Challenges in the Diagnosis of Steatohepatitis Why Is Ballooning

Total Page:16

File Type:pdf, Size:1020Kb

Challenges in the Diagnosis of Steatohepatitis Why Is Ballooning 12/14/2016 The Bugaboos of Fatty Liver Disease: Ballooning and Fibrosis Hans Popper Hepatopathology Society Companion Meeting San Antonio, Tx March, 2017 David Kleiner, M.D., Ph.D. NCI/Laboratory of Pathology Challenges in the Diagnosis of Steatohepatitis • Ballooning – Importance and Characterization • Fibrosis – The Complexity of Fibrosis Progression in NASH Why is Ballooning So Important? 1 12/14/2016 Steatohepatitis is a Specific Pattern of Liver Injury • Steatosis and Inflammation – Necessary but not sufficient • Zone 3 centered hepatocellular injury – Required for specific diagnosis – Ballooning degeneration, Mallory-Denk bodies • Fibrosis – Characteristic pattern, but outcome, not cause – Pericentral/sinusoidal “chicken-wire” fibrosis then central- central and central-portal bridging Chronic Hepatitis C 2 12/14/2016 Ballooning is Associated with Long Term Survival, Whereas Steatosis is Not Angulo et al., Gastroenterology 149: 389; 2015 Steatosis Ballooning P = 0.607 P < 0.001 3 12/14/2016 Definition of Ballooning • Cell is enlarged beyond backround, non- steatotic hepatocytes • Cytoplasm is altered by clearing and clumping, not dominated by fat vacuoles • Mallory-Denk bodies may be present Agreement Feature Inter-rater Intra-rater Kappa Kappa Steatosis Grade 0.79 0.85 Lobular 0.45 0.91 Inflammation Portal Inflammation 0.45 0.7 Ballooning 0.56 0.7 Fibrosis 0.84 0.91 Diagnostic Classification 0.61 0.59 to 0.88 (no defined criteria) Hepatology 2011; 53: 810-820 4 12/14/2016 5 12/14/2016 So, what do you do with cells that don’t seem to fit all the criteria? Classical vs Non-Classical • Classical ballooning • Non-Classical ballooning – Enlarged (>1.5x nml) – Typically in zone 3, – Cytoplasmic clearing perivenular – Cytoplasmic clumping – Smaller and often in groups – May have Mallory- – Same cytoplasmic Denk bodies alterations – Lack Mallory-Denk bodies 6 12/14/2016 There are Significant Clinical and Histological Differences Between Categories of Ballooning Non-Classical Vs Classical Vs Severe Vs None Non-Classical Not-Severe (Classical) Steatosis ++++ Lobular Inflammation ++ ++++ ++++ Portal Inflammation +++ ++ ++ Fibrosis ++++ ++++ ++++ Age + Sex ++++ +++ BMI + + Diabetes ++++ Metabolic Syndrome ++++ ALT ++++ Alk Phos ++ ++ Glucose ++++ + Insulin ++ + HOMA-IR + ++ + +: p 0.05; ++: p 0.01; +++: p 0.001; ++++: p 0.0001 The Degree of Ballooning is Strongly Associated with Fibrosis 100% 90% 80% Stage 70% 4 60% 3 50% 2 40% 1C 1B 30% Percent of Percent of Cases 1A 20% None 10% 0% None Non-Classic Few, Classic Many, Severe Classic p < 0.0001 Clear Relationship of Ballooning Degree to Diagnosis 100% 90% 80% 70% 60% 50% Definite SH 40% Bdln SH Not SH Percent of Percent of Cases 30% 20% 10% 0% None Non-Classic Few, Many, Severe Classic Classic p < 0.0001 7 12/14/2016 Ballooning Summary • Ballooning is important to recognize because – It makes steatohepatitis a specific pattern of injury even in the absence of fibrosis – It is prognostically important • Ballooning has distinctive features that allow us to pick out specific balloon cells • There may be relevance to cells that meet some, but not all, of the criteria The Problem of Fibrosis Staging in NASH Staging Fibrosis NASH CRN classification 0 No fibrosis 1 Perisinusoidal or periportal (but not both) 1A Zone 3 perisinusoidal fibrosis (mild, Trichrome only) 1B Zone 3 perisinusoidal fibrosis (moderate, seen on H&E) 1C portal fibrotic expansion/periportal fibrosis 2 Both perisinusoidal and periportal 3 Bridging fibrosis (any type) 4 Cirrhosis 8 12/14/2016 Questions Questions Questions • Why is it so complicated? • Why don’t the different stages have progressively more fibrosis? • Why is stage 1 split between perisinusoidal and pericentral fibrosis? Pediatric Biopsies are More Likely to Show Periportal rather than Central Perisinusoidal Fibrosis Adult (429) Child (102) p<0.0001 Chi-square 35 30 25 20 15 Population 10 % 5 0 01a1b1c2 3 4 none Mild psf Mod psf periportal psf+pp bridging cirrhosis Fibrosis Fibrosis Progression In Viral Hepatitis None Periportal Bridging Cirrhosis Fibrosis Fibrosis 9 12/14/2016 Fibrosis Progression Pathways in NASH Perisinus., mod. 1B Perisinus., mild 1A Periportal/ Pericentral Bridging Cirrhosis None 2 3 4 0 Periportal Only 1C Diagnosis of Periportal Fibrosis in NAFLD/NASH • Extension of pericellular septations • Trapping of periportal hepatocytes Stage 2 Fibrosis 10 12/14/2016 Stage 2 Fibrosis The distinction between Stage 2 and Stages 1 and 3 is important 11 12/14/2016 Progression and Regression of Fibrosis “Red” = Progressed, “Green” = Regressed Stage at Last Follow-up Biopsy 01A1B1C2 3 4 0476 7 61730 1A 17 10 7 1 12 4 1 1B 13 3 12 0 7120 1C 7 003211 2 15 5 13 2 15 17 4 3 50711243 21 Stage at First Biopsy First at Stage 4 00000610 375 patients Long-term Prognostic Relevance of Liver Histology in Nonalcoholic Fatty Liver Disease Gastroenterology 2015;149:389-397 • International collaborative longitudinal study of patients with NAFLD • 619 patients followed for a median of 12.6 years (range 0.3-35.1) • Inclusion based on liver biopsy with at least 5% steatosis (minimum diagnostic criterion for NAFLD) read by single pathologist Cumulative probability (unadjusted) of outcomes by histological feature Mortality/liver transplantation Liver-related events (n = 619) (n = 615) Liver Biopsy Features Unadjusted cumulative P value Unadjusted cumulative P value (%)a (%)a Portal inflammation, grade <0.001 <0.001 0 25.5 1.9 1 29.3 3.5 2 50.0 11.8 Ballooning, grade <0.001 <0.001 0 28.3 2.6 1 32.7 5.3 2 42.5 10.3 NASH category <0.001 <0.001 Non-NASH 25.4 1.2 Borderline/suspicious 40 6.7 Definitive NASH 36.9 8.5 Fibrosis stage <0.001 <0.001 0 23.0 1.6 1 29.8 2.8 2 42.3 7.1 3 50.9 13.7 4 77.8 23.5 Steatosis and Lobular inflammation were not-significant 12 12/14/2016 Gastroenterology 2015;149:389-397 Inflammation is Redistributed between Stage 1B and Stage 2 in NASH Stage 1B Stage 2 90 80 70 60 % 50 40 30 20 10 0 012 123 Portal Inflammation Lobular Inflammation Hepatology 2014;59: 1393-1405 13 12/14/2016 Findings • Portal inflammation was strongly correlated with fibrosis stage and ductular reaction (DR) • Portal inflammation was enriched for macrophages and CD8+ T-cells • Infiltration of portal areas by macrophages was the earliest change and preceded the increased expression of proinflammatory cytokines • Conclusion: Detailed characterization of portal inflammation, especially in the DR/progenitor cell niche, may be important to understand progression of disease in NASH Hepatology 2014;59: 139 Portal Inflammation Becomes More Severe as Periportal Fibrosis Develops and Progresses Brunt et al., Hepatology 2009;49:809-820 None Mild More than Mild p<0.0001 45 40 35 30 25 20 Population 15 10 % 5 0 01a1b1c234 none Mild psf Mod psf periportal psf+pp bridging cirrhosis Fibrosis Portal Inflammation is Also Related to Long-Term Outcome Gastroenterology 2015;149:389-397 14 12/14/2016 Fibrosis Summary • Fibrosis progression in NAFLD/NASH is much more complex than progression viral hepatitis • The development of periportal fibrosis appears to be part of the progression pathway in most cases • The degree of periportal vs central perisinusoidal fibrosis appears to vary significantly • Nonetheless, in cross-sectional analysis, patients with stage 2 fibrosis have a worse prognosis than those with stage 1 • The appearance of periportal fibrosis is linked with the development of increased portal inflammation www.cancer.gov www.cancer.gov/espanol References • Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, Mills PR, et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2015;149:389-397 e310. • Gadd VL, Skoien R, Powell EE, Fagan KJ, Winterford C, Horsfall L, Irvine K, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 2014;59:1393-1405. • Brunt EM, Kleiner DE, Wilson LA, Unalp A, Behling CE, Lavine JE, Neuschwander-Tetri BA, et al. Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD): a histologic marker of advanced NAFLD-Clinicopathologic correlations from the nonalcoholic steatohepatitis clinical research network. Hepatology 2009;49:809-820. • Patton HM, Lavine JE, Van Natta ML, Schwimmer JB, Kleiner D, Molleston J, Nonalcoholic Steatohepatitis Clinical Research N. Clinical correlates of histopathology in pediatric nonalcoholic steatohepatitis. Gastroenterology 2008;135:1961-1971 e1962. • Neuschwander-Tetri BA, Clark JM, Bass NM, Van Natta ML, Unalp-Arida A, Tonascia J, Zein CO, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology 2010;52:913-924. • Kleiner DE, Brunt EM. Nonalcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis 2012;32:3-13. • Kleiner DE, Makhlouf HR. Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children. Clin Liver Dis 2016;20:293-312. 15 12/14/2016 Staging and Grading Systems in Use as Clinical Research Tools • Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999;94:2467-2474. • Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41:1313-1321. • Bedossa P, Poitou C, Veyrie N, Bouillot JL, Basdevant A, Paradis V, Tordjman J, et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 2012;56:1751-1759. 16.
Recommended publications
  • Review Article Alcohol Induced Liver Disease
    J Clin Pathol: first published as 10.1136/jcp.37.7.721 on 1 July 1984. Downloaded from J Clin Pathol 1984;37:721-733 Review article Alcohol induced liver disease KA FLEMING, JO'D McGEE From the University of Oxford, Nuffield Department ofPathology, John Radcliffe Hospital, Oxford OX3 9DU, England SUMMARY Alcohol induces a variety of changes in the liver: fatty change, hepatitis, fibrosis, and cirrhosis. The histopathological appearances of these conditions are discussed, with special atten- tion to differential diagnosis. Many forms of alcoholic liver disease are associated with Mallory body formation and fibrosis. Mallory bodies are formed, at least in part, from intermediate filaments. Associated changes in intermediate filament organisation in alcoholic liver disease also occur. Their significance in the pathogenesis of hepatocyte death may be related to abnormalities in messenger RNA function. The mechanisms underlying hepatic fibrogenesis are also discussed. Although alcohol has many effects on the liver, all formed after some period of alcohol abstinence, except cirrhosis are potentially reversible on cessa- alcohol related changes may not be seen. Accord- tion of alcohol ingestion. Cirrhosis is irreversible ingly, we shall consider the morphological changes and usually ultimately fatal. It is therefore important associated with alcohol abuse under the headings in to determine what factors are responsible for Table 1. development of alcohol induced cirrhosis, especially In the second part, the pathogenesis of alcohol since only 17-30% of all alcoholics become' cirrho- induced liver disease will be discussed, but this will tic.' This is of some urgency now, since there has deal only with the induction of alcoholic hepatitis, been an explosive increase in alcohol consumption fibrosis, and cirrhosis-that is, chronic alcoholic http://jcp.bmj.com/ in the Western World, particularly affecting young liver disease-and not with fatty change, for two people, resulting in a dramatic increase in the inci- reasons.
    [Show full text]
  • Fructose Diets on the Liver of Male Albino Rat and the Proposed Underlying Mechanisms S.M
    Folia Morphol. Vol. 78, No. 1, pp. 124–136 DOI: 10.5603/FM.a2018.0063 O R I G I N A L A R T I C L E Copyright © 2019 Via Medica ISSN 0015–5659 journals.viamedica.pl The differential effects of high-fat and high- -fructose diets on the liver of male albino rat and the proposed underlying mechanisms S.M. Zaki1, 2, S.A. Fattah1, D.S. Hassan1 1Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt 2Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia [Received: 23 May 2108; Accepted: 26 June 2018] Background: The Western-style diet is characterised by the high intake of energy- -dense foods. Consumption of either high-fructose diet or saturated fat resulted in the development of metabolic syndrome. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Many researchers studied the effect of high-fat diet (HFD), high-fructose diet (HFruD) and high-fructose high-fat diet (HFHF) on the liver. The missing data are the comparison effect of these groups i.e. are effects of the HFHF diet on the liver more pronounced? So, this study was designed to compare the metabolic and histopathological effect of the HFD, HFruD, and HFHF on the liver. The proposed underlying mechanisms involved in these changes were also studied. Materials and methods: Twenty four rats were divided into four groups: con- trol, HFD, HFruD, and HFHF. Food was offered for 6 weeks. Biochemical, light microscopic, immunohistochemical (Inducible nitric oxide synthase [iNOS] and alpha-smooth muscle actin [α-SMA]), real-time polymerase chain reaction (gene expression of TNF-α, interleukin-6, Bax, BCL-2, and caspase 3), histomorphometric analysis and oxidative/antioxidative markers (thiobarbituric acid reactive substances [TBARS], malondialdehyde [MDA]/glutathione [GSH] and superoxide dismutase [SOD]) were done.
    [Show full text]
  • The Morphology of Cirrhosis' Recommendations on Definition, Nomenclature, and Classification by a Working Group Sponsored by the World Health Organization
    J Clin Pathol: first published as 10.1136/jcp.31.5.395 on 1 May 1978. Downloaded from Journal of Clinical Pathology, 1978, 31, 395-414 The morphology of cirrhosis' Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization P. P. ANTHONY, K. G. ISHAK, N. C. NAYAK, H. E. POULSEN, P. J. SCHEUER, AND L. H. SOBIN From the Bland-Sutton Institute ofPathology, Middlesex Hospital Medical School, London, the Armed Forces Institute ofPathology, Washington, the All India Institute ofMedical Sciences, New Delhi, Hvidovre Hospital, University of Copenhagen, The Royal Free Hospital School ofMedicine, London, and the Cancer Unit of the World Health Organization, Geneva SUMMARY This memorandum provides guidelines on the definition, nomenclature, and classification of cirrhosis, chronic hepatitis, and hepatic fibrosis. These are considered according to morphological characteristics and aetiology. It is hoped that this system will serve as a standard for diagnostic, research, and epidemiological purposes. The relationship of cirrhosis to liver cell carcinoma is briefly discussed and the possible morphological markers of an increased risk of malignancy are defined. The aim of this paper is to provide guidelines for the morphological terms but, in spite of many attempts, pathologist on the definition, nomenclature, and no single definition exists that does not require classification of hepatic cirrhosis and related con- further elaboration or qualification. The essential ditions. The many systems of classification in current features are considered to be parenchymal necrosis, http://jcp.bmj.com/ use (Table 1) hinder rather than help comparisons of regeneration, and diffuse fibrosis, resulting in dis- published data and the evaluation of relationships organisation of the lobular architecture throughout between cirrhosis and liver cancer.
    [Show full text]
  • Histopathologic Diagnosis of Chronic Viral Hepatitis
    Marmara Medical Journal 2016; 29 (Special issue 1): 18-28 DOI: 10.5472/MMJsi.2901.05 REVIEW / DERLEME Histopathologic diagnosis of chronic viral hepatitis Kronik viral hepatitin histopatolojik tanısı Çiğdem ATAİZİ ÇELİKEL ABSTRACT ÖZ Morphological evaluation of the liver continues to play a central Kronik viral hepatit tanısı, derecelendirme ve evreleme açısından, role for the diagnosis, grading and staging of chronic viral hepatitis. karaciğerin morfolojik değerlendirmesi önem taşır. Tanımsal The defining morphology is necroinflammation, that is hepatocyte morfoloji hepatosit hasarı ve inflamasyon ile karakterize injury and inflammation. Hepatocyte injury is usually irreversible, nekroinflamasyondur. Hepatosit hasarı, apoptoz ve/veya nekroz and presents as apoptosis and/or necrosis. Mononuclear cell şeklinde olup, genellikle geri dönüşümsüzdür. Portal alanda infiltration of the portal tracts, that is usually accompanied by mononükleer hücre infiltrasyonuna, çoğu zaman periportal periportal (interface) and lobular inflammation is typical. Continued (interfaz) ve lobüler inflamasyon eşlik eder. İnterfazda periportal necroinflammatory activity at the limiting plate destroying hepatositlerde süregelen hasar fibrogenezi tetikler ve siroz periportal parenchyma initiates fibrogenesis leading to cirrhosis. gelişebilir. Tamir dokusunun parçalanması, bozulan vaskülatürün Fibrosis can be reversible with fragmentation of scar tissue, organizasyonu ve hepatosit rejenerasyonu ile fibrozis/siroz resolving vascular derangements and parenchymal regeneration.
    [Show full text]
  • Chronic-Binge Model of Alcoholic Hepatitis in Long Evans Rats
    Ashdin Publishing Journal of Drug and Alcohol Research ASHDIN Vol. 3 (2014), Article ID 235837, 10 pages publishing doi:10.4303/jdar/235837 Research Article Chronic-Binge Model of Alcoholic Hepatitis in Long Evans Rats Teresa Ramirez,1 Ming Tong,2 and Suzanne M. de la Monte3 1Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA 2Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA 3Departments of Medicine, Pathology, Neurology, and Neurosurgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA Address correspondence to Suzanne M. de la Monte, suzanne delamonte [email protected] Received 22 November 2013; Revised 8 May 2014; Accepted 2 June 2014 Copyright © 2014 Teresa Ramirez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background. Alcoholic hepatitis (AH) is largely a liver disease (ALD) that culminates in cirrhosis and liver histopathologic diagnosis that is based upon the presence of failure [26]. The major cause of ALD is heavy drinking over significant inflammation, hepatocellular lipid accumulation, ballooned prolonged periods [37]. degeneration of hepatocytes, and Mallory-Denk bodies. Underlying biochemical and molecular abnormalities
    [Show full text]
  • Viral Hepatitis (I)
    Viral Hepatitis (I) Luigi Terracciano Department of Pathology University Hospital Basel Basel, 19. 04. 2016 Definition Hepatitis means inflammation of the liver characterized by a variable combination of : • mononuclear inflammation (lymphocytes and plasma cells) • hepatocellular necrosis/apoptosis • hepatocellular regeneration Viral Hepatitis Unless otherwise specified, the term "viral hepatitis" is reserved for infection of the liver caused by a group of viruses having a particular affinity for the liver Systemic viral infections that can involve the liver include: 1.infectious mononucleosis (Epstein-Barr virus), which may cause a mild hepatitis during the acute phase; 2.cytomegalovirus, particularly in the newborn or immunosuppressed patient; 3.yellow fever, which has been a major and serious cause of hepatitis in tropical countries. Hepatotropic viruses cause overlapping patterns of disease Viral Hepatitis The Hepatitis Viruses Hepatitis A Virus Hepatitis B Virus Hepatitis C Virus Hepatitis D Virus Hepatitis E Agent Icosahedral capsid, Enveloped dsDNA Enveloped ssRNA Enveloped ssRNA Unenveloped ssRNA ssRNA Transmission Fecal-oral Parenteral; close contact Parenteral; close contact Parenteral; Waterborne close contact Incubation Period 2-6 wk 4-26 wk 2-26 wk 4-7 wk 2-8 wk Carrier state None 0.1-1.0% of blood donors 0.2-1.0% of blood donors. 1-10% in drug addicts Unknown in U.S. and Western worldi in U.S and Western world and hemophiliacs 1-2% of blood donors Chronic hepatitis None 5-10% of >50% <5% coinfection, None / Very rare acute
    [Show full text]
  • Standardising the Interpretation of Liver Biopsies in Non‐Alcoholic Fatty
    DR RISH K PAI (Orcid ID : 0000-0002-1788-475X) MRS CLAIRE PARKER (Orcid ID : 0000-0002-8587-5441) DR BRIAN G FEAGAN (Orcid ID : 0000-0002-6914-3822) DR ROHIT LOOMBA (Orcid ID : 0000-0002-4845-9991) DR VIPUL JAIRATH (Orcid ID : 0000-0002-1092-0033) Article type : Original Scientific Paper TITLE: Standardizing the interpretation of liver biopsies in non-alcoholic fatty liver disease clinical trials SHORT TITLE: Interpretation of liver biopsies in NAFLD trials AUTHORS: Rish K. Pai1, David E. Kleiner2, John Hart3, Oyedele A. Adeyi4, Andrew D. Clouston5, Cynthia A. Behling6, Dhanpat Jain7, Sanjay Kakar8, Mayur Brahmania9, Lawrence Burgart10, Kenneth P. Batts11, Mark A. Valasek12, Michael S. Torbenson13, Maha Guindi14, Hanlin L. Wang15, Veeral Ajmera16, Leon A. Adams17, Claire E. Parker18, Brian G. Feagan19, Rohit Loomba20, Vipul Jairath21 AUTHOR AFFILIATIONS: 1Scottsdale, AZ, USA; 2Bethesda, MD, USA; 3Chicago, IL, USA; 4Toronto, ON, Canada; 5Brisbane, QLD, Australia; 6San Diego, CA, USA; 7New Haven, CT, This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may Author Manuscript lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/APT.15503 This article is protected by copyright. All rights reserved 2 USA; 8San Francisco, CA, USA; 9London, ON, Canada; 10Minneapolis, MN, USA; 11Minneapolis, MN, USA; 12La Jolla, CA, USA; 13Rochester, MN, USA; 14Los Angeles, CA, USA; 15Los Angeles, CA, USA; 16La Jolla, CA, USA; 17Perth, WA, Australia; 18London, ON, Canada; 19London, ON, Canada; 20La Jolla, CA, USA; 21London, ON, Canada.
    [Show full text]
  • Obada Froukh and Sarah Basel Maha Shomaf
    9 Obada Froukh and Sarah Basel Obada Froukh Nasser M.Abdelqader Maha Shomaf 1 | P a g e Liver pathology Diseases of the liver are related to loss of its functions. Functions of the liver: 1-Metabolic: metabolism of different substances. 2-Synthetic: Albumin, clotting factors… If there is a Liver dysfunction, less albumin will be synthesized, and as you know albumin is the main plasma protein that generates the oncotic pressure causing fluid to go back from the interstitial fluid to the blood, decreasing the amount of albumin will cause edema. 3-Detoxification: Drugs, hormones, NH3. Most of drugs are detoxified in the liver, some of them exhibit side effects on it. (You should always ask the patients about their history regarding drugs). 4-Storage: Glycogen, TG—Triacylglycerides (fat), Fe, Cu, vitamins. 5-Excretory: Bile (which contains bilirubin from the metabolism of the heme). ❖ Features of the liver ✓ Normal weight of the liver is about 1.5 kg (2.5% of body weight). Increased liver weight is associated with many diseases. ✓ Blood supply of the liver: 1-Portal vein: 60 - 70%. 2-Hepatic artery: 30- 40%. Blood that is coming from the portal vein is not oxygenated but is filled with nutrients and other stuff coming from the gut in which hepatocytes are required to metabolize. On the other hand, blood that is coming from the hepatic artery is oxygenated. They both get mixed in the sinusoidal system of the liver; the hepatocytes do their action on the blood in the sinusoids, after that, blood is discharged to the three hepatic veins draining in the inferior vena cava.
    [Show full text]
  • Conference 5 8 October 2008
    The Armed Forces Institute of Pathology Department of Veterinary Pathology Conference Coordinator: Todd M. Bell, DVM WEDNESDAY SLIDE CONFERENCE 2008-2009 Conference 5 8 October 2008 Conference Moderator: Marc E. Mattix, DVM, MSS, Diplomate ACVP CASE I – Case HN 2516 (AFIP 3105584) neuronophagia of nerve cells, and minute malacic foci. The karyorrhexis of glial cells and rod cells were also Signalment: Whooper swan, Cygnus cygnus sparsely distributed throughout the CNS. The nuclei of perivascular cells (pericytes and astrocytes) were History: This wild swan was found dead at the northern sometimes swollen, and perivascular inflammatory cell lake of Japan in May, 2008. The local veterinarian found infiltration was indiscernible. the feces of this bird were influenza virus positive using a convenient test kit. The carcass was transported to our Imunohistochemistry using rabbit polyclonal antibody university and dissected within our P3 facility. against highly pathogenic avian influenza virus of H5N2 subtype as primary antibody revealed viral antigens in the Gross Pathology: Diffusely the lungs showed severe nuclei of astrocytes (arrow head in Fig. 1-2 and 1-3), congestive edema with edematous thickening of the pleura. microglial cells (arrows in Fig. 1-2), and nerve cells Petechial hemorrhages were scattered on the pericardium (arrows in Fig. 1-3) within and around the glial nodules. and pancreas. Pericardial fluid was mildly increased and accompanied mild edematous thickening of pericardium Besides the brain, lymphocytic necrosis in the spleen, and cardiac sac. The brain was congested. mild fibrinous bronchopneumonia and focal necrosis of exocrine pancreas were found with viral antigens in Laboratory Results: Highly pathogenic avian influenza alveolar epithelial cells, bronchial epithelial cells and virus of H5N1 subtype was isolated from the brain, lungs, exocrine pancreatic cells.
    [Show full text]
  • Of Cytochrome P450
    TMA.PED Lot No. 1810266 Tissue Microarray – Pediatric 3 mm diameter cores, 4 µm thick, 25 cases, 5 controls 01 02 03 04 05 06 A B C D E The microarray is provided unstained. The image above is a hematoxylin and eosin staining of the microarray, which was generated to illustrate histological characteristics of individual samples. This is a representative image. Store at 2-4°C for up to 3 months after date of receipt CAUTION: This sample should be considered as a potential biohazard and universal precautions should be followed. Intended for in vitro use only. These data were generated by and are the property of Sekisui XenoTech. These data are not to be reproduced, published or distributed without the express written consent of Sekisui XenoTech. Datasheet prepared 31 January 2019 TMA.PED Lot No. 1810266 Donor Information Alcohol Core Donor Pathology Gender Age Ethnicity BMI Consumption A01 H1393 Very near normal Male 4 months C 18.8 None A02 H0395 Hepatocyte degeneration 15-20% Male 5.5 months C 17.3 None A03 H1383 Normal Male 12 months C 19.7 None A04 H0322 Diffused feathery degeneration Male 19 months H 14.9 None A05 H1351 Patchy diffused hepatic cell damage (ischemia) Female 20 months H 23.5 None A06 H1334 Patchy cholestasis, feathery degeneration Female 21 months AA 22.8 None B01 H1397 Feathery and ballooning degeneration Female 21 months H 18.9 None B02 H0551 Near normal Male 2 years C 15.5 None B03 H0852 Diffused hepatic cell death (ischemia) Male 2 years H 16.1 None B04 H0872 Massive liquefaction necrosis Male 2 years C 19.3 None
    [Show full text]
  • Manual Laboratory Activity Pathology Anatomy For
    MANUAL LABORATORY ACTIVITY PATHOLOGY ANATOMY FOR STUDENT Resource Person : Ismet M. Nur., dr., SpPA(K)., MM. Module Author : Meta Maulida D., drg., M.Kes. Subject : Cell Injury, Inflammation, Neoplasm Department : Anatomic Pathology Date : January, 2020 A Sequent : I Introduction : 30 min II Pre-test : 5 min III Laboratory activity : 80 min IV Post-test : 5 min B Learning Objectives : After performing laboratory activity, the students should be able to : Describe the macroscopic and microscopic feature of: ballooning degeneration, acute hepatitis, chronic active hepatitis, chronic persistent hepatitis, cirrhosis hepatic, and hepatocellular carcinoma. C Topic : 1. Cell injury. 2. Inflammation 3. Neoplasm. D Venue : Biomedical Laboratory, Faculty of Medicine, UNISBA, Taman Sari 22, Bandung 40116 E Equipment : Poster, atlas, light microscope and preparates of : Ballooning degeneration Chronic active hepatitis Chronic persistent hepatitis Cirrhosis hepatic Hepatocellular carcinoma F Pre-requisite/ Pre-test and Task : Note: If the pre-test score less than 50, the student won't be allowed to follow laboratory activity G Implementation 1. Students are divided into 20 groups 2. Each group is supervised by one tutor Manual Laboratory Department of Anatomic Pathology Page 1 Structure of Liver Microscopic architecture of the liver parenchyma. Both a lobule and an acinus are represented. The idealized classic lobule is represented as hexagonal centered on a central vein (CV), also known as terminal hepatic venule, and has portal tracts at three of its apices. The portal tracts contain branches of the portal vein (PV), hepatic artery (HA), and the bile duct (BD) system. Regions of the lobule generally are referred to as periportal, midzonal, and centrilobular, according to their proximity to portal spaces and central vein.
    [Show full text]
  • Perinatal Exposure to Bisphenol a Exacerbates Nonalcoholic Steatohepatitis-Like Phenotype in Male Rat Offspring Fed on a High-Fat Diet
    JWEI, X SUN and others Maternal BPA exposure and 222:3 313–325 Research hepatic steatosis Perinatal exposure to bisphenol A exacerbates nonalcoholic steatohepatitis-like phenotype in male rat offspring fed on a high-fat diet Jie Wei2,*, Xia Sun1,*, Yajie Chen1, Yuanyuan Li, Liqiong Song, Zhao Zhou, Bing Xu, Yi Lin1 and Shunqing Xu Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Correspondence Huazhong University of Science and Technology, Wuhan 430030, China should be addressed 1Key Laboratory of Urban Environment and Health, Department of Environmental and Molecular Toxicology, to S Xu or Y Lin Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China Emails 2Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen 361102, China [email protected] or *(J Wei and X Sun contributed equally to this work) [email protected] Abstract Bisphenol A (BPA) is one of the environmental endocrine disrupting chemicals, which is Key Words present ubiquitously in daily life. Accumulating evidence indicates that exposure to BPA " bisphenol A Journal of Endocrinology contributes to metabolic syndrome. In this study, we examined whether perinatal exposure " steatosis to BPA predisposed offspring to fatty liver disease: the hepatic manifestation of metabolic " insulin resistance syndrome. Wistar rats were exposed to 50 mg/kg per day BPA or corn oil throughout " oxidative stress gestation and lactation by oral gavage. Offspring were fed a standard chow diet (SD) or a " inflammation high-fat diet (HFD) after weaning.
    [Show full text]