but while their bacterial symbionts are well-studied, little is known about their vertically transmitted viruses. The sigma virus (DMelSV) is currently the only natural host- specific pathogen to be described in Drosophila melanogaster. In this thesis I have examined; the diversity and evolution of sigma viruses in Drosophila, their transmission and population dynamics, and their ability to host shift. I have described six new rhabdoviruses in five Drosophila species — D. affinis, D. obscura, D. tristis, D. immigrans and D. ananassae — and one in a member of the Muscidae, Muscina stabulans (Chapters two and four). These viruses have been tentatively named as DAffSV, DObsSV, DTriSV, DImmSV, DAnaSV and MStaSV respectively. I sequenced the complete genomes of DObsSV and DMelSV, the L gene from DAffSV and partial L gene sequences from the other viruses. Using this new sequence data I created a phylogeny of the rhabdoviruses (Chapter two). The sigma viruses form a distinct clade which is closely related to the Dimarhabdovirus supergroup, and the high levels of divergence between these viruses suggest that they may deserve to be recognised as a new genus. Furthermore, this analysis produced the most robustly supported phylogeny of the Rhabdoviridae to date, allowing me to reconstruct the major transitions that have occurred during the evolution of the family. This data suggests that the bias towards research into plants and vertebrates means that much of the diversity of rhabdoviruses has been missed, and rhabdoviruses may be common pathogens of insects. In Chapter three I examined whether the new sigma viruses in Drosophila affinis and Drosophila obscura are both vertically transmitted. As is the case for DMelSV, both males and females can transmit these viruses to their offspring. Males transmit lower viral titres through sperm than females transmit through eggs, and a lower proportion of their offspring become infected. I then examined natural populations of D. obscura in the UK; 39% of flies were infected and the viral population shows clear evidence of a recent expansion, with extremely low genetic diversity and a large excess of rare polymorphisms. Using sequence data I estimate that the virus has iii swept across the UK within the last ~11 years, during which time the viral population size doubled approximately every 9 months. Using simulations based on lab estimates of transmission rates, I show that the biparental mode of transmission allows the virus to invade and rapidly spread through populations, at rates consistent with those measured in the field. Therefore, as predicted by the simulations, the virus has undergone an extremely rapid and recent increase in population size. In Chapter four I investigated for the first time whether vertically transmitted viruses undergo host shifts or cospeciate with their hosts. Using a phylogenetic approach I show that sigma viruses have switched between hosts during their evolutionary history. These results suggest that sigma virus infections may be short-lived in a given host lineage, so that their long-term persistence relies on rare horizontal transmission events between hosts. In Chapter five I examined the ability of three Drosophila sigma viruses to persist and replicate in 51 hosts sampled across the Drosophilidae phylogeny. I used a phylogenetic mixed model to account for the non-independence of host taxa due to common ancestry, which additionally allows integration over the uncertainty in the host phylogeny. In two out of the three viruses there was a negative correlation between viral titre and genetic distance from the natural host. Additionally the host phylogeny explains an extremely high proportion of the variation (after considering genetic distance from the natural host) in the ability of these viruses to replicate in novel hosts (>0.8 for all viruses). There were strong phylogenetic correlations between all the viruses (>0.65 for all pairs), suggesting a given species’ level of resistance to one virus is strongly correlated with its resistance to other viruses. This suggests the host phylogeny, and genetic distance from the natural host, may be important in determining viruses ability to host switch. This work has aimed to address fundamental questions relating to host-parasite coevolution and pathogen emergence. The data presented suggests that sigma viruses are likely to be widespread vertically transmitted insect viruses, which have dynamic interactions with their hosts. These viruses appear to have switched between hosts iv during their evolutionary history and it is likely the host phylogeny is a determinant of such host shifts. v Acknowledgments “That’s a fool’s experiment. But I love fools' experiments. I am always making them” Charles Darwin. “One becomes a gourmet chef for the diptera” Terri Markow It is traditional to start a thesis with a quote (or two) and I thought these summed up my PhD rather nicely. I have tried to be succinct in writing these acknowledgements, but realised that this thesis would not have been possible without the help and support of a great number of people. Specific acknowledgments with regards to experimental work are made in each chapter. I owe a huge thanks to Frank Jiggins for his help, constant advice and reassurance (even if he did leave me and run away to Cambridge!). I am also greatly indebted to Darren Obbard who has always been friendly, keen to help, and has shown constant enthusiasm (coupled with extreme pessimism and whinging). I could not have asked for a better pair of supervisors. I would like to thank the following to whom I am hugely grateful: Lena Wilfert for her help, advice and occasional accommodation in Cambridge. Jarrod Hadfield for being the source of knowledge for all things statistical, his musings over a pint, and unrepeatable quotes. Tom Little for being my official supervisor, and for offering useful advice. Mark Blaxter for being my post-graduate carer and also providing money towards my external examiner travel expenses. Claire Webster who has provided continuous supplies of gossip and helped with fly work. Mike Magwire for going out of his way to be helpful. Andrew Rambaut for numerous informal discussions on the correct phylogenetic practices. Fergal Waldrin, Jewelna Osei- Poku, Floh Bayer and Jenny Carpenter for being great lab mates. The Edinburgh coevolution group for numerous interesting, and often heated, discussions. The French sigma virus researchers of days gone by for providing many snippets of useful information. I would also like to thank various IEB folk for offering words of vi advice or kind words (in particular Sarah Reece, Dan Nussey, Penny Haddrill and Desiree Allen). Thanks to everyone who put me up on fieldwork (Chapter 2 and 3) and supplied flies at various points during my PhD. Thank you to Nigel Franks for his help and encouragement in my undergraduate degree. I would like to thank the folk at the CIE at Deakin University for allowing me to work in the department whilst writing up. Thanks to Helen Borthwick and Helen Cowan for making me laugh and helping with fly food preparation. Thanks to the other IEB PhD students for putting things into perspective (and making me realise flies are relatively good compared to daphnia, plasmodium or some long term “wild” dataset). I received funding from the BBSRC, Royal Entomological Society, Genetics Society UK and the James Rennie bequest. On a personal note I would like to thank my parents, for their enduring support, even when I was forced to abandon them on their visit to Edinburgh for lab work. Thanks to Matt Boyce and Saskia Pedersen for providing a very welcome distraction from work. Finally I want to thank Laura Kelley for her kindness and unwavering faith in me, for putting up with my grumpiness and for generally being brilliant. Lastly thank you to Andrew Rambaut and John Jaenike for taking the time to read this thesis. vii Table of Contents Declaration ii Thesis Abstract iii Acknowledgments vi 1. General Introduction 1.1 General background 1 1.2 Questions 2 1.3 Sigma virus general biology 12 2. Sigma virus discovery and phylogeny 25 2.1 Introduction 26 2.2 Methods 28 2.3 Results 33 2.4 Discussion 41 3. Vertical transmission and a recent sweep 46 3.1 Introduction 47 3.2 Methods 48 3.3 Results 55 3.4 Discussion 65 4. Host-switching 70 4.1 Introduction 71 4.2 Methods 72 4.3 Results 73 4.4 Discussion 75 5. Phylogenetic determinants of host shifts 78 5.1 Introduction 79 5.2 Methods 82 5.3 Results 89 5.4 Discussion 93 6. General discussion 6.1 Summary of field 98 6.2 Overview 99 6.3 Future directions 104 6.4 Conclusions 109 References 110 Appendix/Supplementary material 130 viii Chapter 1: General Introduction 1. General Introduction I wrote this chapter with comments on drafts from Darren Obbard and Frank Jiggins. 1.1 Background Parasites are a major cause of mortality, being responsible for 13 million deaths in humans each year (WHO 1999). Similarly, parasites are responsible for diseases affecting crops, livestock and natural populations of plants and animals (Altizer and Pedersen 2008). However, parasites are also of interest to evolutionary biologists, as antagonistic reciprocal interactions between hosts and parasites drive rapid coevolutionary dynamics (Woolhouse et al. 2002). In turn, understanding the coevolutionary processes that occur between hosts and parasites may have implications for the control and prediction of infectious disease.
Recommended publications
  • Nuisance Insects and Climate Change
    www.defra.gov.uk Nuisance Insects and Climate Change March 2009 Department for Environment, Food and Rural Affairs Nobel House 17 Smith Square London SW1P 3JR Tel: 020 7238 6000 Website: www.defra.gov.uk © Queen's Printer and Controller of HMSO 2007 This publication is value added. If you wish to re-use this material, please apply for a Click-Use Licence for value added material at http://www.opsi.gov.uk/click-use/value-added-licence- information/index.htm. Alternatively applications can be sent to Office of Public Sector Information, Information Policy Team, St Clements House, 2-16 Colegate, Norwich NR3 1BQ; Fax: +44 (0)1603 723000; email: [email protected] Information about this publication and further copies are available from: Local Environment Protection Defra Nobel House Area 2A 17 Smith Square London SW1P 3JR Email: [email protected] This document is also available on the Defra website and has been prepared by Centre of Ecology and Hydrology. Published by the Department for Environment, Food and Rural Affairs 2 An Investigation into the Potential for New and Existing Species of Insect with the Potential to Cause Statutory Nuisance to Occur in the UK as a Result of Current and Predicted Climate Change Roy, H.E.1, Beckmann, B.C.1, Comont, R.F.1, Hails, R.S.1, Harrington, R.2, Medlock, J.3, Purse, B.1, Shortall, C.R.2 1Centre for Ecology and Hydrology, 2Rothamsted Research, 3Health Protection Agency March 2009 3 Contents Summary 5 1.0 Background 6 1.1 Consortium to perform the work 7 1.2 Objectives 7 2.0
    [Show full text]
  • The Evolution, Diversity, and Host Associations of Rhabdoviruses Ben Longdon,1,* Gemma G
    Virus Evolution, 2015, 1(1): vev014 doi: 10.1093/ve/vev014 Research article The evolution, diversity, and host associations of rhabdoviruses Ben Longdon,1,* Gemma G. R. Murray,1 William J. Palmer,1 Jonathan P. Day,1 Darren J Parker,2,3 John J. Welch,1 Darren J. Obbard4 and Francis M. Jiggins1 1 2 Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, School of Biology, University of Downloaded from St Andrews, St Andrews, KY19 9ST, UK, 3Department of Biological and Environmental Science, University of Jyva¨skyla¨, Jyva¨skyla¨, Finland and 4Institute of Evolutionary Biology, and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, UK *Corresponding author: E-mail: [email protected] http://ve.oxfordjournals.org/ Abstract Metagenomic studies are leading to the discovery of a hidden diversity of RNA viruses. These new viruses are poorly characterized and new approaches are needed predict the host species these viruses pose a risk to. The rhabdoviruses are a diverse family of RNA viruses that includes important pathogens of humans, animals, and plants. We have discovered thirty-two new rhabdoviruses through a combination of our own RNA sequencing of insects and searching public sequence databases. Combining these with previously known sequences we reconstructed the phylogeny of 195 rhabdovirus by guest on December 14, 2015 sequences, and produced the most in depth analysis of the family to date. In most cases we know nothing about the biology of the viruses beyond the host they were identified from, but our dataset provides a powerful phylogenetic approach to predict which are vector-borne viruses and which are specific to vertebrates or arthropods.
    [Show full text]
  • University of Mysore
    Biodata of Dr. N. B. RAMACHANDRA Ph.D, FASc PROFESSOR, AND PRINCIPAL INVESTIGATOR Chairman - Department of Studies in Genetics and Genomics Chairman- Board of Studies in Genetics and Genomics Deputy Coordinator for UGC-SAP (CAS-1), DOS in Zoology Director- University of Mysore Genome Centre (Local Secretary - 103rd Indian Science Congress 2016 Former Chairman-Board of Studies in Zoology (UG&PG) & BOS in Clinical Research & Clinical Data Management) University of Mysore, Manasagangotri, Mysuru – 570 006, INDIA [email protected] / [email protected] http://scholar.google.co.in/citations?user=CBqZv1oAAAAJ http://www.ramachandralab.com/ Phone: 0821-2419781/888 (O) ; Mobile: 09880033687 1. Date of Birth: 31.05.1958 2. Educational Qualification: 1982-88: Ph.D. in Zoology, Department of Zoology, University of Mysore, INDIA. Thesis title: "Contributions to population cytogenetics of Drosophila: Studies on interracial hybridization and B-chromosomes". 1980-82: M.Sc. in Zoology, 1st Class with 2nd Rank, University of Mysore, Mysore. 1977-80: B.Sc. (Chemistry, Botany, and Zoology), 1st class, Cauvery College, Gonicoppal, University of Mysore, INDIA. 3. Area of Specialization: 1) Drosophila Genetics and Evolution 2) Human Genetic Diseases and Genomics 4. Awards/ Recognitions: Sl.No. Year Recognition Institution “Best boy of the college” Cauvary College, Gonicoppal, Univ. 1 1980 award of Mysore. 2 1982 II Rank in M.Sc DOS in Zoology, Univ. of Mysore. Government of India Nehru Department of Biological sciences, 3 1990 Centenary British Fellowship Warwick University, Coventry, United (common wealth) Award Kingdom (not availed). 1990 - McMaster University, Department of 4. 1992 Post Doctoral Fellow Award Biochemistry, Canada University of California, Department of 1999- Senior Research Associate 5 Cell Molecular and Developmental 2000 II award Biology, Los Angeles, USA VISITING PROFESSOR- to Dept.
    [Show full text]
  • 2020 Program Book
    PROGRAM BOOK Note that TAGC was cancelled and held online with a different schedule and program. This document serves as a record of the original program designed for the in-person meeting. April 22–26, 2020 Gaylord National Resort & Convention Center Metro Washington, DC TABLE OF CONTENTS About the GSA ........................................................................................................................................................ 3 Conference Organizers ...........................................................................................................................................4 General Information ...............................................................................................................................................7 Mobile App ....................................................................................................................................................7 Registration, Badges, and Pre-ordered T-shirts .............................................................................................7 Oral Presenters: Speaker Ready Room - Camellia 4.......................................................................................7 Poster Sessions and Exhibits - Prince George’s Exhibition Hall ......................................................................7 GSA Central - Booth 520 ................................................................................................................................8 Internet Access ..............................................................................................................................................8
    [Show full text]
  • The Evolutionary Life History of P Transposons: from Horizontal Invaders to Domesticated Neogenes
    Chromosoma (2001) 110:148–158 DOI 10.1007/s004120100144 CHROMOSOMA FOCUS Wilhelm Pinsker · Elisabeth Haring Sylvia Hagemann · Wolfgang J. Miller The evolutionary life history of P transposons: from horizontal invaders to domesticated neogenes Received: 5 February 2001 / In revised form: 15 March 2001 / Accepted: 15 March 2001 / Published online: 3 May 2001 © Springer-Verlag 2001 Abstract P elements, a family of DNA transposons, are uct of their self-propagating lifestyle. One of the most known as aggressive intruders into the hitherto uninfected intensively studied examples is the P element of Dro- gene pool of Drosophila melanogaster. Invading through sophila, a family of DNA transposons that has proved horizontal transmission from an external source they useful not only as a genetic tool (e.g., transposon tag- managed to spread rapidly through natural populations ging, germline transformation vector), but also as a model within a few decades. Owing to their propensity for rapid system for investigating general features of the evolu- propagation within genomes as well as within popula- tionary behavior of mobile DNA (Kidwell 1994). P ele- tions, they are considered as the classic example of self- ments were first discovered as the causative agent of hy- ish DNA, causing havoc in a genomic environment per- brid dysgenesis in Drosophila melanogaster (Kidwell et missive for transpositional activity. Tracing the fate of P al. 1977) and were later characterized as a family of transposons on an evolutionary scale we describe differ- DNA transposons
    [Show full text]
  • Diptera: Drosophilidae) from China
    Zoological Systematics, 40(1): 70–78 (January 2015), DOI: 10.11865/zs.20150107 ORIGINAL ARTICLE A new species of Drosophila obscura species group (Diptera: Drosophilidae) from China Ji-Min Chen, Jian-Jun Gao* Laboratory for Conservation and Utilization of Bioresources, Yunnan University, Kunming 650091, China *Corresponding author, E-mail: [email protected] Abstract A new species of the Drosophila obscura species group is described here, namely Drosophila glabra sp. nov. It was recently found from the Maoershan National Nature Reserve, Guangxi, China. The characteristics of the new species are based not only on morphological characters but also on DNA sequences of the mitochondrial COII (cytochrome c oxidase subunit II) gene. Key words Genetic distance, morphology, Old World, Oriental Region, Sophophora. 1 Introduction The Drosophila obscura species group is one of the major lineages within the well-known sophophoran radiation recognized by Throckmorton (1975). Studies on the taxonomy, geography, chromosomal evolution, reproductive-isolation, protein polymorphism and phylogeny of this group have greatly promoted the early development of evolutionary genetics (Lakovaara & Saura, 1982). A majority of the currently known species of this group (44 in total) was recorded from the Holarctic temperate zone, with the remainder recorded from varied sites in South America (Lakovaara & Saura, 1982; Head & O’Grady, 2000), as well the Afrotropical (Séguy, 1938; Tsacas et al., 1985) and Oriental Regions (Watabe et al., 1996; Watabe & Sperlich, 1997; Gao et al., 2003, 2009; Table 1). In this paper, we describe a new species of the obscura group found from our recent field survey in Guangxi, China. The definition of the new species is based on morphological characters and DNA sequences of the mitochondrial COII (cytochrome c oxidase subunit II) gene.
    [Show full text]
  • THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975
    NATIONAL ACADEMY OF SCIENCES T H E O D O S I U S D O B ZHANSKY 1900—1975 A Biographical Memoir by F R A N C I S C O J . A Y A L A Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1985 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975 BY FRANCISCO J. AYALA HEODOSIUS DOBZHANSKY was born on January 25, 1900 Tin Nemirov, a small town 200 kilometers southeast of Kiev in the Ukraine. He was the only child of Sophia Voinarsky and Grigory Dobrzhansky (precise transliteration of the Russian family name includes the letter "r"), a teacher of high school mathematics. In 1910 the family moved to the outskirts of Kiev, where Dobzhansky lived through the tumultuous years of World War I and the Bolshevik revolu- tion. These were years when the family was at times beset by various privations, including hunger. In his unpublished autobiographical Reminiscences for the Oral History Project of Columbia University, Dobzhansky states that his decision to become a biologist was made around 1912. Through his early high school (Gymnasium) years, Dobzhansky became an avid butterfly collector. A schoolteacher gave him access to a microscope that Dob- zhansky used, particularly during the long winter months. In the winter of 1915—1916, he met Victor Luchnik, a twenty- five-year-old college dropout, who was a dedicated entomol- ogist specializing in Coccinellidae beetles.
    [Show full text]
  • Halona2021r.Pdf
    Terrestrial Arthropod Survey of Hālona Valley, Joint Base Pearl Harbor-Hickam, Naval Magazine Lualualei Annex, August 2020–November 2020 Neal L. Evenhuis, Keith T. Arakaki, Clyde T. Imada Hawaii Biological Survey Bernice Pauahi Bishop Museum Honolulu, Hawai‘i 96817, USA Final Report prepared for the U.S. Navy Contribution No. 2021-003 to the Hawaii Biological Survey EXECUTIVE SUMMARY The Bishop Museum was contracted by the U.S. Navy to conduct surveys of terrestrial arthropods in Hālona Valley, Naval Magazine Lualualei Annex, in order to assess the status of populations of three groups of insects, including species at risk in those groups: picture-winged Drosophila (Diptera; flies), Hylaeus spp. (Hymenoptera; bees), and Rhyncogonus welchii (Coleoptera; weevils). The first complete survey of Lualualei for terrestrial arthropods was made by Bishop Museum in 1997. Since then, the Bishop Museum has conducted surveys in Hālona Valley in 2015, 2016–2017, 2017, 2018, 2019, and 2020. The current survey was conducted from August 2020 through November 2020, comprising a total of 12 trips; using yellow water pan traps, pitfall traps, hand collecting, aerial net collecting, observations, vegetation beating, and a Malaise trap. The area chosen for study was a Sapindus oahuensis grove on a southeastern slope of mid-Hālona Valley. The area had potential for all three groups of arthropods to be present, especially the Rhyncogonus weevil, which has previously been found in association with Sapindus trees. Trapped and collected insects were taken back to the Bishop Museum for sorting, identification, data entry, and storage and preservation. The results of the surveys proved negative for any of the target groups.
    [Show full text]
  • Chemical Ecology of Pollination in Deceptive Ceropegia
    Chemical Ecology of Pollination in Deceptive Ceropegia CHEMICAL ECOLOGY OF POLLINATION IN DECEPTIVE CEROPEGIA DISSERTATION zur Erlangung des Doktorgrades Dr. rer. nat. an der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth vorgelegt von Annemarie Heiduk Bayreuth, Januar 2017 Die vorliegende Arbeit wurde in der Zeit von Februar 2012 bis Dezember 2016 in Bayreuth am Lehrstuhl Pflanzensystematik unter der Betreuung von Herrn Univ.-Prof. Dr. Stefan Dötterl (Erst-Mentor) und Herrn PD Dr. Ulrich Meve (Zweit-Mentor) angefertigt. Gefördert wurde die Arbeit von Februar bis April 2012 durch den ‛Feuerwehrfond’ zur Doktorandenförderung der Universität Bayreuth, von Mai 2012 bis April 2015 durch ein Stipendium nach dem Bayerischen Eliteförderungsgesetzt (BayEFG), und von Mai bis Juli 2015 durch ein Stipendium des Bayerischen Programms zur Förderung der Chancengleichheit für Frauen in Forschung und Lehre. Vollständiger Abdruck der von der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.). Dissertation eingereicht am: 02.02.2017 Zulassung durch das Leitungsgremium: 10.02.2017 Wissenschaftliches Kolloquium: 31.05.2017 Amtierender Direktor: Prof. Dr. Stephan Kümmel Prüfungsausschuss: Prof. Dr. Stefan Dötterl (Erstgutachter) Prof. Dr. Konrad Dettner (Zweitgutachter) Prof. Dr. Heike Feldhaar (Vorsitz) Prof. Dr. Bettina Engelbrecht Declaration of self-contribution This dissertation is submitted as a “Cumulative Thesis“ and contains a general synopsis (Part I) and three manuscripts (Part II) about the chemical ecology and pollination biology of Ceropegia . The major part of the research presented here was accomplished by myself under supervision of Univ.-Prof. Dr. Stefan Dötterl (Universities of Bayreuth and Salzburg) and PD Dr.
    [Show full text]
  • View of the Invasion of Drosophila Suzukii in Gether with the 5′ UTR (Annotated in Green) Are Compared
    Yan et al. BMC Genetics 2020, 21(Suppl 2):146 https://doi.org/10.1186/s12863-020-00939-y RESEARCH Open Access Identification and characterization of four Drosophila suzukii cellularization genes and their promoters Ying Yan1,2*, Syeda A. Jaffri1, Jonas Schwirz2, Carl Stein1 and Marc F. Schetelig1,2* Abstract Background: The spotted-wing Drosophila (Drosophila suzukii) is a widespread invasive pest that causes severe economic damage to fruit crops. The early development of D. suzukii is similar to that of other Drosophilids, but the roles of individual genes must be confirmed experimentally. Cellularization genes coordinate the onset of cell division as soon as the invagination of membranes starts around the nuclei in the syncytial blastoderm. The promoters of these genes have been used in genetic pest-control systems to express transgenes that confer embryonic lethality. Such systems could be helpful in sterile insect technique applications to ensure that sterility (bi-sex embryonic lethality) or sexing (female-specific embryonic lethality) can be achieved during mass rearing. The activity of cellularization gene promoters during embryogenesis controls the timing and dose of the lethal gene product. Results: Here, we report the isolation of the D. suzukii cellularization genes nullo, serendipity-α, bottleneck and slow-as- molasses from a laboratory strain. Conserved motifs were identified by comparing the encoded proteins with orthologs from other Drosophilids. Expression profiling confirmed that all four are zygotic genes that are strongly expressed at the early blastoderm stage. The 5′ flanking regions from these cellularization genes were isolated, incorporated into piggyBac vectors and compared in vitro for the promoter activities.
    [Show full text]
  • Cognitive Mechanisms Underlying Responses to Sperm Competition in Drosophila Melanogaster
    Cognitive mechanisms underlying responses to sperm competition in Drosophila melanogaster James Luke Rouse Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Biology November 2016 The candidate confirms that the work submitted is his/her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Jointly authored publications Rouse, J. Bretman, A. (2016) Exposure time to rivals and sensory cues affect how quickly males respond to changes in sperm competition threat, Animal Behaviour, 122, 1-8 All experimental work was carried out by the author of this thesis; manuscript preparation was jointly shared between the authors This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2016 The University of Leeds and James Luke Rouse ii Acknowledgments I doubt many people will read this Thesis too closely, but from personal experience I know the acknowledgments are scrutinised, so I better make them good. First and foremost, I would like to thank my supervisor Amanda for providing me with the opportunity to perform this work. From helping me understand statistics as a baby-faced undergraduate she has encouraged and cajoled me to the baby-faced 24 year old I am today.
    [Show full text]
  • Cold Acclimation Conditions Constrain Plastic Responses for Resistance to Cold and Starvation in Drosophila Immigrans
    © 2018. Published by The Company of Biologists Ltd | Biology Open (2018) 7, bio034447. doi:10.1242/bio.034447 RESEARCH ARTICLE Cold acclimation conditions constrain plastic responses for resistance to cold and starvation in Drosophila immigrans Ankita Pathak1, Ashok Munjal1 and Ravi Parkash2,* ABSTRACT 2007; Colinet et al., 2012). Colder environments are also associated In montane Drosophila species, cold-induced plastic changes in with desiccating conditions. Some studies have suggested a energy metabolites are likely developed to cope with cold and physiological link between plastic responses to cold and drought starvation stress. Adult Drosophila immigrans reared at 15°C were i.e. in freeze-tolerant gall fly Eurosta solidaginis (Irwin and Lee, acclimated at 0°C or 7°C for durations of up to 6 days (fed or unfed 2002; Williams and Lee, 2008; Levis et al., 2012); in Belgica conditions). Such flies were tested for plastic changes in resistance to antarctica (Benoit et al., 2009) and in D. immigrans (Tamang et al., cold or starvation stress as well as for possible accumulation and 2017). In the gall fly E. solidaginis, cold-induced changes include utilization of four energy metabolites (body lipids, proline, trehalose increases in the amount and composition of cuticular lipids to and glycogen). Adults acclimated at 7°C revealed a greater increase decrease water loss; and accumulation of cryoprotectants to reduce in cold tolerance than flies acclimated at 0°C. Different durations of the detrimental effects of cold on cellular membranes and proteins cold acclimation at 7°C led to increased level of body lipids only in fed (Nelson and Lee, 2004; Lee, 2010; Gantz and Lee, 2015).
    [Show full text]