Kasey Hartz Natural Area Reference Sheet Pteridium Aquilinum Bracken

Total Page:16

File Type:pdf, Size:1020Kb

Kasey Hartz Natural Area Reference Sheet Pteridium Aquilinum Bracken Kasey Hartz Natural Area Reference Sheet Pteridium aquilinum Bracken Fern Dennstaedtiaceae (Bracken fern family) Blooming season: No flowers; plant emerges in spring. Plant: This fern is perennial with active growth season in spring and summer. Stipes are 15-90 cm long. The stems are subterranean and true vessels are present. When a cross section is cut the vascular bundles are shaped like a U. The rhizomes are black, horizontal, and creeping. They are also subterranean so the plant is fire resistant; regrowth is quick by the rhizomes. Leaves: The fronds are green, broad, and triangular; 20-80 cm long and 25-50 cm wide. They are tripinnate. The large pinnae are triangular and broad. The smaller pinnae are slim and triangular with the terminal segment of pinna 2-4 times longer than wide. The veins are 2-3 forked. The fronds are dark green, and the fiddle heads brownish and rolled in from the tip. Flower: No flowers. Fruit: No fruit, but sori are found as a continuous strip on the edge of frond separations. The spores mature between July and September. Can be confused with: Could possibly be confused with Osmunda cinnomomea, but fronds are more triangular in shape while O. cinnomomea are more ellipitic. The fronds begins farther up the stipe than O. cinnomomea which begin much closer to the soil. Also O. cinnomomea has a distinctive fertile frond while this fern does not. Pteridium aquilinum var. latiusculum (Desv.) (Eastern Braken) fronds are more triangular and broad; found throughout Michigan (Billington 220). Pteridium aquilinum var. pseudocaudatum (Clute) Heller (Tailed Braken) has a very long undivided, narrow terminal segments 6 times long as wide; found farther south near Oakland and Wayne County (Billington 220-1). Pteridium aquilinum var. pubescens Underw. (Western Bracken) the bottom of the pinnules are somewhat pubescent or hairy; only fond in a small portion of the UP in Michigan (Billington 220). Kasey Hartz Natural Area Reference Sheet Pteridium aquilinum 2 Bracken Fern Geographic range: Type specimen location: Upland Oak-Pine and Maple-Witch Hazel Habitats State: Found commonly through the Upper Peninsula to southern portions of the State. Regional: Found abundantly from Newfoundland to Manitoba, Georgia, Colorado, and to South Dakota, but is more common in the northern portion of its range. Habitat: Local: Found in open shaded woods, fields, along the road side, and on dry slopes. Is gravel bed and sand soil tolerant. Regional: Found in barrens, pastures, and open woods usually in large colonies. Prefers moderately to strongly acidic soils with a pH of 4.5-7. Also prefers medium to coarse soils and is medially drought tolerant with a precipitation requirement of 41 cm minimum and 152 cm maximum (USDA-Plants Database). Common local companions: Greenbrier, blueberry, huckleberry, oak, white pine, red maple, witch hazel, and sassafras. Usages: Human: Can be used as a yellow-green dye or gray on silk; the best color comes from fiddleheads (Dye Plants & Dyeing-a handbook 26). This fern has been used as a substitute for hops and has also been cooked in soups (Hendrick 470). In Europe it was burned to make potash (Flora of North America Vol. 2 202). Native Americans used the roots as a tea for worms, cramps, digestive problems, and diarrhea (Angier 69-71). Currently is used in garden cultivation, but since this fern is so aggressive it is considered weedy and not widely used (USDA-Plants Database). The fiddleheads have been known to be eaten cooked or raw, but they are slightly toxic. It is not advisable to eat the fiddleheads raw, but if they are cooked there is not toxicity. Other Animal: Some browsing animals will eat it especially hogs, but cattle and horses may die from eating the plant. Why is it called that?: Pteridium means small fern and aquilinum means eagle-like from the vasculature appearance in a cross section of a rhizome (Gledhill). Prepared by: Elizabeth LaRue April 2008 .
Recommended publications
  • DENNSTAEDTIACEAE 1. MONACHOSORUM Kunze, Bot. Zeitung (Berlin) 6: 119. 1848
    This PDF version does not have an ISBN or ISSN and is not therefore effectively published (Melbourne Code, Art. 29.1). The printed version, however, was effectively published on 6 June 2013. Yan, Y. H., X. P. Qi, W. B. Liao, F. W. Xing, M. Y. Ding, F. G. Wang, X. C. Zhang, Z. H. Wu, S. Serizawa, J. Prado, A. M. Funston, M. G. Gilbert & H. P. Nooteboom. 2013. Dennstaedtiaceae. Pp. 147–168 in Z. Y. Wu, P. H. Raven & D. Y. Hong, eds., Flora of China, Vol. 2–3 (Pteridophytes). Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. DENNSTAEDTIACEAE 碗蕨科 wan jue ke Yan Yuehong (严岳鸿)1, Qi Xinping (齐新萍)2, Liao Wenbo (廖文波)3, Xing Fuwu (邢福武)4, Ding Mingyan (丁明艳)3, Wang Faguo (王发国)4, Zhang Xianchun (张宪春)5, Wu Zhaohong (吴兆洪 Wu Shiew-hung)4; Shunshuke Serizawa6, Jefferson Prado7, A. Michele Funston8, Michael G. Gilbert9, Hans P. Nooteboom10 Plants terrestrial, sometimes climbing. Rhizome usually long creeping, solenostelic, siphonostelic, or polystelic, usually covered with multicellular hairs, less often with few-celled, cylindrical, glandular hairs or multicellular bristles, scales absent. Fronds medium-sized to large, sometimes indeterminate, monomorphic; stipes not articulate to rhizome, usually hairy, rarely glabrous; lamina 1–4-pinnately compound, thinly herbaceous to leathery, hairy or glabrous, without scales; rachis grooved adaxially, some- times with buds (Monachosorum); pinnae opposite or alternate; veins usually free, pinnate or forked, not reaching margin, reticulate without included veinlets in Histiopteris. Sori marginal or intramarginal, linear or orbicular, terminal on a veinlet or on a vascular commissure joining apices of veins; indusia linear or bowl-shaped, sometimes double with outer false indusium formed from thin reflexed lamina margin and inconspicuous inner true indusium; paraphyses present or not.
    [Show full text]
  • The Taxonomic Status of Gladiolus Illyricus (Iridaceae) in Britain
    The Taxonomic Status of Gladiolus illyricus (Iridaceae) in Britain Aeron Buchanan Supervisor: Fred Rumsey, Natural History Museum, London A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College, London Abstract First noticed officially in Britain in 1855, Gladiolus illyricus (Koch) presents an interesting taxonomic and biogeographical challenge: whether or not this isolated northern population should be recognized as a separate sub-species. Fundamental conservation issues rest on the outcome. Here, the investigation into the relationship of the G. illyricus plants of the New Forest, Hampshire, to Gladiolus species across Europe, northern Africa and the middle east is initiated. Two chloroplast regions, one in trnL–trnF and the other across psbA–trnH have been sequenced for 42 speci- mens of G. illyricus, G. communis, G. italicus, G. atroviolaceus, G. triphyllos and G. anatolicus. Phylogenetic and biogeographical treatments support the notion of an east–west genetic gradation along the Mediterranean. Iberia particularly appears as a zone of high hybridization potential and the source of the New Forest population. Alignment with sequences obtained from GenBank give strong support to the classic taxonomy of Gladiolus being monophyletic in its sub-family, Ixioideae. Comments on these chloroplast regions for barcoding are also given. In conclusion, the genetic localization of Britain’s G. illyricus population as an extremity haplotype suggests that it could well deserve sub-species status. Contents 1 Introduction 2 2 Background 4 3 Materials and Methods 8 4 Results and Discussion 15 5 Conclusions 26 Appendices 28 References 56 1. Introduction G. illyricus in Britain Figure 1: G.
    [Show full text]
  • California's Native Ferns
    CALIFORNIA’S NATIVE FERNS A survey of our most common ferns and fern relatives Native ferns come in many sizes and live in many habitats • Besides living in shady woodlands and forests, ferns occur in ponds, by streams, in vernal pools, in rock outcrops, and even in desert mountains • Ferns are identified by producing fiddleheads, the new coiled up fronds, in spring, and • Spring from underground stems called rhizomes, and • Produce spores on the backside of fronds in spore sacs, arranged in clusters called sori (singular sorus) Although ferns belong to families just like other plants, the families are often difficult to identify • Families include the brake-fern family (Pteridaceae), the polypody family (Polypodiaceae), the wood fern family (Dryopteridaceae), the blechnum fern family (Blechnaceae), and several others • We’ll study ferns according to their habitat, starting with species that live in shaded places, then moving on to rock ferns, and finally water ferns Ferns from moist shade such as redwood forests are sometimes evergreen, but also often winter dormant. Here you see the evergreen sword fern Polystichum munitum Note that sword fern has once-divided fronds. Other features include swordlike pinnae and round sori Sword fern forms a handsome coarse ground cover under redwoods and other coastal conifers A sword fern relative, Dudley’s shield fern (Polystichum dudleyi) differs by having twice-divided pinnae. Details of the sori are similar to sword fern Deer fern, Blechnum spicant, is a smaller fern than sword fern, living in constantly moist habitats Deer fern is identified by having separate and different looking sterile fronds and fertile fronds as seen in the previous image.
    [Show full text]
  • Checklist of Common Native Plants the Diversity of Acadia National Park Is Refl Ected in Its Plant Life; More Than 1,100 Plant Species Are Found Here
    National Park Service Acadia U.S. Department of the Interior Acadia National Park Checklist of Common Native Plants The diversity of Acadia National Park is refl ected in its plant life; more than 1,100 plant species are found here. This checklist groups the park’s most common plants into the communities where they are typically found. The plant’s growth form is indicated by “t” for trees and “s” for shrubs. To identify unfamiliar plants, consult a fi eld guide or visit the Wild Gardens of Acadia at Sieur de Monts Spring, where more than 400 plants are labeled and displayed in their habitats. All plants within Acadia National Park are protected. Please help protect the park’s fragile beauty by leaving plants in the condition that you fi nd them. Deciduous Woods ash, white t Fraxinus americana maple, mountain t Acer spicatum aspen, big-toothed t Populus grandidentata maple, red t Acer rubrum aspen, trembling t Populus tremuloides maple, striped t Acer pensylvanicum aster, large-leaved Aster macrophyllus maple, sugar t Acer saccharum beech, American t Fagus grandifolia mayfl ower, Canada Maianthemum canadense birch, paper t Betula papyrifera oak, red t Quercus rubra birch, yellow t Betula alleghaniesis pine, white t Pinus strobus blueberry, low sweet s Vaccinium angustifolium pyrola, round-leaved Pyrola americana bunchberry Cornus canadensis sarsaparilla, wild Aralia nudicaulis bush-honeysuckle s Diervilla lonicera saxifrage, early Saxifraga virginiensis cherry, pin t Prunus pensylvanica shadbush or serviceberry s,t Amelanchier spp. cherry, choke t Prunus virginiana Solomon’s seal, false Maianthemum racemosum elder, red-berried or s Sambucus racemosa ssp.
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Chiricahua National Monument
    In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument Open-File Report 2008-1023 U.S. Department of the Interior U.S. Geological Survey National Park Service This page left intentionally blank. In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument By Brian F. Powell, Cecilia A. Schmidt, William L. Halvorson, and Pamela Anning Open-File Report 2008-1023 U.S. Geological Survey Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B.F., Schmidt, C.A., Halvorson, W.L., and Anning, Pamela, 2008, Vascular plant and vertebrate inventory of Chiricahua National Monument: U.S. Geological Survey Open-File Report 2008-1023, 104 p. [http://pubs.usgs.gov/of/2008/1023/]. Cover photo: Chiricahua National Monument. Photograph by National Park Service. Note: This report supersedes Schmidt et al. (2005). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Bracken Management: Ecological, Archaeological and Landscape Issues and Priorities
    Natural England Technical Information Note TIN047 Bracken management: ecological, archaeological and landscape issues and priorities For over sixty years research has been carried out on the ecology, management and control of bracken Pteridium aquilinum. Much of this has been aimed at discovering the best methods of control where it has invaded plant communities of higher conservation value, such as heathland and unimproved grassland. More recent research has focussed on the damage it may do to archaeology. Conflicts between different environmental interests can arise where bracken is present. Where they do it is important that any decisions on management are made in the light of the best information available and that the proposals are sustainable. This note identifies some of the issues and suggests priorities in a number of conflict situations. Further information is available in SIN011 Bracken and the TIN048 Bracken management and control. Bracken and Biodiversity Action Plan late summer when other grasslands have (BAP) priority habitats become scorched and less palatable. Grassland Heathland Bracken grows best on deep well drained soils. Both lowland and upland heath are considered It will invade grassland on acid and neutral soils. of international importance and recognised as It is less likely to be a problem on calcareous BAP priority habitats. They both may be invaded grasslands. Where it grows on acid grassland by bracken. In areas of established and healthy around moorland edges, it is of particular heath, bracken may only increase slowly. concern because of its negative impacts on However, in fragmented heath bracken densities valuable grassland communities. In these can increase rapidly.
    [Show full text]
  • Pdf/A (670.91
    Phytotaxa 164 (1): 001–016 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.164.1.1 On the monophyly of subfamily Tectarioideae (Polypodiaceae) and the phylogenetic placement of some associated fern genera FA-GUO WANG1, SAM BARRATT2, WILFREDO FALCÓN3, MICHAEL F. FAY4, SAMULI LEHTONEN5, HANNA TUOMISTO5, FU-WU XING1 & MAARTEN J. M. CHRISTENHUSZ4 1Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. E-mail: [email protected] 2School of Biological and Biomedical Science, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom. 3Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8075 Zurich, Switzerland. 4Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 4DS, United Kingdom. E-mail: [email protected] (author for correspondence) 5Department of Biology, University of Turku, FI-20014 Turku, Finland. Abstract The fern genus Tectaria has generally been placed in the family Tectariaceae or in subfamily Tectarioideae (placed in Dennstaedtiaceae, Dryopteridaceae or Polypodiaceae), both of which have been variously circumscribed in the past. Here we study for the first time the phylogenetic relationships of the associated genera Hypoderris (endemic to the Caribbean), Cionidium (endemic to New Caledonia) and Pseudotectaria (endemic to Madagascar and Comoros) using DNA sequence data. Based on a broad sampling of 72 species of eupolypods I (= Polypodiaceae sensu lato) and three plastid DNA regions (atpA, rbcL and the trnL-F intergenic spacer) we were able to place the three previously unsampled genera.
    [Show full text]
  • Action for Pearl-Bordered Fritillary
    FCS Technical Note Support for pearl-bordered fritillary conservation under the Scottish Rural Development Programme (SRDP) Introduction This technical guidance note is aimed at landowners, managers and their advisors who are considering undertaking woodland management for pearl-bordered fritillary under SRDP. It provides information on the most suitable management to benefit the species and how this management might be achieved and assessed under SRDP. Background The pearl-bordered fritillary is a UKBAP Priority species as well as being listed by Scottish Natural Heritage (SNH) as a Species Action Framework (SAF) species. It is also one of the key woodland species identified for action by Forestry Commission Scotland in the Scottish Forestry Strategy 2006. Pearl-bordered fritillary is one of the most rapidly declining butterflies in Britain and Ireland. Scottish populations are declining less severely than those south of the Border and are therefore becoming of increasing significance making up over a third of the British population. It is in need of urgent conservation action. Forestry Commission Scotland has published a Species Action Note setting out conservation needs and priorities in more depth than is included in this note. Species information The pearl-bordered fritillary is widespread but local in Scotland with populations in the glens of the Highlands, Grampian, Argyll, Moray and Perthshire, and an isolated population in South West Scotland around Dumfries. In Scotland the pearl-bordered fritillary is a butterfly of woodland edges or the open spaces within woodlands and it has a one-year life cycle. It requires sunny, sheltered sites, normally south-facing hillsides, as both the adult butterfly and its caterpillar require a very warm micro- climate.
    [Show full text]
  • DRAFT OAEC NATIVE PLANT LIST FERNS and FERN ALLIES
    DRAFT OAEC NATIVE PLANT LIST FERNS and FERN ALLIES: Blechnaceae: Deer Fern Family Giant Chain Fern Woodwardia fimbriata Dennstaedtiaceae: Bracken Fern Bracken Pteridium aquilinum Dryopteridaceae: Wood Fern Family Lady Fern Athyrium filix-femina Wood Fern Dryopteris argutanitum Western Sword Fern Polystichum muitum Polypodiaceae: Polypody Family California Polypody Polypodium californicum Pteridaceae: Brake Family California Maiden-Hair Adiantum jordanii Coffee Fern Pellaea andromedifolia Goldback Fern Pentagramma triangularis Isotaceae: Quillwort Family Isoetes sp? Nuttallii? Selaginellaceae: Spike-Moss Family Selaginella bigelovii GYMNOPSPERMS Pinaceae: Pine Family Douglas-Fir Psuedotsuga menziesii Taxodiaceae: Bald Cypress Family Redwood Sequoia sempervirens ANGIOSPERMS: DICOTS Aceraceae: Maple Family Big-Leaf Maple Acer macrophyllum Box Elder Acer negundo Anacardiaceae: Sumac Family Western Poison Oak Toxicodendron diversilobum Apiaceae: Carrot Family Lomatium( utriculatum) or (carulifolium)? Pepper Grass Perideridia kelloggii Yampah Perideridia gairdneri Sanicula sp? Sweet Cicely Osmorhiza chilensis Unidentified in forest at barn/deer fence gate Angelica Angelica tomentosa Apocynaceae: Dogbane or Indian Hemp Family Apocynum cannabinum Aristolochiaceae Dutchman’s Pipe, Pipevine Aristolochia californica Wild Ginger Asarum caudatum Asteraceae: Sunflower Family Grand Mountain Dandelion Agoseris grandiflora Broad-leaved Aster Aster radulinus Coyote Brush Baccharis pilularis Pearly Everlasting Anaphalis margaritacea Woodland Tarweed Madia
    [Show full text]
  • Buds, Berries & Leaves
    Buds, berries & leaves Monitoring moorland plants Bee, butterfly, hare & plant illustrations © Chris Shields Bird illustrations © Mike Langman Housekeeping • Emergency Exits • Fire assembly point • Toilets Today’s Session 1. Presentation • The importance of moorlands • What is phenology? • Conservation works • Species links • Plant ecology, ID & folklore • ID Quiz SHORT BREAK • Upland habitats • How to conduct a survey • Submitting your records • How data will be used 2. Practical session to practice survey methods and field ID 3. Feedback The importance of moorlands • The Peak District & South Pennine moorlands are of great importance, being the most southerly point in the range of some species. • Climate change may affect these population ranges and it will be noticed here first. • Designated as both a Special Protection Area (SPA) for breeding birds and as a Special Area of Conservation (SAC) for internationally important habitats. What is phenology? • Phenology is the study of life history stages, such as leafing, flowering and berry ripening in plants, or migration and breeding in animals. Bees rely on nectar being available at the right • Changes in climate can alter the timing of time and plants rely on the pollinators too phenological events which may cause mismatch between the life stages of different species, for example: • Earlier or later flowering may change the amount of flowers available to pollinators • Changes in the fruiting period may result in reduced food availability for birds • Repeated recording of these crucial stages enables us to identify changes in phenology. Coat colour change in mountain hares is another example of phenology Courtesy of Tim Sparks www.naturescalendar.org.uk Which plants? Field and laboratory experiments have shown changes in the phenology of many moorland species.
    [Show full text]
  • Bracken Control • Want to Prepare a Bracken Management Plan
    WHAT IS SEARS? SEARS is a partnership delivering rural and environmental services on behalf of the Scottish Government. We will provide: • a streamlined service; • easy access to information and advice; • a consistent and responsive service; and • a customer focused service WHO ARE THE SEARS PARTNERS? Animal Health Cairngorms National Park Authority (CNPA) Crofters Commission (CC) Deer Commission for Scotland (DCS) Forestry Commission Scotland (FCS) Loch Lomond & The Trossachs National Park Authority (LLTNPA) Scottish Environment Protection Agency (SEPA) Scottish Natural Heritage (SNH) Scottish Government Rural Payments and Inspections Directorate (SGRPID) www.sears.scotland.gov.uk email: [email protected] INTRODUCTION THIS LEAFLET IS INTENDED FOR FARMERS, FORESTERS AND MOORLAND MANAGERS WHO: • WANT TO KNOW MORE ABOUT BRACKEN CONTROL • WANT TO PREPARE A BRACKEN MANAGEMENT PLAN It is an updated version of a booklet originally produced by the Southern Uplands Partnership, which has proved useful to land managers throughout Scotland. Following the general information on these pages, the main steps which should be considered in order to produce a bracken management plan are laid out in Stages 1-5. A management plan will help to ensure that methods are appropriate and will achieve their aims, and is essential if you intend to seek support under the Scotland Rural Development Programme (SRDP) Rural Development Contracts - Rural Priorities. You may want to seek professional help with the production of a management plan. BACKGROUND Bracken ( Pteridium aquilinum ) is an important and natural part of our landscape, and its abundance appears to have fluctuated over thousands of years. Its invasive nature allows it to spread, and it now occurs widely within a variety of habitats throughout Scotland.
    [Show full text]
  • Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China
    diversity Article Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China Xiaohua Dai 1,2,* , Chunfa Chen 1, Zhongyang Li 1 and Xuexiong Wang 1 1 Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; [email protected] (C.C.); [email protected] (Z.L.); [email protected] (X.W.) 2 National Navel-Orange Engineering Research Center, Ganzhou 341000, China * Correspondence: [email protected] or [email protected]; Tel.: +86-137-6398-8183 Received: 16 March 2020; Accepted: 30 March 2020; Published: 1 April 2020 Abstract: Human disturbances are greatly threatening to the biodiversity of vascular plants. Compared to seed plants, the diversity patterns of ferns have been poorly studied along disturbance gradients, including aspects of their taxonomic, phylogenetic, and functional diversity. Longnan County, a biodiversity hotspot in the subtropical zone in South China, was selected to obtain a more thorough picture of the fern–disturbance relationship, in particular, the taxonomic, phylogenetic, and functional diversity of ferns at different levels of disturbance. In 90 sample plots of 5 5 m2 along roadsides × at three sites, we recorded a total of 20 families, 50 genera, and 99 species of ferns, as well as 9759 individual ferns. The sample coverage curve indicated that the sampling effort was sufficient for biodiversity analysis. In general, the taxonomic, phylogenetic, and functional diversity measured by Hill numbers of order q = 0–3 indicated that the fern diversity in Longnan County was largely influenced by the level of human disturbance, which supports the ‘increasing disturbance hypothesis’.
    [Show full text]