Well Construction, Lithology, and Geophysical Logs For

Total Page:16

File Type:pdf, Size:1020Kb

Well Construction, Lithology, and Geophysical Logs For WELL CONSTRUCTION, LITHOLOGY, AND GEOPHYSICAL LOGS FOR BOREHOLES IN BEAR CREEK VALLEY NEAR OAK RIDGE, TENNESSEE by Zelda Chapman Bailey and Dorothea Barrows Withington U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 88-4068 Prepared in cooperation with the DEPARTMENT OF ENERGY Nashville, Tennessee 1988 DEPARTMENT OI THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: Copies of mis report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section A-413 Federal Building Federal Center, Bldg. 810 U.S. Courthouse Box 25425 Nashville, Tennessee 37203 Denver, Colorado 80225 CONTENTS Abstract 1 Introduction 1 Geologic setting 3 Acknowledgments 3 Well construction 3 Well locations and general lithology 7 Lithology 7 Boreholes at the base of Chestnut Ridge 13 Boreholes along Pine Ridge 14 Geophysical logs 14 Boreholes at the base of Chestnut Ridge 16 Boreholes along Pine Ridge 19 Summary 20 References cited 21 PLATES (in pocket) 1. Diagrams showing comparison of zones delineated from lithologic samples and from geophysical logs 2-7. Diagrams showing well construction, combined zones, and geophysical logs for well: 2. GW-230 at site 2UT 3. GW-232 at site 2E 4. GW-239 at site 2W 5. GW-214atsite3S 6. GW-208 at site 4E 7. GW-211atsite4W ILLUSTRATIONS 1. Map showing study area and drilling-site locations 2 2. Map showing bedrock geology of study area 4 3. Generalized geologic section through Bear Creek Valley 5 4-8. Maps showing well locations and geology at sites: 4. IN and IS 8 5. 3N and 3S 9 6. 4E and 2W 10 7. 2Eand2UT 11 8. 4W 12 9. Photograph showing examples of structure observed on acoustic-televiewer logs 17 TABLES 1. Construction and locations of wells and test holes 6 2. Geophysical logs made in boreholes in Bear Creek Valley 15 FACTORS FOR CONVERTING INCH-POUND UNITS TO THE INTERNATIONAL SYSTEM OF UNITS <SD Multiply by To obtain inch (in.) 25.4 millimeter (mm) foot (ft) 0.3048 meter (m) gallon per minute (gal/min) 3.785 liter per minute (L/min) To convert degree Fahrenheit (°F) to degree Celsius (°C) (0.556) ("F -32 ) = °C Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) a geodetic datum derived from a general ad­ justment of the first-order level nets of both the United States and Canada, formerly called "Mean Sea Level of 1929." The use of trade, product, industry, or firm names in this report is for iden­ tification or location purposes only, and does not constitute endorsement of products by the U.S. Geological Survey, nor impute responsibility for any present or potential effects on the natural resources. IV WELL CONSTRUCTION, LITHOLOGY, AND GEOPHYSICAL LOGS FOR BOREHOLES IN BEAR CREEK VALLEY NEAR OAK RIDGE, TENNESSEE by Zelda Chapman Bailey and Dorothea Barrows Withington ABSTRACT INTRODUCTION Twenty-four wells were constructed at nine The U.S. Geological Survey, in coopera- sites in Bear Creek Valley to provide geologic tion with the U.S. Department of Energy and hydrologic information. Lithologic samples (DOE), is conducting a hydrogeologic study of and suites of geophysical logs were obtained Bear Creek Valley in the Oak Ridge Reserva- from the deepest boreholes at six of the sites, tion, Tennessee. The purpose of the study is to Two of these boreholes at the base of Chestnut describe the ground-water flow system and Ridge were completed in the Maynardville determine the potential extent of contaminant Limestone and two were completed in the migration. Observation wells were drilled at Nolichucky Shale. Two boreholes along Pine nine sites (fig. 1) around the perimeter of the val- Ridge were completed in the Rome Formation, ley to provide information on lithology, geologic structure, and hydrologic boundaries of the Zones of similar lithology within a ground-water flow system. Wells at two of the borehole were delineated from rock cuttings and sites were drilled by contractors to DOE; the refined by examination of geophysical logs. The remaining wells were drilled by the Geological contact between the Maynardville Limestone Survey and the U.S. Army Corps of Engineers, and Nolichucky Shale was identified in two of the Mobile District. Geophysical logs were obtained boreholes. Fractures and cavities were readily in six of the boreholes. Drilling began in Octo- identifiable on the acoustic-televiewer and ber 1985 and drilling and logging were com- caliper logs. Distinct water-bearing intervals pleted in May 1986. were also identified from the temperature, fluid resistance, and resistivity logs. Depths at which the drilling encountered a thrust fault were iden- The purpose of this report is to provide tifed in two boreholes in the Rome Formation information on well locations and construction, from both rock cuttings and from geophysical and on interpretations made from lithologic logs. samples and geophysical logs. OAK RIDGE OAK RlD | UNIVERSITY OF .IC« O-IM BOTTR/p ,-p-<^ USfiS-4F USGS-3N \ I * h Y - -^/ 3X TENNESSEE STUDY PINE RIDGE USGS-4W /If FORESTRY Y 2L:« .... T , | 1 EXPERIMENT BEAR CREEK [CLINCH RIVER \:^: f-^ftiS:"aSlv-^' . \ USGS-2 1 STATION Bear gi 0USGS- 1S USGS.2W£i)r- JJ-USGS-2UT USGS-3S CHESTNUT \' RIDGE *.- 1 J(?0 fTENNFSSFF VALLEY S °°' AUTHORITY WATTSJ BAH HESEHVO1R 1 k^ S RESERVATION I , :,.,,,.,,.:^ .,: . ... 'Stail.^S^,,,..:,.,:.:,,, ,,.$:, EXPLANATION Study area A A' Line of geologic section Drilling site and designation USGS-1N 3 MILES TENNESSEE Figure 1. Study area and drilling-site locations. E 60,000 E 70,000 E 10.000 E 20,000 E 30,000 E 40,000 N 30,000 Geology modified from and A.B. Hoos and Z.C. Bailey, 1986, and W.M. McMaster 1963 EXPLANATION §0 Copper Ridge Dolomite Maynardville Limestone 3 MILES Nolichucky Shale DC I Maryville Limestone CQ Rogersville Shale and (4)<OCzo o Rutledge Limestone o (5)° Pumpkin Valley Shale Rome Formation Geology undifferentiated Approximate geologic contact Thrust fault Drilling site Coordinates relate to Tennessee Valley Authority S-16A grid system June 1974 Figure 2. Bedrock geology of study area. Geologic Setting vision of drilling operations was provided by David A. Webster, and assistance in geophysical Bear Creek Valley and adjacent ridges are log interpretation by Patrick Tucci, both of the underlain by rocks of Cambrian age (fig. 2) that U.S. Geological Survey, strike approximately north 55 degrees east. The dip of the rock varies from 30 to 70 degrees to the southeast, but the average dip is about 45 degrees WELL CONSTRUCTION (fig. 3). A series of thrust faults, also dipping southeast, intersect the northwest flank of Pine Nine sites (fig. 1) were selected and three Ridge. Pine Ridge is underlain by interbedded wells were to be drilled at each site to provide sandstone, siltstone, and shale of the Rome For- vertical hydraulic-potential data: one shallow mation. Bear Creek Valley is underlain by six well in the regolith, and two wells in bedrock at formations that compose the Conasauga Group, about 100 and 400 feet in depth. Problems en- From oldest to youngest these formations are: countered during drilling resulted in one' site Pumpkin Valley Shale, Rutledge Limestone, having only one well and two sites having Rogersville Shale, Maryville Limestone, boreholes drilled that had to be abandoned. A Nolichucky Shale, and Maynardville Limestone, total of 24 wells were constructed and an addi- The Maynardville Limestone contains solution tional 3 boreholes were drilled but wells were not cavities. Chestnut Ridge is underlain by massive, installed. Drilling-site names and well names siliceous dolomite of the Knox Group and con- were assigned from a naming system used by tains solution and karst features. The Copper MMES staff for wells in Bear Creek Valley. Fol- Ridge Dolomite is the oldest formation in the lowing are general descriptions of drilling, Knox Group and overlies the Maynardville casing, and grouting procedures. Location coor- Limestone. Regolith, consisting of soil and dinates and specific construction information for weathered rock, overlies the bedrock and ranges each well and test hole are summarized in from 0 to 80 feet thick. table 1. Holes for the shallow wells were augered to Acknowledgments the top of bedrock. A 2-inch PVC casing with 5 feet of slotted PVC screen at the bottom was in- The assistance and contributions of several stalled in each hole. Sand was poured into the people were particularly valuable to the project annulus around the screen to about 1 foot above and are greatly appreciated. Dr. C. Stephen the top of the screen, and a 1-foot deep layer of Haase and George Gillis, Martin Marietta Ener- bentonite pellets was poured into the annulus to gy Systems, Inc. (MMES), provided the drilling form a seal. A Portland Type 1 cement slurry was for five wells at two of the drilling sites, logisti- then poured into the annulus around the casing cal support during the Geological Survey drill- to form a seal from the top of the bentonite to ing, and surveying for grid coordinates and ground surface, elevations of the wells. In addition to drilling on DOE property, permission was granted by Ten- Holes for the deeper wells were first nessee Valley Authority and University of Ten- augered to the top of bedrock and 8-inch nessee to drill and collect data on their diameter PVC surface casing was grouted into properties. Geophysical logging was conducted the holes to seal water and surface material out by Gerald E. Idler, U.S. Geological Survey, who of the borehole during drilling. The underlying provides logging services for the Southeastern bedrock was then drilled by either air hammer or Region.
Recommended publications
  • Lithologic Description of a Sediment Core from Round
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY LITHOLOGIC DESCRIPTION OF A SEDIMENT CORE FROM ROUND LAKE, KLAMATH COUNTY, OREGON David P. Adam1 Hugh J. Rieck2 Mary McGann1 Karen Schiller1 Andrei M. Sarna-Wojcicki1 U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 95-33 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 'Menlo Park, CA 94025 2Flagstaff, AZ 86001 Introduction As part of a series of investigations designed to study the Quaternary climatic histories of the western U.S. and the adjacent northeastern Pacific Ocean, a sediment core was collected from Round Lake, Klamath County, Oregon, in the fall of 1991. This report presents basic data concerning the Round Lake site, as well as lithologic descriptions of the recovered sediments. The drilling methods and core sampling and curation techniques used are described by Adam (1993). Acknowledgement Coring at Round Lake was made possible by the gracious cooperation of Mr. Les Northcutt, the owner of the property. Site description Round Lake is a broad open valley about 2.5 km wide and 5 km long that lies just west of the southern end of Upper Klamath Lake, Oregon (Figure 1), at an elevation of about 1300 meters. The basin is one of a series of northwest-southeast trending basins that also includes the Klamath graben and Long Lake. Regional bedrock consists of basalt and basaltic andesites of Pliocene and upper Miocene age (Walker and McLeod, 1991; Sherrod and Pickthorn, 1992).
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • The Lithology, Geochemistry, and Metamorphic Gradation of the Crystalline Basement of the Cheb (Eger) Tertiary Basin, Saxothuringian Unit
    Bulletin of Geosciences, Vol. 79, No. 1, 41–52, 2004 © Czech Geological Survey, ISSN 1214-1119 The lithology, geochemistry, and metamorphic gradation of the crystalline basement of the Cheb (Eger) Tertiary Basin, Saxothuringian Unit Jiří Fiala – Zdeněk Vejnar Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 135, 165 00 Praha 6, Czech Republic. E-mail: [email protected] Abstract. The crystalline basement of the Cheb Tertiary Basin is comprised of muscovite granite of the Smrčiny Pluton and crystalline schists of the Saxothuringian Unit. With increasing depth (as seen from the 1190 m deep drill hole HV-18) this crystalline schist exhibits rapid metamorphic gradation, with the characteristic development of garnet, staurolite, and andalusite zones of subhorizontal arrangement. The dynamic MP-MT and static LP-MT crystallization phases were followed by local retrograde metamorphism. The moderately dipping to subhorizontal S2 foliation, which predominates in the homogeneous segments, is followed by subvertical S3 cleavage. The vertical succession of psammo-pelitic, carbonitic, and volcanogenic rock sequences, together with geochemical data from the metabasites, indi- cates a rock complex representing an extensional, passive continental margin setting, which probably originated in the Late Cambrian to Early Ordovi- cian. On the contrary, the geochemistry of the silicic igneous rocks and of the limestone non-carbonate components point to the compressional settingofa continental island arc. This disparity can be partly explained by the inheritance of geochemical characteristics from Late Proterozoic rocks in the source region. Key words: crystalline basement, Cheb Tertiary Basin, Saxothuringian, lithology, geochemistry, metamorphism Introduction formed by two-mica and muscovite granites from the younger intrusive phase of the Smrčiny Pluton (Vejnar The Cheb Tertiary Basin is considered to be a westernmost 1960).
    [Show full text]
  • Categories of Information That Go in Each of the Lithology Tables
    Oregon Geologic Digital Compilation Keywords for lithology table(s) data entry—revised 2/1/05, 1/1/06 Lithology mineral and composition table Alteration, to (mineral) includes weathering Blebs, composition Blocks, composition Cavity fill, composition Cavity lining, composition Cementation, composition Clasts, composition Clots, composition Concretions, composition Debris, composition Encrustation, composition Enrichment, composition Facies, composition Fiamme, composition Fossiliferous (general fossil types, not individual genus and species) Fracture fill, composition Fragments composition Grains, composition Impurities, composition Inclusions, composition Joint fill, composition Knobs, composition Lapilli, composition Layering, composition Luster, composition Matrix, composition Mineralogy (list of main minerals or lithologies) Mineralization (list of commodity minerals) Nodules, composition Oxidation, composition Particles, composition Partings, composition Patches, composition Phenocrysts, composition Purity, amount of or type Recrystallization, mineral Schlieren, composition Seams, composition of mineral fill Shards, composition Soil, composition Staining, composition Stringers, composition of mineral fill Veins (or veinlets), compositon of mineral/lithology fill Vesicle fill, composition Xenoliths, composition Zones, composition Lithology color table Fresh Weathered Staining (color only) Lithology major structures table—amounts of outcrop level characteristics (keyword is followed by a describing adjective or, if no adjective, is
    [Show full text]
  • Geology of the Eoarchean, >3.95 Ga, Nulliak Supracrustal
    ÔØ ÅÒÙ×Ö ÔØ Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics Tsuyoshi Komiya, Shinji Yamamoto, Shogo Aoki, Yusuke Sawaki, Akira Ishikawa, Takayuki Tashiro, Keiko Koshida, Masanori Shimojo, Kazumasa Aoki, Kenneth D. Collerson PII: S0040-1951(15)00269-3 DOI: doi: 10.1016/j.tecto.2015.05.003 Reference: TECTO 126618 To appear in: Tectonophysics Received date: 30 December 2014 Revised date: 30 April 2015 Accepted date: 17 May 2015 Please cite this article as: Komiya, Tsuyoshi, Yamamoto, Shinji, Aoki, Shogo, Sawaki, Yusuke, Ishikawa, Akira, Tashiro, Takayuki, Koshida, Keiko, Shimojo, Masanori, Aoki, Kazumasa, Collerson, Kenneth D., Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics, Tectonophysics (2015), doi: 10.1016/j.tecto.2015.05.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Geology of the Eoarchean, >3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics Tsuyoshi Komiya1*, Shinji Yamamoto1, Shogo Aoki1, Yusuke Sawaki2, Akira Ishikawa1, Takayuki Tashiro1, Keiko Koshida1, Masanori Shimojo1, Kazumasa Aoki1 and Kenneth D.
    [Show full text]
  • Oregon Geologic Digital Compilation Rules for Lithology Merge Information Entry
    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OREGON GEOLOGIC DIGITAL COMPILATION RULES FOR LITHOLOGY MERGE INFORMATION ENTRY G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2006 Revisions: Feburary 2, 2005 January 1, 2006 NOTICE The Oregon Department of Geology and Mineral Industries is publishing this paper because the infor- mation furthers the mission of the Department. To facilitate timely distribution of the information, this report is published as received from the authors and has not been edited to our usual standards. Oregon Department of Geology and Mineral Industries Oregon Geologic Digital Compilation Published in conformance with ORS 516.030 For copies of this publication or other information about Oregon’s geology and natural resources, contact: Nature of the Northwest Information Center 800 NE Oregon Street #5 Portland, Oregon 97232 (971) 673-1555 http://www.naturenw.org Oregon Department of Geology and Mineral Industries - Oregon Geologic Digital Compilation i RULES FOR LITHOLOGY MERGE INFORMATION ENTRY The lithology merge unit contains 5 parts, separated by periods: Major characteristic.Lithology.Layering.Crystals/Grains.Engineering Lithology Merge Unit label (Lith_Mrg_U field in GIS polygon file): major_characteristic.LITHOLOGY.Layering.Crystals/Grains.Engineering major characteristic - lower case, places the unit into a general category .LITHOLOGY - in upper case, generally the compositional/common chemical lithologic name(s)
    [Show full text]
  • A Data-Driven Approach for Lithology Identification Based on Parameter
    energies Article A Data-Driven Approach for Lithology Identification Based on Parameter-Optimized Ensemble Learning Zhixue Sun 1, Baosheng Jiang 1,* , Xiangling Li 2, Jikang Li 1 and Kang Xiao 2 1 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; [email protected] (Z.S.); [email protected] (J.L.) 2 PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China; [email protected] (X.L.); [email protected] (K.X.) * Correspondence: [email protected] Received: 19 June 2020; Accepted: 27 July 2020; Published: 30 July 2020 Abstract: The identification of underground formation lithology can serve as a basis for petroleum exploration and development. This study integrates Extreme Gradient Boosting (XGBoost) with Bayesian Optimization (BO) for formation lithology identification and comprehensively evaluated the performance of the proposed classifier based on the metrics of the confusion matrix, precision, recall, F1-score and the area under the receiver operating characteristic curve (AUC). The data of this study are derived from Daniudui gas field and the Hangjinqi gas field, which includes 2153 samples with known lithology facies class with each sample having seven measured properties (well log curves), and corresponding depth. The results show that BO significantly improves parameter optimization efficiency. The AUC values of the test sets of the two gas fields are 0.968 and 0.987, respectively, indicating that the proposed method has very high generalization performance. Additionally, we compare the proposed algorithm with Gradient Tree Boosting-Differential Evolution (GTB-DE) using the same dataset. The results demonstrated that the average of precision, recall and F1 score of the proposed method are respectively 4.85%, 5.7%, 3.25% greater than GTB-ED.
    [Show full text]
  • High-Resolution Stratigraphy and Lithology of an Outcrop Within the Grundy Formation (Pennsylvanian), Harlan County, Southeast Kentucky
    Eastern Kentucky University Encompass Geosciences Undergraduate Theses Geosciences Spring 5-2020 High-resolution Stratigraphy and Lithology of an Outcrop within the Grundy Formation (Pennsylvanian), Harlan County, Southeast Kentucky Andrew Hensley Eastern Kentucky University Follow this and additional works at: https://encompass.eku.edu/geo_undergradtheses Recommended Citation Hensley, Andrew, "High-resolution Stratigraphy and Lithology of an Outcrop within the Grundy Formation (Pennsylvanian), Harlan County, Southeast Kentucky" (2020). Geosciences Undergraduate Theses. 7. https://encompass.eku.edu/geo_undergradtheses/7 This Restricted Access Thesis is brought to you for free and open access by the Geosciences at Encompass. It has been accepted for inclusion in Geosciences Undergraduate Theses by an authorized administrator of Encompass. For more information, please contact [email protected]. High-resolution Stratigraphy and Lithology of an Outcrop within the Grundy Formation (Pennsylvanian), Harlan County, Southeast Kentucky By Andrew Hensley Submitted to Walter S. Borowski Senior Thesis (GLY 499) May 2020 i TABLE OF CONTENTS Abstract……………………………………………………………………………………… 1 Introduction………………………………………………………………………….…….... 2 Methods……………………………………………………………………………………... 2 Results………………………………………………………………………………………..3 Coarsening-upward Sequence 1…………………..…………………………………5 Coarsening-upward Sequence 2…………………..…………………………………7 Coarsening-upward Sequence 3…………………..…………………………………9 Coarsening-upward Sequence 4…………………………………………………….11 Coarsening-upward Sequence
    [Show full text]
  • Rocks and Minerals) in the Open Wordnet for English
    Proceedings of the Workshop on Multimodal Wordnets (MMWN-2020), pages 33–38 Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020 c European Language Resources Association (ELRA), licensed under CC-BY-NC Inclusion of Lithological terms (rocks and minerals) in The Open Wordnet for English Alexandre Tessarollo, Alexandre Rademaker Petrobras, IBM Research and FGV/EMAp [email protected], [email protected] Abstract We extend the Open WordNet for English (OWN-EN) with rock-related and other lithological terms using the authoritative source of GBA’s Thesaurus. Our aim is to improve WordNet to better function within Oil & Gas domain, particularly geoscience texts. We use a three step approach: a proof of concept-level extension of WordNet, a major extension on which we evaluate the impact with positive results and a full extension encompassing all GBA’s lithological terms. We also build a mapping to GBA which also links to several other resources: WikiData, British Geological Survey, Inspire, GeoSciML and DBpedia. Keywords: wordnet, rocks, lithology, domain extension, geology, NLP 1. Introduction 2012). WordNet extensions for specific domains are rela- tively common. Oil & Gas Exploration and Production companies annu- Medical WordNet (MWN) (Smith and Fellbaum, 2004) re- ally invest billions of dollars gathering documents such views PWN medical terms through a corpus which includes as reports, scientific articles, business intelligence articles a validated corpus of sentences involving specific medically and so on. These documents are the main base for ma- relevant vocabulary. The corpus is composed by the defini- jor decisions such as whether to drill exploratory wells, bid tions of medical terms already existing in WordNet, sen- or buy, production schedules and risk assessments (Rade- tences generated via the semantic relations in PWN and maker, 2018).
    [Show full text]
  • Characteristics of Log Responses and Lithology Determination of Igneous Rock Reservoirs
    NANJING INSTITUTE OF GEOPHYSICAL PROSPECTING AND INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF GEOPHYSICS AND ENGINEERING J. Geophys. Eng. 1 (2004) 51–55 PII: S1742-2132(04)73730-9 Characteristics of log responses and lithology determination of igneous rock reservoirs Buzhou Huang and Baozhi Pan School of Geoexploration Science and Technology, Jilin University, Changchun 130026, China E-mail: [email protected] Downloaded from https://academic.oup.com/jge/article/1/1/51/5127508 by guest on 02 October 2021 Received 1 August 2003 Accepted for publication 1 November 2003 Published 16 February 2004 Online at stacks.iop.org/JGE/1/51 (DOI: 10.1088/1742-2132/1/1/006) Abstract The determination of the lithology of deep igneous rocks in the northern Songliao Basin in China has been found to be difficult because of insufficient core-analysis data and accurate descriptions of cuttings in the area. This paper presents a method for determining the lithology of these rocks. First, the igneous rocks are divided into six classes according to cores and cuttings in the area. Then, for each class, a statistical analysis is performed for 11 log data sets to determine their log characteristics. Finally, the different lithologies of the igneous rock reservoirs in the area are automatically determined using the maximum membership function rule of fuzzy mathematics. A comparison between the results obtained and the lithologic column obtained from cores or cuttings shows that this method gives good results for the determination of igneous rock lithology in the area. Keywords: lithology determination, igneous rocks, log characteristics, maximum membership function 1.
    [Show full text]
  • Geology of the Nuvvuagittuq Belt
    Earth’s Oldest Rocks Edited by Martin J. van Kranendonk, R. Hugh Smithies and Vickie C. Bennett Developments in Precambrian Geology, Vol. 15 (K.C. Condie, Series Editor) ©2007 Elsevier B.V. All rights reserved. THE GEOLOGY OF THE 3.8 GA NUVVUAGITTUQ (PORPOISE COVE) GREENSTONE BELT, NORTHEASTERN SUPERIOR PROVINCE, CANADA. Jonathan O’Neil1, Charles Maurice2, Ross K. Stevenson3,4, Jeff Larocque5, Christophe Cloquet6, Jean David3 & Don Francis1 1 Earth & Planetary Sciences, McGill University and GÉOTOP-UQÀM-McGill, 3450 University St. Montreal, QC, Canada, H3A 2A7 ([email protected]) 2 Bureau de l’exploration géologique du Québec, Ministère des Ressources naturelles et de la Faune, 400 boul. Lamaque Val d’Or, QC, J9P 3L4 3 GÉOTOP-UQÀM-McGill, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montreal, QC, Canada H3C 3P8 4 Département des Sciences de la Terre et de l’Atmosphère, Université du Québec à Montréal, C.P. 8888, succ. centre-ville Montreal, QC, Canada H3C 3P8 5 School of Earth and Oceanic Sciences, University of Victoria, P.O. Box 3055 STN CSC, Victoria, BC, Canada, V8W 3P6 6 INW-UGent, Department of analytical chemistry, Proeftuinstraat 86, 9000 GENT, Belgium Abstract The Nuvvuagittuq greenstone belt is a 3.8 Ga supracrustal succession preserved as a raft in remobilised tonalities along the eastern coast of Hudson Bay. The dominant lithology of the belt is a quartz-ribboned grey amphibolite composed of variable proportions of cummingtonite, biotite and plagioclase. Although the amphibolites have mafic compositions, the presence of cummingtonite rather than hornblende in these rocks reflects their low Ca contents, which may result from the alteration and metamorphism of mafic pyroclastic rocks.
    [Show full text]
  • Geochemistry of the Boring Lava Along the West Side of the Tualatin Mountains and of Sediments from Drill Holes in the Portland and Tualatin Basins, Portland, Oregon
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 10-6-1995 Geochemistry of the Boring Lava along the West Side of the Tualatin Mountains and of Sediments from Drill Holes in the Portland and Tualatin Basins, Portland, Oregon Michelle Lynn Barnes Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons Let us know how access to this document benefits ou.y Recommended Citation Barnes, Michelle Lynn, "Geochemistry of the Boring Lava along the West Side of the Tualatin Mountains and of Sediments from Drill Holes in the Portland and Tualatin Basins, Portland, Oregon" (1995). Dissertations and Theses. Paper 4990. https://doi.org/10.15760/etd.6866 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. THESIS APPROVAL The abstract and thesis of Michelle Lynn Barnes for the Master of Science in Geology were presented October 6, 1995, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: Tre"'\7'6r D. Smith Representative of the Office of Graduate Studies DEPARTMENT APPROVAL: .~arvin H. Beeson, Chair ( Department of Geology * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY ... /}7 / '} . ,_ c.:·· by on ,::x / •.c:..14,.g..vd&&.· /9 ~5" ABSTRACT An abstract of the thesis of Michelle Lynn Barnes for the Master of Science in Geology presented October 6, 1995. Title: Geochemistry of the Boring Lava along the West Side of the Tualatin Mountains and of Sediments from Drill Holes in the Portland and Tualatin Basins, Portland, Oregon.
    [Show full text]