Drug Combo Reverses Left Ventricular Remodeling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Insulin Resistance on Left Ventricular Remodeling in Essential Indicates Posterior Wall Thickness
Bernard KP, et al., J Cardiol Stud Res 2021, 6: 018 DOI: 10.24966/CSR-768X/100018 HSOA Journal of Cardiology: Study & Research Cross-Sectional Study 9.8 years) had normal left ventricular geometry, concentric left Effect of Insulin Resistance on ventricular remodeling and concentric left ventricular hypertrophy respectively. In multivariable adjusted analysis 46.8% of variation in Left Ventricular Remodeling interventricular septum diameter (R² = 0.468; overall p ˂ 0.001), and 30.9% in E-wave deceleration time (R² =0.309; overall p = 0.003) in Essential Hypertensives: A were explained by insulin and HOMAIR, 30.1% of variation in left ventricular end-diastolic diameter(R² = 0.301; p= 0.013) by HOMAIR Cross Sectional Study alone and 46.3% of posterior wall thickness (R² = 0.463; p= 0.002) and 29.4% ofrelative wall thickness (R² = 0.294 ; p= 0.007) by insulin alone. Kianu Phanzu Bernard1,2*, , Nkodila Natuhoyila Aliocha3, Kintoki Conclusion: Insulin resistance and hyperinsulinemia do not have Vita Eleuthère1, Longo-Mbenza Benjamin1 and M’Buyamba the same influence on the components of Devereux’s formula. 1 Kabangu Jean-René Insulin resistance appears to act on the left ventricular end diastole 1Cardiology Unit, Department of internal Medicine, University of Kinshasa diameter, while hyperinsulinemia affects the posterior wall thickness. Hospital, Kinshasa, DR Congo Both abnormalities act on the interventricular septum and contribute to diastolic dysfunction via the E wave deceleration time. 2Centre Médical de Kinshasa (CMK), Kinshasa, DR Congo Keywords: Diastolic dysfunction; Hyperinsulinemia; Hypertension; 3School of Public Health, Department of Biostatistics, Kinshasa, DR Congo Insulin resistance; Left ventricular remodeling Background Abstract Hypertensive patients with Insulin Resistance (IR) are at increased Background: In clinical practice, left ventricular hypertrophy is cardiovascular risk compared to hypertensive patients without defined not by the left ventricular walls thickness, but by the left IR [1]. -
Nitric Oxide, the Biological Mediator of the Decade: Fact Or Fiction?
Eur Respir J 1997; 10: 699–707 Copyright ERS Journals Ltd 1997 DOI: 10.1183/09031936.97.10030699 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 SERIES 'CLINICAL PHYSIOLOGY IN RESPIRATORY INTENSIVE CARE' Edited by A. Rossi and C. Roussos Number 14 in this Series Nitric oxide, the biological mediator of the decade: fact or fiction? S. Singh, T.W. Evans Nitric oxide, the biological mediator of the decade: fact or fiction? S. Singh, T.W. Evans. Unit of Critical Care, National Heart & ERS Journals Ltd 1997. Lung Institute, Royal Brompton Hospital, ABSTRACT: Nitric oxide (NO), an atmospheric gas and free radical, is also an London, UK. important biological mediator in animals and humans. Its enzymatic synthesis by constitutive (c) and inducible (i) isoforms of NO synthase (NOS) and its reactions Correspondence: T.W. Evans with other biological molecules such as reactive oxygen species are well charac- Royal Brompton Hospital Sydney Street terized. NO modulates pulmonary and systemic vascular tone through its vasodila- London SW3 6NP tor property. It has antithrombotic functions and mediates some consequences of UK the innate and acute inflammatory responses; cytokines and bacterial toxins induce widespread expression of iNOS associated with microvascular and haemodynam- Keywords: Acute respiratory distress syn- ic changes in sepsis. drome Within the lungs, a diminution of NO production is implicated in pathological hypoxic pulmonary vasoconstriction states associated with pulmonary hypertension, such as acute respiratory distress nitric oxide syndrome: inhaled NO is a selective pulmonary vasodilator and can improve ven- nitric oxide synthase tilation-perfusion mismatch. However, it may have deleterious effects through mod- pulmonary hypertension ulating hypoxic pulmonary vasoconstriction. -
Left Ventricular Remodeling and Myocardial Work: Results from the Population-Based STAAB Cohort Study
ORIGINAL RESEARCH published: 11 June 2021 doi: 10.3389/fcvm.2021.669335 Left Ventricular Remodeling and Myocardial Work: Results From the Population-Based STAAB Cohort Study Floran Sahiti 1,2, Caroline Morbach 1,2, Vladimir Cejka 1, Judith Albert 1,2, Felizitas A. Eichner 1,3, Götz Gelbrich 1,3,4, Peter U. Heuschmann 1,3,4† and Stefan Störk 1,2*† on behalf of the STAAB Consortium 1 Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany, 2 Department of Medicine I, University Hospital Würzburg, Würzburg, Germany, 3 Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany, 4 Clinical Trial Center, University Hospital Würzburg, Würzburg, Germany Edited by: Matteo Cameli, Introduction: Left ventricular (LV) dilatation and LV hypertrophy are acknowledged University of Siena, Italy precursors of myocardial dysfunction and ultimately of heart failure, but the implications of Reviewed by: Leonid Goubergrits, abnormal LV geometry on myocardial function are not well-understood. Non-invasive LV Charité – Universitätsmedizin myocardial work (MyW) assessment based on echocardiography-derived pressure-strain Berlin, Germany Sabina Gallina, loops offers the opportunity to study detailed myocardial function in larger cohorts. We University of Studies G. d’Annunzio aimed to assess the relationship of LV geometry with MyW indices in general population Chieti and Pescara, Italy free from heart failure. *Correspondence: Stefan Störk Methods and Results: We report cross-sectional baseline data from the [email protected] Characteristics and Course of Heart Failure Stages A-B and Determinants of Progression †These authors have contributed (STAAB) cohort study investigating a representative sample of the general population equally to this work of Würzburg, Germany, aged 30–79 years. -
Medicare National Coverage Determinations Manual, Part 1
Medicare National Coverage Determinations Manual Chapter 1, Part 1 (Sections 10 – 80.12) Coverage Determinations Table of Contents (Rev. 10838, 06-08-21) Transmittals for Chapter 1, Part 1 Foreword - Purpose for National Coverage Determinations (NCD) Manual 10 - Anesthesia and Pain Management 10.1 - Use of Visual Tests Prior to and General Anesthesia During Cataract Surgery 10.2 - Transcutaneous Electrical Nerve Stimulation (TENS) for Acute Post- Operative Pain 10.3 - Inpatient Hospital Pain Rehabilitation Programs 10.4 - Outpatient Hospital Pain Rehabilitation Programs 10.5 - Autogenous Epidural Blood Graft 10.6 - Anesthesia in Cardiac Pacemaker Surgery 20 - Cardiovascular System 20.1 - Vertebral Artery Surgery 20.2 - Extracranial - Intracranial (EC-IC) Arterial Bypass Surgery 20.3 - Thoracic Duct Drainage (TDD) in Renal Transplants 20.4 – Implantable Cardioverter Defibrillators (ICDs) 20.5 - Extracorporeal Immunoadsorption (ECI) Using Protein A Columns 20.6 - Transmyocardial Revascularization (TMR) 20.7 - Percutaneous Transluminal Angioplasty (PTA) (Various Effective Dates Below) 20.8 - Cardiac Pacemakers (Various Effective Dates Below) 20.8.1 - Cardiac Pacemaker Evaluation Services 20.8.1.1 - Transtelephonic Monitoring of Cardiac Pacemakers 20.8.2 - Self-Contained Pacemaker Monitors 20.8.3 – Single Chamber and Dual Chamber Permanent Cardiac Pacemakers 20.8.4 Leadless Pacemakers 20.9 - Artificial Hearts And Related Devices – (Various Effective Dates Below) 20.9.1 - Ventricular Assist Devices (Various Effective Dates Below) 20.10 - Cardiac -
Left Ventricular Remodeling in Hypertrophic Cardiomyopathy: an Overview of Current Knowledge
Journal of Clinical Medicine Review Left Ventricular Remodeling in Hypertrophic Cardiomyopathy: An Overview of Current Knowledge Beatrice Musumeci, Giacomo Tini , Domitilla Russo, Matteo Sclafani, Francesco Cava, Alessandro Tropea, Carmen Adduci, Francesca Palano, Pietro Francia and Camillo Autore * Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy; [email protected] (B.M.); [email protected] (G.T.); [email protected] (D.R.); [email protected] (M.S.); [email protected] (F.C.); [email protected] (A.T.); [email protected] (C.A.); [email protected] (F.P.); [email protected] (P.F.) * Correspondence: [email protected]; Tel.: +39-06-3377-5577 Abstract: While most patients with hypertrophic cardiomyopathy (HCM) show a relatively stable morphologic and clinical phenotype, in some others, progressive changes in the left ventricular (LV) wall thickness, cavity size, and function, defined, overall, as “LV remodeling”, may occur. The interplay of multiple pathophysiologic mechanisms, from genetic background to myocardial ischemia and fibrosis, is implicated in this process. Different patterns of LV remodeling have been recognized and are associated with a specific impact on the clinical course and management of the disease. These findings underline the need for and the importance of serial multimodal clinical and instrumental evaluations to identify and further characterize the LV remodeling phenomenon. A more complete definition of the stages of the disease may present a chance to improve the management of Citation: Musumeci, B.; Tini, G.; Russo, D.; Sclafani, M.; Cava, F.; HCM patients. Tropea, A.; Adduci, C.; Palano, F.; Francia, P.; Autore, C. -
Caring for Patients Receiving Vasopressors and Inotropes in the ICU
Caring for patients receiving vasopressors and inotropes in the ICU Vigilant monitoring will maximize outcomes. By Sonya M. Grigsby, DNP, APRN, AGACNP-BC CNE 1.5 contact hours LEARNING O BJECTIVES 1. Identify receptors related to cardiovascular physiology. 2. Differentiate the effects of vasopressors and inotropes. 3. Discuss nursing care of patients receiving vasopressors and inotropes in the ICU. The authors and planners of this CNE activity have disclosed no relevant fi- nancial relationships with any commercial companies pertaining to this ac- tivity. See the last page of the article to learn how to earn CNE credit. Expiration: 2/1/24 SHOCK requires early recognition and quick peutic effect) these medications using the action to prevent organ failure. (See Types of lowest possible dose to avoid adverse effects. shock.) After initial I.V. fluid resuscitation, pharmacologic agents—such as vasopressors Cardiovascular physiology and inotropes—are used in critical care set- Shock disrupts cardiovascular physiology, par- tings as supportive therapies to improve my- ticularly blood pressure, so understanding ocardial contractility, heart rate, and vascular normal function is important. Short-term resistance in patients with low cardiac output. blood pressure (BP) regulation is controlled When critical care nurses understand shock by the autonomic nervous system (ANS) via pathophysiology and hemodynamic monitor- baroreceptors in the aortic arch and carotid si- ing, they can effectively and safely titrate (in- nus. The ANS regulates the heart, secretory crease or decrease an infusion rate for thera- glands, and smooth muscles via activation of MyAmericanNurse.com February 2021 American Nurse Journal 5 Types of shock Shock is a decline in tissue perfusion and oxygen delivery, leading to cellular dysfunction and death. -
Cardiac Surgery a Guide for Patients and Their Families Welcome to the Johns Hopkins Hospital
HEART AND VASCULAR INSTITUTE Cardiac Surgery A guide for patients and their families Welcome to The Johns Hopkins Hospital We are providing this book to you and your family to guide you through your surgical experience at the Johns Hopkins Heart and Vascular Institute. The physicians, nurses and other health care team members strive to provide you with the safest and best medical care possible. Please do not hesitate to ask your surgeon, nurse or other health care team member any questions before, during and after your operation. The booklet consists of two major sections. The first section informs you about the surgery and preparing for the hospital stay. The second section prepares you for the recovery period after surgery in the hospital and at home. TABLE OF CONTENTS Welcome to Johns Hopkins Cardiac Surgery 1 The Function of the Heart 2 Who’s Taking Care of You 3 Heart Surgery 4 Preparation for Surgery 5 Preoperative Testing and Surgical Consultation 7 The Morning of Surgery 9 After Surgery 10 Going Home After Cardiac Surgery 19 How We Help with Appointments and 24 Other Arrangements for Out-of-Town Patients Appendix 25 Looking back, it was the choice of my life. It’s not easy to put your heart in someone else’s hands. But for me, the choice was clear: I trusted it to Hopkins. My Heart. My Choice Patient Lou Grasmick, Founder & CEO, Louis J. Grasmick Lumber Company, Inc. Welcome to Johns Hopkins Cardiac Surgery The Johns Hopkins Hospital has a distinguished history of advancements in the treat- ment of cardiovascular diseases in adults and children, beginning with the Blalock-Taussig shunt in 1944. -
Inorganic Nitrate As a Treatment for Acute Heart Failure
Falls et al. J Transl Med (2017) 15:172 DOI 10.1186/s12967-017-1271-z Journal of Translational Medicine PROTOCOL Open Access Inorganic nitrate as a treatment for acute heart failure: a protocol for a single center, randomized, double‑blind, placebo‑controlled pilot and feasibility study Roman Falls1,2, Michael Seman1,2, Sabine Braat2,4, Joshua Sortino1, Jason D. Allen1,3 and Christopher J. Neil1,2,3,5* Abstract Background: Acute heart failure (AHF) is a frequent reason for hospitalization worldwide and efective treatment options are limited. It is known that AHF is a condition characterized by impaired vasorelaxation, together with reduced nitric oxide (NO) bioavailability, an endogenous vasodilatory compound. Supplementation of inorganic sodium nitrate (NaNO3) is an indirect dietary source of NO, through bioconversion. It is proposed that oral sodium nitrate will favorably afect levels of circulating NO precursors (nitrate and nitrite) in AHF patients, resulting in reduced systemic vascular resistance, without signifcant hypotension. Methods and outcomes: We propose a single center, randomized, double-blind, placebo-controlled pilot trial, evaluating the feasibility of sodium nitrate as a treatment for AHF. The primary hypothesis that sodium nitrate treat- ment will result in increased systemic levels of nitric oxide pre-cursors (nitrate and nitrite) in plasma, in parallel with improved vasorelaxation, as assessed by non-invasively derived systemic vascular resistance index. Additional sur- rogate measures relevant to the known pathophysiology of AHF will be obtained in order to assess clinical efect on dyspnea and renal function. Discussion: The results of this study will provide evidence of the feasibility of this novel approach and will be of inter- est to the heart failure community. -
Insights from the Pulmonary Artery Banding Model
International Journal of Environmental Research and Public Health Review Novel Therapeutic Targets for the Treatment of Right Ventricular Remodeling: Insights from the Pulmonary Artery Banding Model Argen Mamazhakypov 1 , Natascha Sommer 1, Birgit Assmus 1,2, Khodr Tello 1, Ralph Theo Schermuly 1, Djuro Kosanovic 1,3, Akpay Sh. Sarybaev 4, Norbert Weissmann 1,* and Oleg Pak 1 1 Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, 35392 Giessen, Germany; [email protected] (A.M.); [email protected] (N.S.); [email protected] (B.A.); [email protected] (K.T.); [email protected] (R.T.S.); [email protected] (D.K.); [email protected] (O.P.) 2 Department of Cardiology, Justus-Liebig University, 35390 Giessen, Germany 3 Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia 4 Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan; [email protected] * Correspondence: [email protected] Citation: Mamazhakypov, A.; Abstract: Right ventricular (RV) function is the main determinant of the outcome of patients with Sommer, N.; Assmus, B.; Tello, K.; pulmonary hypertension (PH). RV dysfunction develops gradually and worsens progressively over Schermuly, R.T.; Kosanovic, D.; the course of PH, resulting in RV failure and premature death. Currently, approved therapies for the Sarybaev, A.S.; Weissmann, N.; treatment of left ventricular failure are not established for the RV. -
What Inotrope and Why?
What Inotrope and Why? a,b, a,b Nilkant Phad, MD, FRACP *, Koert de Waal, PhD KEYWORDS Hypotension Cardiovascular compromise Inotrope Newborn KEY POINTS There are significant gaps in the knowledge about diagnostic thresholds and choices of therapeutic interventions that can improve morbidity and mortality in neonates with car- diovascular compromise. Current use of inotropes in neonates is largely based on the pathophysiology of cardiovas- cular impairment and anticipated actions of inotropes because of limited outcome data from randomized controlled trials. Research studies of alternative study design unraveling the linkage of cardiovascular impairment and use of inotropes with important clinical outcomes are needed for future progress. INTRODUCTION The primary function of the cardiovascular system is to meet oxygen and nutritional demands of organs under various physiologic and pathologic conditions.1 To achieve this, the heart contracts against vascular resistance and drives blood to the lungs for oxygenation and into the systemic circulation for organ perfusion. The force of cardiac contraction, ventricular end-diastolic blood volume, and perfusion pressure are the main determinants of cardiovascular performance through an interplay between car- diac output (CO), vascular resistance, and neuroendocrine mechanisms.2 In neonates, the physiology of blood circulation can get disrupted in many clinical conditions, resulting in impaired organ perfusion and hypoxia. Persistent circulatory compromise can lead to derangement of metabolism, -
Inotropes, Vasopressors, and Chronotropes OH MY! a Review For
Inotropes, Vasopressors, and Chronotropes OH MY! A Review for the Young and the Seasoned MATT RUBERTUS, PHARMD CLINICAL PHARMACY SPECIALIST – CARDIOTHORACIC SURGERY/CRITICAL CARE EMORY UNIVERSITY HOSPITAL ATLANTA, GA Disclosure I have nothing to disclose pertaining to this presentation http://oz.wikia.com Objectives Review the mechanism of action for vasopressors and inotropes Recognize common side effects of different vasopressors and inotropes Review data for the use of alternative agents to treat vasoplegia Describe where angiotensin II fits into therapy Clinical Scenarios Shock Cardiogenic Vasodilatory Sepsis Cardiac Surgery Valve Disease Decompensated Heart Failure http://thefilmspectrum.com Hypotension Hypotension Baroreceptor Decreased Renal Activation Perfusion Increased RASS Activation Sympathetic Activity Cardiac Stimulation Vasoconstriction Volume Expansion Increased HR and Increased Preload Contractility Increased Cardiac Increased Systemic Increased Cardiac Output Vascular Resistance Output Increased Blood Pressure Hemodynamics The ultimate goal of cardiac function is perfusion Must deliver adequate oxygen to meet metabolic demand of end organs Oxygen delivery is affected by multiple factors Hemoglobin Oxygen saturation Cardiac output Cardiac Output (CO) = Heart Rate (HR) x Stroke Volume (SV) Hemodynamics Stroke Heart Rate CO = X Volume Rate Rhythm Preload Contractility Afterload CVP MAP Vasopressors http://thefilmspectrum.com Alpha Receptors Alpha1 Located in vascular smooth muscle Cause vasoconstriction -
Multimodality Imaging of Inflammation and Ventricular Remodeling in Pressure Overload Heart Failure
Journal of Nuclear Medicine, published on October 25, 2019 as doi:10.2967/jnumed.119.232488 Multimodality Imaging of Inflammation and Ventricular Remodeling in Pressure Overload Heart Failure Aylina Glasenapp,1,2 Katja Derlin,2 Yong Wang,3 Marion Bankstahl,4 Martin Meier,4 Kai C Wollert,3 Frank M Bengel,1 James T Thackeray1 Departments of 1Nuclear Medicine, 2Radiology, and 3Cardiology and Angiology; 4Central Laboratory Animal Facility and Institute for Laboratory Animal Science Hannover Medical School, Hannover, Germany Short title: FDG imaging of inflammation after TAC Word Count: 4487 First Author Aylina Glasenapp, Department of Radiology, Hannover Medical School, Carl Neuberg Str 1, 30625 Hannover, Germany Corresponding Author James T Thackeray, PhD Department of Nuclear Medicine Hannover Medical School Carl Neuberg Str 1 30625 Hannover Germany +49 511/532.3358 [email protected] Glasenapp et al. FDG imaging of inflammation after TAC Inflammation contributes to ventricular remodeling after myocardial ischemia, but its role in non-ischemic heart failure is poorly understood. Local tissue inflammation is difficult to assess serially during pathogenesis. While 18F-fluorodeoxyglucose (FDG) accumulates in inflammatory leukocytes which may identify inflammation in the myocardial microenvironment, it remains unclear whether this imaging technique can isolate diffuse leukocytes in pressure overload heart failure. We aimed to evaluate the capability to serially image inflammation with 18F-FDG in the early stages of pressure overload-induced heart failure, and to compare the timecourse to functional impairment assessed by cardiac magnetic resonance imaging (MRI). Methods. C57Bl6/N mice underwent transverse aortic constriction (TAC, n=22) or sham surgery (n=12), or coronary ligation as an inflammation- positive control (n=5).