Review Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphology and Histology of the Testicles
MORPHOLOGY AND HISTOLOGY OF THE TESTICLES OF QUEEN ANGELFISH Holacanthus ciliaris Arquivos de Ciências do Mar (LINNAEUS, 1758) (TELEOSTEI: PERCIFORMES: POMACANTHIDAE) Morfologia e histologia dos testículos do peixe-anjo Holacanthus ciliaris (Linnaeus, 1758) (Teleostei: Perciformes: Pomacanthidae) Mara C. Nottingham1 , José Roberto Feitosa Silva2 , Maria Elisabeth de Araújo1, 3 ABSTRACT Aspects of the morphology and histology of the testicles of Holacanthus ciliaris were studied in this research. Monthly collections of living fish, totaling 39 males, were carried out between December, 2000 and November, 2001 on the coast of Ceará State, Brazil. The total length of the fish varied between 63.4 mm and 334 mm, the standard length between 50.9 mm and 270 mm, and the total weight between 6,70 g and 590 g. The testicles were bilobed and ribbon-like in shape, with firm texture and coloration varying between transparent and amber. In the histological study, male gametes were found in all espermatogenesis stages along the months of the year. Key words: Holacanthus ciliaris, Pomacanthidae, reef fish, reproduction. RESUMO Aspectos da morfologia e histologia de testículos de Holacanthus ciliaris foram estudados nesta pesquisa. Coletas mensais de peixes vivos, totalizando 39 machos, foram realizadas entre os meses de dezembro de 2000 e novembro de 2001 na costa do Estado do Ceará. O comprimento total dos peixes variou entre 63,4 e 334mm, o comprimento padrão entre 50,9 e 270mm e o peso total entre 6,70 e 590g. Os testículos apresentavam-se bilobulados, em forma de fita, com textura firme e coloração variando entre transparente e âmbar. No estudo histológico foram encontrados gametas masculinos em todos os estágios da espermatogênese durante os meses do ano. -
Dedication Donald Perrin De Sylva
Dedication The Proceedings of the First International Symposium on Mangroves as Fish Habitat are dedicated to the memory of University of Miami Professors Samuel C. Snedaker and Donald Perrin de Sylva. Samuel C. Snedaker Donald Perrin de Sylva (1938–2005) (1929–2004) Professor Samuel Curry Snedaker Our longtime collaborator and dear passed away on March 21, 2005 in friend, University of Miami Professor Yakima, Washington, after an eminent Donald P. de Sylva, passed away in career on the faculty of the University Brooksville, Florida on January 28, of Florida and the University of Miami. 2004. Over the course of his diverse A world authority on mangrove eco- and productive career, he worked systems, he authored numerous books closely with mangrove expert and and publications on topics as diverse colleague Professor Samuel Snedaker as tropical ecology, global climate on relationships between mangrove change, and wetlands and fish communities. Don pollutants made major scientific contributions in marine to this area of research close to home organisms in south and sedi- Florida ments. One and as far of his most afield as enduring Southeast contributions Asia. He to marine sci- was the ences was the world’s publication leading authority on one of the most in 1974 of ecologically important inhabitants of “The ecology coastal mangrove habitats—the great of mangroves” (coauthored with Ariel barracuda. His 1963 book Systematics Lugo), a paper that set the high stan- and Life History of the Great Barracuda dard by which contemporary mangrove continues to be an essential reference ecology continues to be measured. for those interested in the taxonomy, Sam’s studies laid the scientific bases biology, and ecology of this species. -
Jarvis Island NWR Final
Jarvis Island National Wildlife Refuge Comprehensive Conservation Plan FINDING OF NO SIGNIFICANT IMPACT Jarvis Island National Wildlife Refuge Comprehensive Conservation Plan Unincorporated U.S. Territory, Central Pacific Ocean The U.S. Fish and Wildlife Service (Service) has completed the Comprehensive Conservation Plan (CCP) and Environmental Assessment (EA) for Jarvis Island National Wildlife Refuge (Refuge). The CCP will guide management of the Refuge for the next 15 years. The CCP and EA describe the Service’s preferred alternative for managing the Refuge and its effects on the human environment. Decision Following comprehensive review and analysis, the Service selected Alternative B in the draft EA for implementation because it is the alternative that best meets the following criteria: Achieves the mission of the National Wildlife Refuge System. Achieves the purposes of the Refuge. Will be able to achieve the vision and goals for the Refuge. Maintains and restores the ecological integrity of the habitats and plant and animal populations at the Refuge. Addresses the important issues identified during the scoping process. Addresses the legal mandates of the Service and the Refuge. Is consistent with the scientific principles of sound wildlife management. Can be implemented within the projected fiscal and logistical management constraints associated with the Refuge’s remote location. As described in detail in the CCP and EA, implementing the selected alternative will have no significant impacts on any of the natural or cultural resources identified in the CCP and EA. Public Review The planning process incorporated a variety of public involvement techniques in developing and reviewing the CCP. This included three planning updates, meetings with partners, and public review and comment on the planning documents. -
CAESIONIDAE Fusiliers by K.E
click for previous page Perciformes: Percoidei: Caesonidae 2919 CAESIONIDAE Fusiliers by K.E. Carpenter iagnostic characters: Oblong to fusiform, moderately compressed, medium-sized to small (to about D50 cm) lutjanoid fishes; longitudinal axis from tip of snout to middle of caudal fin passing through centre of eye. Eye moderately large, its diameter longer than snout length. Mouth small and highly protrusible; 1 or 2 finger-like postmaxillary processes on dorsoposterior surface of premaxilla (Figs 1 and 2); angle of jaw oblique, about 40° to horizontal. Dentition variously reduced; small or minute conical teeth; premaxillae, vomer, and palatines with or without teeth. Caudal fin deeply forked. Margin of dorsal and anal fins more or less evenly sloping; third or fourth dorsal-fin spines longest; second or third anal-fin spines longest, remaining spines and rays gradually decreasing in length (except in Dipterygonotus with dorsal fin profile not evenly sloping, last IV-V dorsal-fin spines small and nearly separate, connected only at their bases by membrane, and dorsal-fin rays much longer than these spines). Dorsal fin with X to XV slender weak spines and 8 to 22 soft rays; anal fin with III spines and 9 to 13 soft rays;pelvicfins with I spine and 5 soft rays; pectoral fins with 16 to 24 rays; caudal fin distinctly forked, with pointed lobes. Branchiostegal rays 7. Scales moderate to small, weakly ctenoid; lateral-line scales 45 to 88; scale rows on body running horizontally; dorsal and anal fins with scales except for Gymnocaesio gymnoptera and Dipterygonotus balteatus. Ascending premaxillary process a separate ossification from premaxilla; ethmo-maxillary ligament absent; a separate A1’ section of the adductor mandibulae which originates on the subocular shelf. -
Arothron Hispidus (Linnaeus, 1758)
Arothron hispidus (Linnaeus, 1758) English Name: Whitespotted pufferfish Family: TETRAODONTIDAE Local Name: Lahjehi koli Order: Tetraodontiformes Size: Max. 48 cm Specimen: MRS/P0482/97 Distinctive Characters: Dorsal fin with 10-Il rays. Anal fin with 10-11 rays. Pectoral fin with 17-19 rays. Small spinules on head and body except snout and posterior caudal peduncle. Nostril consisting of two fleshy flaps from a common base (characteristic of the genus). Caudal fin rounded. Colour: Greyish to greenish brown with small white spots on head, back and sides. I or 2 yellow rings and several yellow spots around pectoral fin. 2-5 bars across sides, always a short dark barbelow eye and another below pectoral fin. Habitatand Biology: Generally found in shallow protected areas to depths of 25 m. Juveniles seen in weedy areas. Diet highly varied; feeding on molluscs, tunicates, sponges, corals, anemones, crabs, tubeworms, sea urchins, brittle stars and starfishes (including crown-of-thorns), and hydroids. Distribution: Indo-Pacific and Eastern Pacific. Remarks: Arothron hispidus like other pufferfishes, is highly poisonous. The degree of toxicity of puffer fishes varies greatly with the species and apparently also with geographical area and season. 368 Arothron immaculatus (Bloch and Schneider, 1801 English Name: Blackedged pufferfish Family: TETRAODONTIDAE Local Name: Fukkoli Order: Tetraodontiformes Size: Max. 30 cm Specimen: MRS/0001/86 Distinctive Characters: Dorsal fin with 9-10 rays. Anal fin with 9-10 rays. Pectoral fin with 15-16 rays. Body round in cross-section. Nasal organsof two tentacles joined at the base. Thebody except posterior part of tail, base of anal and snout covered with slender spines. -
Checklist of Serranid and Epinephelid Fishes (Perciformes: Serranidae & Epinephelidae) of India
Journal of the Ocean Science Foundation 2021, Volume 38 Checklist of serranid and epinephelid fishes (Perciformes: Serranidae & Epinephelidae) of India AKHILESH, K.V. 1, RAJAN, P.T. 2, VINEESH, N. 3, IDREESBABU, K.K. 4, BINEESH, K.K. 5, MUKTHA, M. 6, ANULEKSHMI, C. 1, MANJEBRAYAKATH, H. 7, GLADSTON, Y. 8 & NASHAD M. 9 1 ICAR-Central Marine Fisheries Research Institute, Mumbai Regional Station, Maharashtra, India. Corresponding author: [email protected]; Email: [email protected] 2 Andaman & Nicobar Regional Centre, Zoological Survey of India, Port Blair, India. Email: [email protected] 3 Department of Health & Family Welfare, Government of West Bengal, India. Email: [email protected] 4 Department of Science and Technology, U.T. of Lakshadweep, Kavaratti, India. Email: [email protected] 5 Southern Regional Centre, Zoological Survey of India, Chennai, Tamil Nadu, India. Email: [email protected] 6 ICAR-Central Marine Fisheries Research Institute, Visakhapatnam Regional Centre, Andhra Pradesh, India. Email: [email protected] 7 Centre for Marine Living Resources and Ecology, Kochi, Kerala, India. Email: [email protected] 8 ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India. Email: [email protected] 9 Fishery Survey of India, Port Blair, Andaman and Nicobar Islands, 744101, India. Email: [email protected] Abstract We provide an updated checklist of fishes of the families Serranidae and Epinephelidae reported or listed from India, along with photographs. A total of 120 fishes in this group are listed as occurring in India based on published literature, of which 25 require further confirmation and validation. We confirm here the presence of at least 95 species in 22 genera occurring in Indian marine waters. -
Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes. -
Marine Reconnaissance Survey of Proposed Sites for a Small Boat Harbor in Agat Bay, Guam
Ii MARINE RECONNAISSANCE SURVEY OF PROPOSED SITES FOR A SMALL BOAT HARBOR IN AGAT BAY, GUAM Mitchell 1. Chernin, Dennis R. Lassuy, Richard "E" Dickinson, and John W. Shepard II Submitted to !i U. S. Army Corps of Engineers Contract No. DACWB4-77-C-0061 I! I ~ Technical Report No. 39 University of Guam Marine Laboratory September 1977 , ,; , TABLE OF CONTENTS Page INTRODUCTION 1 METHODS 3 RESULTS AND DISCUSSION 5 Description of Study Sites 5 Macro-invertebrates 7 Marine Plants 13 Corals 22 Fishes 29 Currents 38 Water Quality 40 CONCLUSIONS AND RECOMMENDATIONS 47 LITERATURE CITED 49 APPENDIX 50 LIST OF FIGURES 1. General location map for the Agat Bay study areas. 2. Map indicating general topographical features at the Nimitz and Ta1eyfac study sites. 6 3. Map indicating general topographical features at the Bangi site. 17 4. Current movement along three transects at the Bangi site at low tide. 41 5. Current movement along two transects at the Bangi site at high tide. 42 6. Current movement on the Northern (Tr.IV) and Center (Tr.V) reef flats and Nimitz Channel during high tide. 43 7. Current movement on the Northern and Center reef flats and Nimitz Channel during a falling tide. 44 8. Current movement on the Taleyfac reef flat and Ta1eyfac Bay during a falling tide. 45 9. Current movement on the Ta1eyfac reef flat (Tr.VI) and Taleyfac Bay during a rising tide. 46 A-1. Location of two fish transects at the Gaan site 51 A-2. Density of fishes in each 2D-meter transect interval of Transect A (Fig. -
Research Article
z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 9, Issue, 08, pp.55487-55491, August, 2017 ISSN: 0975-833X RESEARCH ARTICLE STUDIES ON RESOURCE POTENTIAL AND DIVERSITY OF PUFFER FISHES ALONG DIGHA COAST, WEST BENGAL, INDIA *Rudra Prasad Nath and Jayanta Kumar Kundu Department of Zoology, Vidyasagar University, Midnapore -721102, West Bengal, India ARTICLE INFO ABSTRACT Article History: The present study describes the distribution of puffer fishes from the coastal belt of Digha (between Received 22nd May, 2017 21°32´N to 21°45´N latitude and 87°32´E to 87°50´E longitude) in West Bengal along the east coast Received in revised form of India. The puffer fishes were collected by trawling from three different stations (Digha mohona, 09th June, 2017 Sankarpur, Soula). During this survey, 7 different species from 5 genera under the order Accepted 27th July, 2017 Tetraodontiformes belonging to the family Tetraodontidae was identified viz, Arothron stellatus, Published online 31st August, 2017 Arothron immaculatus, Chelonodon patoca, Lagocephalus inermis, Lagocephalus lunaris, Takifugu oblongus, Tetraodon fluviatilis. The present study revealed that three puffer fishes were distributed Key words: mostly viz, Lagocephalus lunaris (51.49%), Takifugu oblongus (27.02%), Tetraodon fluviatilis (13.55%) and rest of the puffers are very few viz, Arothron stellatus (2.09%), Arothron immaculatus Puffer fish, Tetraodontidae, (0.28%), Chelonodon patoca (1.50%), Lagocephalus inermis (4.07%). Lagocephalus lunaris was Tetraodontiformes, Seasonal abundance, recorded maximum from this coastal region. This study also summarized the distribution as well as Puffer diversity, Digha coast. -
Reef Fishes of the Bird's Head Peninsula, West
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
The Global Trade in Marine Ornamental Species
From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization. -
Morphological Variations in the Scleral Ossicles of 172 Families Of
Zoological Studies 51(8): 1490-1506 (2012) Morphological Variations in the Scleral Ossicles of 172 Families of Actinopterygian Fishes with Notes on their Phylogenetic Implications Hin-kui Mok1 and Shu-Hui Liu2,* 1Institute of Marine Biology and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan 2Institute of Oceanography, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan (Accepted August 15, 2012) Hin-kui Mok and Shu-Hui Liu (2012) Morphological variations in the scleral ossicles of 172 families of actinopterygian fishes with notes on their phylogenetic implications. Zoological Studies 51(8): 1490-1506. This study reports on (1) variations in the number and position of scleral ossicles in 283 actinopterygian species representing 172 families, (2) the distribution of the morphological variants of these bony elements, (3) the phylogenetic significance of these variations, and (4) a phylogenetic hypothesis relevant to the position of the Callionymoidei, Dactylopteridae, and Syngnathoidei based on these osteological variations. The results suggest that the Callionymoidei (not including the Gobiesocidae), Dactylopteridae, and Syngnathoidei are closely related. This conclusion was based on the apomorphic character state of having only the anterior scleral ossicle. Having only the anterior scleral ossicle should have evolved independently in the Syngnathioidei + Dactylopteridae + Callionymoidei, Gobioidei + Apogonidae, and Pleuronectiformes among the actinopterygians studied in this paper. http://zoolstud.sinica.edu.tw/Journals/51.8/1490.pdf Key words: Scleral ossicle, Actinopterygii, Phylogeny. Scleral ossicles of the teleostome fish eye scleral ossicles and scleral cartilage have received comprise a ring of cartilage supporting the eye little attention. It was not until a recent paper by internally (i.e., the sclerotic ring; Moy-Thomas Franz-Odendaal and Hall (2006) that the homology and Miles 1971).