Newsletter Issn 1834-4259 No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Periwinkle Fishery of Tasmania: Supporting Management and a Profitable Industry
Periwinkle Fishery of Tasmania: Supporting Management and a Profitable Industry J.P. Keane, J.M. Lyle, C. Mundy, K. Hartmann August 2014 FRDC Project No 2011/024 © 2014 Fisheries Research and Development Corporation. All rights reserved. ISBN 978-1-86295-757-2 Periwinkle Fishery of Tasmania: Supporting Management and a Profitable Industry FRDC Project No 2011/024 June 2014 Ownership of Intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Fisheries Research and Development Corporation the Institute for Marine and Antarctic Studies. This publication (and any information sourced from it) should be attributed to Keane, J.P., Lyle, J., Mundy, C. and Hartmann, K. Institute for Marine and Antarctic Studies, 2014, Periwinkle Fishery of Tasmania: Supporting Management and a Profitable Industry, Hobart, August. CC BY 3.0 Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logods and the Commonwealth Coat of Arms. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from creativecommons.org/licenses/by/3.0/au/legalcode. Inquiries regarding the licence and any use of this document should be sent to: [email protected]. Disclaimerd The authors do not warrant that the information in this document is free from errors or omissions. -
Peloritana (Cantraine, 1835) from the Mediterranean Sea
BASTERIA, 56: S3-90, 1992 On Cantrainea peloritana (Cantraine, 1835) from the Mediterranean Sea (Gastropoda, Prosobranchia: Colloniidae) Carlo Smriglio Via di Valle Aurelia 134, 1-00167 Rome, Italy Paolo Mariottini Dipartimento di Biologia, II Universita di Roma, 1-00173 Rome, Italy & Flavia Gravina Dipartimento di Biologia Animale e dell'Uomo, I Universita di Roma, 1-00185 Rome, Italy from the Mediterranean Sea is here the Cantrainea peloritana (Cantraine, 1835) reported upon; authors give additional data about its morphology, distribution and ecology. Key words: Gastropoda, Prosobranchia, Colloniidae, Cantrainea, morphology, distribution, Mediterranean Sea, Italy. INTRODUCTION In the Mediterranean Sea the genus Cantrainea Jeffreys, 1883, is represented only by Cantraineapeloritana (Cantraine, 1835), which was definitely confirmed to be a living species about a decade ago by Babbi (1982). The author in his interesting report com- ments on the taxonomic position of C. peloritana, giving data on some of its synonyms and reasonably guessing that this species could belong to the deep-sea coral bio- coenosis (Peres & Picard, 1964) present in the MediterraneanSea. According to Babbi (1982), C. peloritana, based on conchological characters only, shows two distinct morphs which in turn represent the two nominal species Turbo peloritanus (typical form) and Turbo carinatus (carinate form) originally created by Cantraine (1835) for fossil specimens. These two shell forms are both present in the Atlantic Ocean; on the con- trary, only the carinate form occurs in the Mediterranean Sea. Living specimens of C. peloritana from the Mediterranean Sea have been reported rarely, the first time by Jeffreys (1882), who published a small note about some molluscs dredged between Sar- dinia and Naples at a depth of 307 m, during the scientific expedition carried out by the V. -
WMSDB - Worldwide Mollusc Species Data Base
WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F. -
Mollusks and a Crustacean from Early Oligocene Methane-Seep Deposits in the Talara Basin, Northern Peru
Mollusks and a crustacean from early Oligocene methane-seep deposits in the Talara Basin, northern Peru STEFFEN KIEL, FRIDA HYBERTSEN, MATÚŠ HYŽNÝ, and ADIËL A. KLOMPMAKER Kiel, S., Hybertsen, F., Hyžný, M., and Klompmaker, A.A. 2020. Mollusks and a crustacean from early Oligocene methane- seep deposits in the Talara Basin, northern Peru. Acta Palaeontologica Polonica 65 (1): 109–138. A total of 25 species of mollusks and crustaceans are reported from Oligocene seep deposits in the Talara Basin in north- ern Peru. Among these, 12 are identified to the species-level, including one new genus, six new species, and three new combinations. Pseudophopsis is introduced for medium-sized, elongate-oval kalenterid bivalves with a strong hinge plate and largely reduced hinge teeth, rough surface sculpture and lacking a pallial sinus. The new species include two bivalves, three gastropods, and one decapod crustacean: the protobranch bivalve Neilo altamirano and the vesicomyid bivalve Pleurophopsis talarensis; among the gastropods, the pyropeltid Pyropelta seca, the provannid Provanna pelada, and the hokkaidoconchid Ascheria salina; the new crustacean is the callianassid Eucalliax capsulasetaea. New combina- tions include the bivalves Conchocele tessaria, Lucinoma zapotalensis, and Pseudophopsis peruviana. Two species are shared with late Eocene to Oligocene seep faunas in Washington state, USA: Provanna antiqua and Colus sekiuensis; the Talara Basin fauna shares only genera, but no species with Oligocene seep fauna in other regions. Further noteworthy aspects of the molluscan fauna include the remarkable diversity of four limpet species, the oldest record of the cocculinid Coccopigya, and the youngest record of the largely seep-restricted genus Ascheria. -
2219573-REP-Marine Assessment Report AR
Appendix L – Marine Assessment GHD | Report for Hunter Water Corporation - Belmont Drought Response Desalination Plant, 2219573 Hunter Water Corporation Belmont Drought Response Desalination Plant Marine Environment Assessment Amendment Report July 2020 Table of contents 1. Introduction..................................................................................................................................... 1 1.1 Background .......................................................................................................................... 1 1.2 Purpose and structure of this report .................................................................................... 2 2. Project changes ............................................................................................................................. 4 2.1 Overview .............................................................................................................................. 4 2.2 Key features of the amended Project .................................................................................. 4 3. Methodology ................................................................................................................................... 7 3.1 Review of relevant legislation .............................................................................................. 7 3.2 Review of databases and searches ..................................................................................... 7 3.3 Review of previous marine ecology reports ........................................................................ -
Portadas 22 (1)
© Sociedad Española de Malacología Iberus , 22 (1): 43-75, 2004 Gastropods collected along the continental slope of the Colombian Caribbean during the INVEMAR-Macrofauna campaigns (1998-2001) Gasterópodos colectados en el talud continental del Caribe colom - biano durante las campañas INVEMAR-Macrofauna (1998-2001) Adriana GRACIA C. , Néstor E. ARDILA and Juan Manuel DÍAZ* Recibido el 26-III-2003. Aceptado el 5-VII-2003 ABSTRACT Among the biological material collected during the 1998-2001 “INVEMAR-Macrofauna” campaigns aboard the R/V Ancón along the upper zone of the continental slope of the Colombian Caribbean, at depths ranging from 200 to 520 m, a total of 104 gastropod species were obtained. Besides 18 not yet identified species, but including one recently described new species ( Armina juliana Ardila and Díaz, 2002), 48 species were not pre - viously known from Colombia, 18 of which were also unknown from the Caribbean Sea. Of the 36 families represented, Turridae was by far the richest in species (26 species). An annotated list of the taxa recorded is provided, as well as illustrations of those recorded for the first time in the area. RESUMEN Entre el material biológico colectado en 1998-2001 durante las campañas “INVEMAR- Macrofauna” a bordo del B/I Ancón , a profundidades entre 200 y 520 m, se obtuvo un total de 104 especies de gasterópodos. Aparte de 18 especies cuya identificación no ha sido completada, pero incluyendo una especie recientemente descrita ( Armina juliana Ardila y Díaz, 2002), 48 especies no habían sido registradas antes en aguas colombia - nas y 18 de ellas tampoco en el mar Caribe. -
Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of Central Chile
Journal of South American Earth Sciences 17 (2004) 73–88 www.elsevier.com/locate/jsames Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of central Chile Sven N. Nielsena,*, Daniel Frassinettib, Klaus Bandela aGeologisch-Pala¨ontologisches Institut und Museum, Universita¨t Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany bMuseo Nacional de Historia Natural, Casilla 787, Santiago, Chile Abstract Species of Vetigastropoda (Fissurellidae, Turbinidae, Trochidae) and one species of Neritimorpha (Neritidae) from the Navidad area, south of Valparaı´so, and the Arauco Peninsula, south of Concepcio´n, are described. Among these, the Fissurellidae comprise Diodora fragilis n. sp., Diodora pupuyana n. sp., two additional unnamed species of Diodora, and a species resembling Fissurellidea. Turbinidae are represented by Cantrainea sp., and Trochidae include Tegula (Chlorostoma) austropacifica n. sp., Tegula (Chlorostoma) chilena n. sp., Tegula (Chlorostoma) matanzensis n. sp., Tegula (Agathistoma) antiqua n. sp., Bathybembix mcleani n. sp., Gibbula poeppigii [Philippi, 1887] n. comb., Diloma miocenica n. sp., Fagnastesia venefica [Philippi, 1887] n. gen. n. comb., Fagnastesia matanzana n. gen. n. sp., Calliostoma mapucherum n. sp., Calliostoma kleppi n. sp., Calliostoma covacevichi n. sp., Astele laevis [Sowerby, 1846] n. comb., and Monilea riorapelensis n. sp. The Neritidae are represented by Nerita (Heminerita) chilensis [Philippi, 1887]. The new genus Fagnastesia is introduced to represent low-spired trochoideans with a sculpture of nodes below the suture, angulated whorls, and a wide umbilicus. This Miocene Chilean fauna includes genera that have lived at the coast and in shallow, relatively warm water or deeper, much cooler water. This composition therefore suggests that many of the Miocene formations along the central Chilean coast consist of displaced sediments. -
Discovery of Chemosynthesis-Based Association on the Cretaceous Basal Leatherback Sea Turtle from Japan
Editors' choice Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan ROBERT G. JENKINS, ANDRZEJ KAIM, KEI SATO, KAZUHIRO MORIYA, YOSHINORI HIKIDA, and REN HIRAYAMA Jenkins, R.G., Kaim, A., Sato, K., Moriya, K., Hikida, Y., and Hirayama, R. 2017. Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan. Acta Palaeontologica Polonica 62 (4): 683–690. We report a Late Cretaceous chemosynthetic community fueled by decomposing basal leatherback sea turtle on the ocean floor in the western Pacific. The fossil association representing this community has been recovered from the matrix of a concretion containing a single carapace of Mesodermochelys sp. from Late Cretaceous outer shelf to upper slope deposit of northern Hokkaido, Japan. The carapace displays boreholes most likely performed by boring bivalves, and is associated with molluscan shells, mainly Provanna cf. nakagawensis and Thyasira tanabei. Since this association is similar to fauna already known from Late Cretaceous hydrocarbon seeps, sunken wood, and plesiosaur-falls in Hokkaido, it is suggested that all types of chemosynthesis-based communities in the Late Cretaceous of western Pacific may have belonged to the same regional pool of animals and were not yet fully differentiated into three independent types of com- munities as it is known today. This finding also indicates that the sulfophilic stage of the vertebrate-fall communities was supported not only by plesiosaur carcasses, which were previously reported, but also by sea turtle carcasses. It highlights the possibility of surviving vertebrate-fall communities through the end-Cretaceous mass extinction event on carcasses of sea turtles which are the only large marine vertebrates surviving this event. -
Module 2: Rocky Shores
Module 2: Rocky Shores NSW MARINE PARKS EDUCATION KIT PORT STEPHENS-GREAT LAKES MARINE PARK 23 TEACHER FACT SHEET NSW Rocky Shores Rocky shores are unique habitats full of a variety of animals and plants. Due to the variation in rock composition on NSW rocky shores, there are five major habitat types – pools, cobbles, boulders, crevices and platforms – with each providing a living space for different types of plants and animals. Rock pools retain water at low tide and often contain a high diversity of plants and animals. Cobbled areas often retain moisture when the tide is out, and provide habitat for smaller animals. Boulder fields provide shelter from pounding waves and shelter from the sun and wind. Crevices provide many sheltering and hiding places for a variety of animals. Platforms are often the most exposed habitats, and their most common inhabitants are lichens and hard-shelled animals. A harsh life Life can be challenging for the creatures that live on the rocky shore, as organisms must cope with pounding waves, the harsh sun, fluctuating tides, wind, salt and rapid temperature changes. Rocky shore plants and animals have developed many adaptations to cope with these fluctuations. Animals that live in the highest part of the rocky shore are out of the water for the longest time, and must deal with being dried out by the sun, wind and salt, but are able to survive by using a combination of adaptations. Being a light colour helps to reflect the sun’s rays; grouping together is a strategy used to retain what little water is left after the last high tide; and the trap door (or operculum) to the entrance of the shell helps to retain water inside the shell between high tides, as well as safeguard against some predators. -
Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers .................................................................................. -
University of Southampton Research Repository Eprints Soton
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Science Volume 1 of 1 Life-history biology and biogeography of invertebrates in deep-sea chemosynthetic environments by Verity Nye Thesis for the degree of Doctor of Philosophy December 2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Science Thesis for the degree of Doctor of Philosophy LIFE-HISTORY BIOLOGY AND BIOGEOGRAPHY OF INVERTEBRATES IN DEEP-SEA CHEMOSYNTHETIC ENVIRONMENTS Verity Nye Globally-distributed, insular and ephemeral deep-sea hydrothermal vents with their endemic faunas provide ‘natural laboratories’ for studying the processes that shape global patterns of marine life. The continuing discovery of hydrothermal vents and their faunal assemblages has yielded hundreds of new species and revealed several biogeographic provinces, distinguished by differences in the taxonomic composition of their assemblages. -
From Guadeloupe
VlLVENS Cantraineayoyottei n.sp. Novapex 2 (4): 153-156, 20 déc. 2001 Description of a new species of Cantrainea (Gastropoda: Turbinidae: Colloniinae) from Guadeloupe Claude VlLVENS Rue de Hermalle, 1 13 - B-4680 Oupeye, Belgium [email protected] KEYWORDS. Gastropoda, Turbinidae, Guadeloupe, Colloniinae, Cantrainea n. sp. ABSTRACT. Cantrainea yoyottei n.sp. from Guadeloupe is described and compared with similar turbinid species belonging to genus Cantrainea and Homalopoma, subfamily Colloniinae. RESUME. Cantrainea yoyottei n.sp. de Guadeloupe est décrit et comparé avec des espèces analogues de Turbinidae appartenant aux genres Cantrainea et Homalopoma, sous-famille des Colloniinae. INTRODUCTION Genus: Cantrainea Jeffreys, 1883 Type species: Turbo peloritanus Cantraine, 1835 (by A few month ago, Dominique Lamy, a well known monotypy) - Plio-Pleistocene fossil (Sicily) and shell collector from the French West Indies, entrusted Récent (Mediterranean Sea and Gulf of Biscay). me with turbinid-shells from deep water off Guadeloupe. Thèse shells obviously belongs to a Cantrainea yoyottei n.sp. group of Turbinidae classified in Homalopoma Figs 1-4 Carpenter, 1 864 genus and related gênera (Collonista Iredale. 1918; Bothropoma Thiele, 1921; Cantrainea Type material Jeffreys, 1 883 and so on). This group of species, known as Homalopomatinae by several authors Guadeloupe, off Pigeon Is., in 550 m, holotype (Keen in Knight et al., 1960; Me Lean in Keen, 1971; MNHN, 17.6x20.4 mm (dd); 1 paratype IRSNB, in Boss, 1982), is now included in Colloniinae 500 m, 18.3x22.0 mm (dd); 1 paratype collection D. Cossmann, 1916 (Hickman & Me Lean, 1990). This Lamy*, in 600 m, 20x23 mm (dd), subfamily has a Worldwide distribution, from intertidal to bathyal depths.