Torino Scale Is Flawed

Total Page:16

File Type:pdf, Size:1020Kb

Torino Scale Is Flawed Outline Observations: · Scales assume a dominant role in communicating natural hazards to the media and society at large. · Confusion, misunderstanding, and sensationalism are often associated with Asteroid and Comet Impact Hazard Predictions. · The scales pertinent to Asteroid and Comet Impact Hazard Predictions are partially ineffective. Explanations: · The Torino Scale is flawed. · It provides no indication as to how the public should respond to an impact hazard prediction. · Competing Scales are reducing the effectiveness of the message. · References to the Torino Scale and the Palermo Scale are problematic, in that they are ignoring the two scales incompatibilities: they were devised for wholly different purposes and they yield results that are essentially incommensurable. Recommendations: · Couple the Torino Scale’s assessments with clear descriptions or recommended actions designed specifically for the general public. · Devise an IAU policy to encourage accuracy, consistency, and clarity in reports of impact predictions. Reviewing the Torino Scale; Critiquing the Critiques Communicating the risk that near-Earth objects (NEOs) pose to the general public presents a serious challenge to the astronomical community. The challenge stems, in part, from the unique character of the NEO hazard. The concept of asteroids and comets colliding with the Earth represents the most extreme example of a low probability, high consequence event - outside the domain of our common lived experience. The NEO hazard is highly prone to sensationalism, especially in the wake of two Hollywood blockbusters (Armageddon and Deep Impact) depicting havoc wreaked by earth- approaching celestial bodies. Finally, cosmic impact events differ from other hazards in that, in theory, impact dates that lie far in the future can be forecasted with great accuracy. This risk communication challenge was addressed by the Torino Scale, a simple hazard scale system devised to encourage “careful and responsible communication between astronomers and the public” (Binzel, 2000). Since its creation, the Torino Scale has since been criticized by numerous parties, many of whom have suggested modifications to the existing scale or new scales altogether. However, the Torino Scale’s detractors have all but ignored the scale’s raison d'être: “to place into context the level of public concern that is warranted for any close encounter event within the next century” (Binzel, 2000). To examine the success or merit of the Scale, we must do so in the context of its justification for existence. To deride the Torino Scale on the basis of supposed goals - projected by the critic(s) - is a non sequitur. This is not to say that the Torino Scale effectively realizes its purpose; it does not. Before we evaluate the Scale according to its stated goals and recommend improvements, let us review past criticisms and suggested alternatives to see where they have gone awry. William J. Cooke, suggests that the Torino Scale is “too coarse” to establish the risk threshold required to trigger an asteroid defense. This assertion is supported by the claim that the Torino Scale neglects the “attention span” of the average person (100 years). He proposes a risk number (RN) scheme and challenges others to establish RNdefense: a value that dictates when society should defend against an asteroid/comet, without which “an adequate mitigation means cannot be designed and developed” (Cooke). Cooke’s evaluation ignores the fact that the Torino Scale does include a time element: it is defined as being relevant only for the next century (100 years - precisely his quantification of a human “attention span”). His implicit acknowledgement that a hazard scale must motivate some form of human response is laudable, but his critique of the Torino Scale is unfounded. Joaquin Perez proposes that the Torino Scale “fails to satisfy minimal validity and simplicity criteria” (Perez, e-mail correspondence). He suggests that the Scale has technically flaws; most notably that a “very likely” (0.80 < P < 0.95) collision with an energy of one hundred million megatons is considered less threatening than a certain (P > 0.99) one megaton collision. Perez then submits modifications to reduce the Scale’s technical/mathematical weaknesses. His effort are valiant, but his suggestions fail to increase the simplicity and hence the public intelligibility of the Scale. The Torino Scale has “natural limitations” (Binzel, 2000) that, arguably, could be slightly improved with continual tweaking. However, this would only serve to cause confusion and undermine public confidence - counter to the scale’s intended purpose. Jonathan Tate recommends a refinement of the Torino Scale on the bases that the current scale has been little used and that “a single number carries no advantage if lengthy explanation is required”. These claims are false; the scale has been used in several appropriate instances since its development and as it continues to be used, public confidence in it will increase and the scale’s integer values will begin to be associated with their explanations. This is a well-established characteristic of risk communication; “the number of times that a risk communication is repeated has a positive effect on public belief in the information” (Mileti et al., 1991). Californians have learned to readily associate Richter Scale values of earthquake magnitudes with the “lengthy explanations” that support them. Tate further criticizes the Torino Scale because its hazard ratings are liable to change - asserting that this feature makes the Scale “of little value to the media or general public”. This feature is a part of other hazard indices such as the Saffir- Simpson Hurricane Scale that have been embraced by journalists and civilians alike. Tate also opposes any mention of “background hazard”, an element of the problem he deems irrelevant. How else is society to relate to an impact prediction and decide whether it warrants action or not? Society’s inaction as pertains to the background hazard represents an implicit judgement that we can all live with the background threat without taking exceptional measures. Informing the public that a potential impact rises significantly above the background is thus of great utility. Tate’s remedy to the aforementioned ills is a two-parameter matrix that labels each “event” with a “threat level” composed of an appropriate letter and number describing its probability and its consequence respectively. Noting that it is “advisable to have pre-agreed and templated (sic) actions ready for use”, Tate then offers a second 2-D matrix (the “action matrix”) that dictates an appropriate response based on an event’s “threat level” and the time to impact. Tate’s suggestions may have some merit, but in no way do they address the problems of underuse and inadequacy that he emphasizes. A pair of two-dimensional matrices are far too complex to serve as a tool of public communication and would certainly be of less utility than the Torino Scale. Another attempt to quantify the cosmic impact hazard, the Palermo Scale, was developed by an international team of researchers to “facilitate communication among astronomers”(Chesley et al., 2001). The authors carry out their task because the simplicity of the Torino Scale renders it “unsuited for use by specialists in characterizing large numbers of events and in prioritizing objects for observation and analysis” but admit that it is “a clear and very simple measure of the hazard posed by a potential collision” (Chesley et al., 2001). The authors note that the Palermo Scale is “not intended for public communication of impact risks” yet it has been cited by the media. A recent article posted on CNN.com referred to asteroid 2002 NT7 (detected on July 9 by the Lincoln Near Earth Asteroid Research Project) as “the first object to be given a positive value, of 0.06, on the Palermo scale of potential threat posed by asteroids” and makes no mention of the Torino Scale. A follow-up article stated that “NASA's Near Earth Object program gives the asteroid a rating of "0" on the Torino impact hazard scale — within a range of "events meriting careful monitoring," but not concern”, this time refraining from referencing the Palermo Scale. Reuters.com reported Tim Spahr (an astronomer at the Minor Planets Center of the Harvard-Smithsonian Center for Astrophysics) as saying, “We have a scale called the Palermo scale that takes into account size and possible impact velocity and comes up with a rating for an object." The article noted that “2002 NT7 is the first "positive" object on the scale system, meant to predict how much damage an asteroid would do if it just happened to hit”. The purpose of the Palermo Scale has been utterly misinterpreted by this report. Though the intentions of the creators of the Palermo Scale were clearly not to confuse or misinform the public, the presence of a second impact hazard scale has done just that. What is a lay audience to make of an asteroid that registers a zero on one scale and a positive, non-zero value on another? The Torino Scale’s Real Weakness The Partnership for Public Warning (PPW) recently published a report outlining several unanimous recommendations devised to improve the Homeland Security Advisory System (HSAS). One such recommendation stressed that the HSAS “be clear about the risks and the actions required to reduce the risks” (Partnership for Public Warning, 2002). Indeed, the natural hazards community has long acknowledged the relationship between warning systems and human response: “warnings are effective only if they are accurate and result in appropriate action” (Working Group on Natural Disaster Information Systems, Subcommittee on Natural Disaster Reduction, 2000). Joanne Nigg’s article, Risk Communication and Warning Systems cites three key components of a public warning message, one of which is that “people must be told what they can personally do to reduce their exposure to danger” (Nigg, 1995).
Recommended publications
  • Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
    18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale.
    [Show full text]
  • Using a Nuclear Explosive Device for Planetary Defense Against an Incoming Asteroid
    Georgetown University Law Center Scholarship @ GEORGETOWN LAW 2019 Exoatmospheric Plowshares: Using a Nuclear Explosive Device for Planetary Defense Against an Incoming Asteroid David A. Koplow Georgetown University Law Center, [email protected] This paper can be downloaded free of charge from: https://scholarship.law.georgetown.edu/facpub/2197 https://ssrn.com/abstract=3229382 UCLA Journal of International Law & Foreign Affairs, Spring 2019, Issue 1, 76. This open-access article is brought to you by the Georgetown Law Library. Posted with permission of the author. Follow this and additional works at: https://scholarship.law.georgetown.edu/facpub Part of the Air and Space Law Commons, International Law Commons, Law and Philosophy Commons, and the National Security Law Commons EXOATMOSPHERIC PLOWSHARES: USING A NUCLEAR EXPLOSIVE DEVICE FOR PLANETARY DEFENSE AGAINST AN INCOMING ASTEROID DavidA. Koplow* "They shall bear their swords into plowshares, and their spears into pruning hooks" Isaiah 2:4 ABSTRACT What should be done if we suddenly discover a large asteroid on a collision course with Earth? The consequences of an impact could be enormous-scientists believe thatsuch a strike 60 million years ago led to the extinction of the dinosaurs, and something ofsimilar magnitude could happen again. Although no such extraterrestrialthreat now looms on the horizon, astronomers concede that they cannot detect all the potentially hazardous * Professor of Law, Georgetown University Law Center. The author gratefully acknowledges the valuable comments from the following experts, colleagues and friends who reviewed prior drafts of this manuscript: Hope M. Babcock, Michael R. Cannon, Pierce Corden, Thomas Graham, Jr., Henry R. Hertzfeld, Edward M.
    [Show full text]
  • The Tumbling Spin State of (99942) Apophis
    The tumbling spin state of (99942) Apophis P. Pravec a, P. Scheirich a, J. Durechˇ b, J. Pollock c, P. Kuˇsnir´ak a, K. Hornoch a, A. Gal´ad a, D. Vokrouhlick´y b, A.W. Harris d, E. Jehin e, J. Manfroid e, C. Opitom e, M. Gillon e, F. Colas g, J. Oey h, J. Vraˇstil a,b, D. Reichart f, K. Ivarsen f, J. Haislip f, A. LaCluyze f aAstronomical Institute, Academy of Sciences of the Czech Republic, Friˇcova 1, CZ-25165 Ondˇrejov, Czech Republic bInstitute of Astronomy, Faculty of Mathematics and Physics, Charles University, Prague, V Holeˇsoviˇck´ach 2, CZ-18000 Prague 8, Czech Republic cPhysics and Astronomy Department, Appalachian State University, Boone, NC 28608, U.S.A. dMoreData! Inc., 4603 Orange Knoll Avenue, La Ca˜nada, CA 91011, U.S.A. eInstitut d’Astrophysique de l’Universit´ede Li`ege, Alle du 6 Aout 17, B-4000 Li`ege, Belgium f Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, U.S.A. gIMCCE-CNRS-Observatoire de Paris, 77 avenue Denfert Rochereau, 75014 Paris, France hLeura Observatory, Leura, N.S.W., Australia 2014 January 22 Preprint submitted to Elsevier 22 January 2014 Proposed running head: Apophis tumbling Editorial correspondence to: Dr. Petr Pravec Astronomical Institute AS CR Friˇcova 1 Ondˇrejov CZ-25165 Czech Republic Phone: 00420-323-620352 Fax: 00420-323-620263 E-mail address: [email protected] 2 Abstract Our photometric observations of asteroid (99942) Apophis from December 2012 to April 2013 revealed it to be in a state of non-principal axis rotation (tumbling).
    [Show full text]
  • Negotiating Uncertainty: Asteroids, Risk and the Media Felicity Mellor
    Accepted pre-publication version Published at: Public Understanding of Science 19(1): (2010) 16-33. Negotiating Uncertainty: Asteroids, Risk and the Media Felicity Mellor ABSTRACT Natural scientists often appear in the news media as key actors in the management of risk. This paper examines the way in which a small group of astronomers and planetary scientists have constructed asteroids as risky objects and have attempted to control the media representation of the issue. It shows how scientists negotiate the uncertainties inherent in claims about distant objects and future events by drawing on quantitative risk assessments even when these are inapplicable or misleading. Although the asteroid scientists worry that media coverage undermines their authority, journalists typically accept the scientists’ framing of the issue. The asteroid impact threat reveals the implicit assumptions which can shape natural scientists’ public discourse and the tensions which arise when scientists’ quantitative uncertainty claims are re-presented in the news media. Keywords: asteroids, impact threat, astronomy, risk, uncertainty, science journalism, media, science news Introduction Over the past two decades, British newspapers have periodically announced the end of the world. Playful headlines such as “The End is Nigh” and “Armageddon Outta Here!” are followed a few days later by reports that there’s no danger after all: “PHEW. The end of the world has been cancelled” (Britten, 1998; Wickham, 2002; Evening Standard , 1998). These stories, and others like them appearing in news media around the world, deal with the possibility that an asteroid or comet may one day collide with the Earth causing global destruction. The threat posed by near-Earth objects (NEOs) has been actively promoted by a group of astronomers and planetary scientists since the late 1980s.
    [Show full text]
  • Revised Asteroid Scale Aids Understanding of Impact Risk 12 April 2005
    Revised asteroid scale aids understanding of impact risk 12 April 2005 Astronomers led by an MIT professor have revised object is almost always likely to reduce the hazard the scale used to assess the threat of asteroids level to 0, once sufficient data are obtained." The and comets colliding with Earth to better general process of classifying NEO hazards is communicate those risks with the public. roughly analogous to hurricane forecasting. The overall goal is to provide easy-to-understand Predictions of a storm's path are updated as more information to assuage concerns about a potential and more tracking data are collected. doomsday collision with our planet. The Torino scale, a risk-assessment system similar According to Dr. Donald K. Yeomans, manager of to the Richter scale used for earthquakes, was NASA's Near Earth Object Program Office, "The adopted by a working group of the International revisions in the Torino Scale should go a long way Astronomical Union (IAU) in 1999 at a meeting in toward assuring the public that while we cannot Torino, Italy. On the scale, zero means virtually no always immediately rule out Earth impacts for chance of collision, while 10 means certain global recently discovered near-Earth objects, additional catastrophe. observations will almost certainly allow us to do so." "The idea was to create a simple system The highest Torino level ever given an asteroid was conveying clear, consistent information about near- a 4 last December, with a 2 percent chance of Earth objects [NEOs]," or asteroids and comets hitting Earth in 2029. And after extended tracking of that appear to be heading toward the planet, said the asteroid's orbit, it was reclassified to level 0, Richard Binzel, a professor in MIT's Department of effectively no chance of collision, "the outcome Earth, Atmospheric and Planetary Sciences and correctly emphasized by level 4 as being most the creator of the scale.
    [Show full text]
  • Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law James A
    Hastings International and Comparative Law Review Volume 42 Article 2 Number 1 Winter 2019 Winter 2019 Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law James A. Green Follow this and additional works at: https://repository.uchastings.edu/ hastings_international_comparative_law_review Part of the Comparative and Foreign Law Commons, and the International Law Commons Recommended Citation James A. Green, Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law, 42 Hastings Int'l & Comp.L. Rev. 1 (2019). Available at: https://repository.uchastings.edu/hastings_international_comparative_law_review/vol42/iss1/2 This Article is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings International and Comparative Law Review by an authorized editor of UC Hastings Scholarship Repository. Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law BY JAMES A. GREEN ABSTRACT The risk of a large Near-Earth Object (NEO), such as an asteroid, colliding with the Earth is low, but the consequences of that risk manifesting could be catastrophic. Recent years have witnessed an unprecedented increase in global political will in relation to NEO preparedness, following the meteoroid impact in Chelyabinsk, Russia in 2013. There also has been an increased focus amongst states on the possibility of using nuclear detonation to divert or destroy a collision- course NEO—something that a majority of scientific opinion now appears to view as representing humanity’s best, or perhaps only, option in extreme cases. Concurrently, recent developments in nuclear disarmament and the de-militarization of space directly contradict the proposed “nuclear option” for planetary defense.
    [Show full text]
  • NASA's Near-Earth Object Program Overview Don Yeomans/JPL
    NASA’sNational Aeronautics and Near-Earth Object Program Overview Space Administration Jet Propulsion Laboratory California Institute of Technology Don Yeomans/JPL Pasadena, California National Aeronautics and Space Administration The Population of Near-Earth Objects is Jet Propulsion Laboratory California Institute of Technology Pasadena, California Made Up of Active Comets (1%) and Asteroids (99%) Comets (Weak and very black icy dust balls) •Weak collection of talcum-powder sized silicate dust •About 30% ices (mostly water) just below surface dust •Fairly recent resurfacing and few impact craters •Some evidence that comet Tempel 1 does not have a uniform composition (i.e., more CO2 in south) Asteroids (run the gamut from wimpy ex-comet fluff balls to slabs of iron •Most are shattered fragments of larger asteroids •Rubble rock piles - like Itokawa •Shattered (but coherent) rock - like Eros •Solid rock •Solid slabs of iron - like Meteor crater object National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology History of Known NEO Population Pasadena, California 201018001900195019901999 The Inner Solar System in 2006 Known • 500,000 minor planets Earth • 7100 NEOs • ~1100 PHOs Crossing New Survey Will Outside Likely Find Earth’s • 25,000+ NEOs Orbit (> 140m) • 5,000+ PHOs Scott Manley Armagh Observatory National Aeronautics and Space Administration NASA’s Current Jet Propulsion Laboratory California Institute of Technology Pasadena, California NEO Search Surveys NEO Program Office @ JPL LINEAR, Socorro NM • Program coordination • Automated SENTRY http://neo.jpl.nasa.gov/ Minor Planet Center (MPC) • IAU sanctioned • Discovery Clearinghouse • Initial Orbit Determination Spacewatch Tucson, AZ NASA’s NEO Observations Catalina Sky Program run by Lindley Johnson Survey (SMD) Tucson AZ & Australia National Aeronautics and Space Administration Jet Propulsion Laboratory NASA NEO Survey California Institute of Technology Pasadena, California Discoveries NASA goal is to discover 90% of NEAs larger than 1 km.
    [Show full text]
  • Final Report
    Final Report Project No: 282703 Project Acronym: NEOShield Project Full Name: A Global Approach to Near-Earth Object Impact Threat Mitigation Final Report Period covered: from 01/01/2012 to 31/05/2015 Date of preparation: 06/07/2015 Start date of project: 01/01/2012 Date of submission (SESAM): 05/08/2015 Project coordinator name: Project coordinator organisation name: Prof. Alan Harris DEUTSCHES ZENTRUM FUER LUFT - UND RAUMFAHRT EV Version: 2 Final Report PROJECT FINAL REPORT Grant Agreement number: 282703 Project acronym: NEOShield Project title: A Global Approach to Near-Earth Object Impact Threat Mitigation Funding Scheme: FP7-CP-FP Project starting date: 01/01/2012 Project end date: 31/05/2015 Name of the scientific representative of the Prof. Alan Harris DEUTSCHES ZENTRUM project's coordinator and organisation: FUER LUFT - UND RAUMFAHRT EV Tel: +493067055324 Fax: +493067055303 E-mail: [email protected] Project website address: www.neoshield.net Project No.: 282703 Page - 2 of 44 Period number: 3rd Ref: 282703_NEOShield_Final_Report-13_20150805_154413_CET.pdf Final Report Please note that the contents of the Final Report can be found in the attachment. 4.1 Final publishable summary report Executive Summary NEOShield was conceived to address realistic options for preventing the collision of a naturally occurring celestial body (near-Earth object, NEO) with the Earth. Three deflection techniques, which appeared to be the most realistic and feasible at the time of the European Commission’s call in 2010, form the focus of NEOShield efforts: the kinetic impactor, in which a spacecraft transfers momentum to an asteroid by impacting it at a very high velocity; blast deflection, in which an explosive, such as a nuclear device, is detonated near, on, or just beneath the surface of the object; and the gravity tractor, in which a spacecraft hovering under power in close proximity to an asteroid uses the gravitational force between the asteroid and itself to tow the asteroid onto a safe trajectory relative to the Earth.
    [Show full text]
  • Planetary Defense Space System Design, MAE 342, Princeton University Robert Stengel
    2/12/20 Planetary Defense Space System Design, MAE 342, Princeton University Robert Stengel § Asteroids and Comets § Spacecraft § Detection, Impact Prediction, and Warning § Options for Minimizing the Hazard § The 2020 UA Project Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 What We Want to Avoid 2 2 1 2/12/20 Asteroids and Comets DO Hit Planets [Comet Schumacher-Levy 9 (1994)] • Trapped in orbit around Jupiter ~1929 • Periapsis within “The Roche Limit” • Fragmented by tidal forces from 1992 encounter with Jupiter 3 3 Asteroid Paths Posing Hazard to Earth 4 4 2 2/12/20 Potentially Hazardous Object/Asteroid (PHO/A) Toutatis Physical Characteristics PHA Characteristics (2013) § Dimensions: 5 x 2 x 2 km § Diameter > 140 m § Mass = 5 x 1013 kg § Passes within 7.6 x 106 § Period = 4 yr km of Earth (0.08 AU) § Aphelion = 4.1 AU § > 1,650 PHAs (2016) § Perihelion = 0.94 AU 5 5 Comets Leave Trails of Rocks and Gravel That Become Meteorites on Encountering Earth’s Atmosphere • Tempel- Temple-Tuttle Tuttle – Period ~ 33 yr – Leonid Meteor Showers each Summer Tempel- • Swift-Tuttle Tuttle Orbit – Period ~ 133 yr – Perseid Meteor Leonid Showers each Summer Meteor Perseid Meteor 6 6 3 2/12/20 Known Asteroid “Impacts”, 2000 - 2013 7 7 Chelyabinsk Meteor, Feb 15, 2013 Chelyabinsk Flight Path, 2013 • No warning, approach from Sun • 500 kT airburst explosion at altitude of 30 km • Velocity ~ 19 km/s (wrt atmosphere), 30 km/s (V∞) • Diameter ~ 20 m • Mass ~ 12,000-13,000
    [Show full text]
  • Master Thesis Report Asteroids Deflection Using State of the Arts European Technologies
    Master thesis report Asteroid deflection using state of the arts European technologies Meunier Arthur Meunier Arthur Last years at KTH & Arts et Métiers Paristech Project done from 04/01/2014 to 09/12/2014 Master thesis report Asteroids deflection using state of the arts European technologies Supervisor KTH: Christer Fuglesang Supervisor Arts et Métiers: Nyiri Eric Supervisor CNES: Jérome Vila & Pasca Bultel 1 Master thesis report Asteroid deflection using state of the arts European technologies Meunier Arthur Abstract: In public opinion, protection against asteroids impact has always been on the agenda of space engineering. Actually it started from 1994 when Shoemaker Levy stroke Jupiter. This protection works in two steps: detection of threat and deflection. Some space agencies and foundations monitor the sky and set up scenario. Although the sky is nowadays well monitored and mapped, there is no global plan nowadays against this threat. This paper focuses on the deflection step, and aims at forecasting which variables are involved and their consequences on the deflection mission. In fact the result depends on several factors, like the time before hazardous moment, the accuracy of detection tools, the choice of deflection method, but the most unpredictable are human factors. This study shows a strategy and so tries to give some new response parts to the global deflection problem. Key-word: deflection, NEO, asteroid, low thrust, ion beam shepherd, gravity link. Nomenclature: o AU : Astronomic Unit o a : semi major axis (AU, m or km) o e : eccentricity o i : inclination (degree) o ω : Argument of periapsis o Ω, RAAN : right ascending node o M : mean anomaly o SC : Spacecraft o HET : Hall Effect Thruster o NEO : Near Earth Object o µ : standard gravitational parameter o ρ : density o ∆V : velocity increment (m/s) 2 Master thesis report Asteroid deflection using state of the arts European technologies Meunier Arthur Introduction: According to a majority of scientists’ opinion, dinosaurs’ extinction occurred after an asteroid impact [1].
    [Show full text]
  • Asteroid \(99942\) Apophis: New Predictions of Earth Encounters For
    A&A 544, A15 (2012) Astronomy DOI: 10.1051/0004-6361/201117981 & c ESO 2012 Astrophysics Asteroid (99942) Apophis: new predictions of Earth encounters for this potentially hazardous asteroid D. Bancelin1,F.Colas1, W. Thuillot1, D. Hestroffer1, and M. Assafin2,1, 1 IMCCE, Observatoire de Paris, UPMC, CNRS UMR8028, 77 Av. Denfert-Rochereau, 75014 Paris, France e-mail: [david.bancelin;thuillot;colas;hestro]@imcce.fr 2 Universidade Federal do Rio de Janeiro, Observatorio do Valongo, Ladeira Pedro Antonio 43, CEP 20.080 – 090 Rio De Janeiro RJ, Brazil e-mail: [email protected] Received 30 August 2011 / Accepted 13 June 2012 ABSTRACT Context. The potentially hazardous asteroid (99942) Apophis, previously designated 2004 MN4, is emblematic of the study of as- teroids that could impact the Earth in the near future. Orbit monitoring and error propagation analysis are mandatory to predict the probability of an impact and, furthermore, its possible mitigation. Several aspects for this prediction have to be investigated, in par- ticular the orbit adjustment and prediction updates when new astrometric data are available. Aims. We analyze Apophis orbit and provide impact predictions based on new observational data, including several orbit propagations. Methods. New astrometric data of Apophis have been acquired at the Pic du Midi one-meter telescope (T1m) during March 2011. Indeed, this asteroid was again visible from ground-based stations after a period of several years of unfavorable conjunction with the Sun. We present here the original astrometric data and reduction, and the new orbit obtained from the adjustment to all data available at Minor Planet Center (until March 2011).
    [Show full text]
  • Shedding Light on the Near-Earth Asteroid Apophis
    I! Shedding Light on the Near-Earth Asteroid Apophis S J. I Fl PROJECT !' PHAROS; Mission Overview The Pharos mission to asteroid Apophis provides the first major opportunity to enhance orbital state and scientific knowledge of the most threatening Earth-crossing asteroid that has ever been tracked. Pharos aims to accor4)lish concrete and feasible orbit determination and scientific objectives While achieving balance among mission cost, nsk,and schedule. Similar to its ancient Egyptian namesake, Pharos acts as a beacon shedcng light not only on the physiôal characteristics of Apophis, but also on its state as it travels through the solar system. Launch Delta II 7925H C3=21-25km2/s2 20-day window in April-May 2013 p Arrival 233-30 day cruise Relatié vel. <1 km/s Hover modes at 500mandl000m cstance through 2016 Science Objectives Spacecraft Mass Breakdown Pharos' science objectives • Dual Mode N204JN2H4 Payload 62.4 kg align with NASA Solar Bipropellant Propulsion Spacecraft Subsystems 319.4 kg System Roadmap goals, • Ultraflex 175 Advanced 381.8 kg including the identification of Solar Arrays Dry Mass hazards to Earth and Propellant 294.1 kg -understanding the origin of • Li-Ion Battery Storage the solar system's minor • State-of-the-Art AutoNav Loaded Mass . 675.9 kg. bodies. To meet these Guidance 45.4 kg NASA goals, Pharos • Fault Tolerant Propulsion, Boosted Mass 721.3kg characterizes Apophis in Communications, Power, each of the following areas: and ADCS Systems Total Margin 198.2 kg 1.Orbital State Vector Launch Capability of LV 919.5 kg 2.Composition 3.Mass Properties Project Phase Schedule 4.Surface Mapping 5.Re-Radiation Dynamics 6.Elasticity & Coherence 7.Debris Environment 8.Energy Properties Spacecraft Bus Payloads BUOI Probes Instnauents Mass Power Function Through the Ballistic Unit and MuIti-Spectr 9.6 kg 8.3W Determines Siz&.She- Operational Impactor (BUOI) Imager Tes images probes, detailed orbit determination and valuable science data can be Nea'infr&ed '15.2kg 15.1W Determinesdistrbution and obtained.
    [Show full text]