Metal Chelates of Petunidin Derivatives Exhibit Enhanced Color and Stability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LC–MS/MS and UPLC–UV Evaluation of Anthocyanins and Anthocyanidins During Rabbiteye Blueberry Juice Processing
beverages Article LC–MS/MS and UPLC–UV Evaluation of Anthocyanins and Anthocyanidins during Rabbiteye Blueberry Juice Processing Rebecca E. Stein-Chisholm 1, John C. Beaulieu 2,* ID , Casey C. Grimm 2 and Steven W. Lloyd 2 1 Lipotec USA, Inc. 1097 Yates Street, Lewisville, TX 75057, USA; [email protected] 2 United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; [email protected] (C.C.G.); [email protected] (S.W.L.) * Correspondence: [email protected]; Tel.: +1-504-286-4471 Academic Editor: António Manuel Jordão Received: 11 October 2017; Accepted: 1 November 2017; Published: 25 November 2017 Abstract: Blueberry juice processing includes multiple steps and each one affects the chemical composition of the berries, including thermal degradation of anthocyanins. Not-from-concentrate juice was made by heating and enzyme processing blueberries before pressing, followed by ultrafiltration and pasteurization. Using LC–MS/MS, major and minor anthocyanins were identified and semi-quantified at various steps through the process. Ten anthocyanins were identified, including 5 arabinoside and 5 pyrannoside anthocyanins. Three minor anthocyanins were also identified, which apparently have not been previously reported in rabbiteye blueberries. These were delphinidin-3-(p-coumaroyl-glucoside), cyanidin-3-(p-coumaroyl-glucoside), and petunidin-3-(p- coumaroyl-glucoside). Delphinidin-3-(p-coumaroyl-glucoside) significantly increased 50% after pressing. The five known anthocyanidins—cyanidin, delphinidin, malvidin, peonidin, and petunidin—were also quantitated using UPLC–UV. Raw berries and press cake contained the highest anthocyanidin contents and contribute to the value and interest of press cake for use in other food and non-food products. -
Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1]. -
Delphinidin and Cyanidin Exhibit Antiproliferative and Apoptotic
Integrative Cancer Science and Therapeutics Research Article ISSN: 2056-4546 Delphinidin and cyanidin exhibit antiproliferative and apoptotic effects in MCF7 human breast cancer cells Jessica Tang1,2*, Emin Oroudjev1, Leslie Wilson1 and George Ayoub1 1Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, USA 2School of Medicine, Medical Sciences, Indiana University, Bloomington, USA Abstract Fruits high in antioxidants such as berries and pomegranates have been shown to have many biological effects, including anticancer activity. We previously reported that bilberry (European blueberry) extract exhibited cytotoxic effects on MCF7-GFP-Tubulin breast cancer cells. To delve further into the mechanism of action of bilberry extract, we focused on two of the most abundant anthocyanins found in bilberry, delphinidin and cyanidin. In this study, we examined the radical scavenging activity, antiproliferative, and apoptotic effects of delphinidin and cyanidin on MCF7 breast cancer cells in comparison to Trolox, a vitamin E analog. DPPH radical scavenging activity assay showed at 50% antioxidant activity, an IC50 of 80 µM, 63 µM, 1.30 µM for delphinidin, cyanidin, and Trolox, respectively. As determined by SRB assay, delphinidin, cyanidin, and Trolox were shown to inhibit MCF7 cell proliferation at IC50 of 120 µM, 47.18 µM, and 11.25 µM, respectively. Immunofluorescence revealed that delphinidin, cyanidin, and Trolox caused apoptotic features such as rounding up of cell, retraction of pseudopodes, condensation of chromatin, minor modification of cytoplasmic organelles, and plasma membrane blebbing. Together, these results show that delphinidin and cyanidin have significant radical scavenging activity, inhibit cell proliferation, and increase apoptosis of MCF7 breast cancer cells. -
Food Chemistry 218 (2017) 440–446
Food Chemistry 218 (2017) 440–446 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: The energy requirements calculations as a prediction of the possible antiradical mechanisms ⇑ Jasmina M. Dimitric´ Markovic´ a, , Boris Pejin b, Dejan Milenkovic´ c, Dragan Amic´ d, Nebojša Begovic´ e, Miloš Mojovic´ a, Zoran S. Markovic´ c,f a Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia b Department of Life Sciences, Institute for Multidisciplinary Research – IMSI, Kneza Višeslava 1, 11030 Belgrade, Serbia c Bioengineering Research and Development Center, 34000 Kragujevac, Serbia d Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Kralja Petra Svacˇic´a 1D, 31000 Osijek, Croatia e Institute of General and Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia f Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadzˇic´a bb, 36300 Novi Pazar, Serbia article info abstract Article history: Naturally occurring flavonoids, delphinidin, pelargonidin and malvin, were investigated experimentally Received 24 August 2015 and theoretically for their ability to scavenge hydroxyl and nitric oxide radicals. Electron spin resonance Received in revised form 28 August 2016 (ESR) spectroscopy was used to determine antiradical activity of the selected compounds and M05-2X/6- Accepted 16 September 2016 311+G(d,p) level of theory for the calculation of reaction enthalpies related to three possible mechanisms Available online 17 September 2016 of free radical scavenging activity, namely HAT, SET-PT and SPLET. The results obtained show that the molecules investigated reacted with hydroxyl radical via both HAT and SPLET in the solvents investi- Chemical compounds studied in this article: gated. -
Cyanidin-3-O-Glucoside Is an Important Anthocyanin in Several Clones of Vitis Vinifera L
LOGAN ET AL., CYANIDIN-3-O-GLUCOSIDE IN PINOT NOIR FRUITS AND WINE, P.1 CYANIDIN-3-O-GLUCOSIDE IS AN IMPORTANT ANTHOCYANIN IN SEVERAL CLONES OF VITIS VINIFERA L. PINOT NOIR FRUITS AND RESULTING WINE FROM MICHIGAN AND NEW ZEALAND. Gerard A. LOGAN 1* , G. Stanley HOWELL 2, Muraleedharan G. NAIR 3 1* Corresponding Author: Gerard A. Logan [Tel.: +64 6 974 8000, Ext.: 5832; Fax.: +64 6 974 8910; E-mail.: [email protected] ]. Lecturer in Viticulture, School of Viticulture & Wine, Faculty of Science & Technology, Eastern Institute of Technology, Gloucester Street, Private Bag 1201, Taradale, Hawkes Bay, New Zealand. 2 G. Stanley Howell, Emeritus Professor, Program of Viticulture and Enology, Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA. 3 Muraleedharan G. Nair, Professor, Bioactive Natural Products and Phytoceuticals, Department of Horticulture and National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824, USA. Abstract In the cool winegrowing regions of Michigan, USA and Canterbury, New Zealand, Vitis vinifera L. Pinot noir is an economically important red winegrape cultivar. Both regions have problems with the color of Pinot noir wines based on anthocyanin concentration. Thus, anthocyanin concentration of V. vinifera L. Pinot noir fruit was investigated using three clones and two growing locations, Canterbury, New Zealand and Michigan, USA. Wines were made from Michigan sample vines, and analyzed for anthocyanin. Utilizing HPLC (High Pressure Liquid Chromatography) techniques, the five main anthocyanins (1-5), in the fruit and wine were identified and quantified based on cyanidin-3-O-glucoside (4, C3G), and total anthocyanin concentration in grapes and wine was compared. -
Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention
biomedicines Review Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention 1,2, , 2,3, 4,5 3 Zorit, a Diaconeasa * y , Ioana S, tirbu y, Jianbo Xiao , Nicolae Leopold , Zayde Ayvaz 6 , Corina Danciu 7, Huseyin Ayvaz 8 , Andreea Stanilˇ aˇ 1,2,Madˇ alinaˇ Nistor 1,2 and Carmen Socaciu 1,2 1 Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; [email protected] (A.S.); [email protected] (M.N.); [email protected] (C.S.) 2 Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănă¸stur3-5, 400372 Cluj-Napoca, Romania; [email protected] 3 Faculty of Physics, Babes, -Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; [email protected] 4 Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau 999078, China; [email protected] 5 International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China 6 Faculty of Marine Science and Technology, Department of Marine Technology Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey; [email protected] 7 Victor Babes University of Medicine and Pharmacy, Department of Pharmacognosy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; [email protected] 8 Department of Food Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey; [email protected] * Correspondence: [email protected]; Tel.: +40-751-033-871 These authors contributed equally to this work. y Received: 31 July 2020; Accepted: 25 August 2020; Published: 9 September 2020 Abstract: Until today, numerous studies evaluated the topic of anthocyanins and various types of cancer, regarding the anthocyanins’ preventative and inhibitory effects, underlying molecular mechanisms, and such. -
Effects of Anthocyanins on the Ahr–CYP1A1 Signaling Pathway in Human
Toxicology Letters 221 (2013) 1–8 Contents lists available at SciVerse ScienceDirect Toxicology Letters jou rnal homepage: www.elsevier.com/locate/toxlet Effects of anthocyanins on the AhR–CYP1A1 signaling pathway in human hepatocytes and human cancer cell lines a b c d Alzbeta Kamenickova , Eva Anzenbacherova , Petr Pavek , Anatoly A. Soshilov , d e e a,∗ Michael S. Denison , Michaela Zapletalova , Pavel Anzenbacher , Zdenek Dvorak a Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic b Institute of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic c Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic d Department of Environmental Toxicology, University of California, Meyer Hall, One Shields Avenue, Davis, CA 95616-8588, USA e Institute of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic h i g h l i g h t s • Food constituents may interact with drug metabolizing pathways. • AhR–CYP1A1 pathway is involved in drug metabolism and carcinogenesis. • We examined effects of 21 anthocyanins on AhR–CYP1A1 signaling. • Human hepatocytes and cell lines HepG2 and LS174T were used as the models. • Tested anthocyanins possess very low potential for food–drug interactions. a r t i c l e i n f o a b s t r a c t -
Naturally Occurring Anthocyanin, Structure, Functions And
iochemis t B try n & la P P h f y o s l i Journal of o a l n o r g Pervaiz et al., J Plant Biochem Physiol 2017, 5:2 u y o J DOI: 10.4172/2329-9029.1000187 ISSN: 2329-9029 Plant Biochemistry & Physiology Review Article Open Access Naturally Occurring Anthocyanin, Structure, Functions and Biosynthetic Pathway in Fruit Plants Tariq Pervaiz1,2, Jiu Songtao1, Faezeh Faghihi3, Muhammad Salman Haider1 and Jinggui Fang1* 1Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China 2Department of Agriculture and Food Technology, Karakoram International University Gilgit, Pakistan 3Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran *Corresponding author: Jinggui Fang, Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, PR China, E-mail: [email protected] Received Date: April 25, 2017; Accepted Date: April 29, 2017; Published Date: May 06, 2017 Copyright: © 2017 Pervaiz T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Anthocyanins are naturally occurring compounds, member of the flavonoid groups of photochemical, involved in defense against the damaging effects of UV irradiation in plants and protect from many oxidants. The anthocyanins, group of pigments are relatively small and diverse flavonoid family in nature, and responsible for the attractive colors, red and purple to blue in many plants. Presence of pigments in flowers and fruits seems to provide attraction for pollination and aiding seed distribution, it also provides antiviral and antimicrobial activities, however their occurrence in the vacuoles remains ambiguous. -
A Biochemical Survey of Some Mendelian Factors for Flower Colour
A BIOCHEMICAL 8UP~VEY OF SOME MENDELIAN FACTOI%S FO].~ FLOWEP~ COLOU~. BY ROSE SCOTT-MONCI~IEFF. (John Inncs Horticultural Institution, London.) (With One Text-figure.) CONTENTS. PAGE P~rb I. Introductory ].17 (a) The plastid 1)igmenl~s ] 21 (b) The a,n~hoxan~hius: i~heir backgromld, co-pigment and interaction effecbs upon flower-colour v~ri~bion 122 (c) The ani~hocyauins ] 25 (c) Col[oidM condition . 131 (f) Anthoey~nins as indic~bors 132 (g) The source of tim ~nl;hoey~nins 133 ]?ar[ II, Experimental 134 A. i~ecen~ investigations: (a) 2Prim,ula si,sensis 134- (b) Pa,l)aver Rhoeas 14.1 (c) Primuln aca.ulis 147 (d) Chc.l)ranth'ss Chci,rl 148 (e) ltosa lmlyanlha . 149 (f) Pelargonium zomdc 149 (g) Lalh,ymts odor~,l,us 150 (h) Vcrbom, hybrids 153 (i) Sl;'e2)loca~'])uG hybrids 15~ (j) T'rol)aeolu,m ,majors ] 55 ]3. B,eviews of published remflts of bhe t~u~horand o~hers.. (a) Dahlia variabilis (Lawreuce and Scol,~-Monerieff) 156 (b) A.nlb'rhinum majors (Wheklalo-Onslow, :Basseb~ a,nd ,~cobb- M.oncrieff ) 157 (c) Pharbilis nil (I-Iagiwam) . 158 (d) J/it& (Sht'itl.er it,lid Anderson) • . 159 (e) Zect d]f.ctys (~&udo, Miiner trod 8borl/lall) 159 Par~, III. The generM beh~wiour of Mendelian £acbors rot' flower colour . 160 Summary . 167 tLefermmes 168 I)AI~T I. II~TI~O])UOTOnY. Slm~C~ Onslow (1914) m~de the first sfudy of biochemica] chal~ges in- volved in flower-eolour va,riadon, our pro'ely chemical knowledge of bhe 118 A Bio&emical Su~'vey oI' Factor's fo~ • Flowe~' Colou~' anthocya.nin pigments has been considerably advanced by the work of Willstgtter, P~obinson, Karrer and their collaborators. -
Anthocyanin Pigments: Beyond Aesthetics
molecules Review Anthocyanin Pigments: Beyond Aesthetics , Bindhu Alappat * y and Jayaraj Alappat y Warde Academic Center, St. Xavier University, 3700 W 103rd St, Chicago, IL 60655, USA; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Academic Editor: Pasquale Crupi Received: 29 September 2020; Accepted: 19 November 2020; Published: 24 November 2020 Abstract: Anthocyanins are polyphenol compounds that render various hues of pink, red, purple, and blue in flowers, vegetables, and fruits. Anthocyanins also play significant roles in plant propagation, ecophysiology, and plant defense mechanisms. Structurally, anthocyanins are anthocyanidins modified by sugars and acyl acids. Anthocyanin colors are susceptible to pH, light, temperatures, and metal ions. The stability of anthocyanins is controlled by various factors, including inter and intramolecular complexations. Chromatographic and spectrometric methods have been extensively used for the extraction, isolation, and identification of anthocyanins. Anthocyanins play a major role in the pharmaceutical; nutraceutical; and food coloring, flavoring, and preserving industries. Research in these areas has not satisfied the urge for natural and sustainable colors and supplemental products. The lability of anthocyanins under various formulated conditions is the primary reason for this delay. New gene editing technologies to modify anthocyanin structures in vivo and the structural modification of anthocyanin via semi-synthetic methods offer new opportunities in this area. This review focusses on the biogenetics of anthocyanins; their colors, structural modifications, and stability; their various applications in human health and welfare; and advances in the field. Keywords: anthocyanins; anthocyanidins; biogenetics; polyphenols; flavonoids; plant pigments; anthocyanin bioactivities 1. Introduction Anthocyanins are water soluble pigments that occur in most vascular plants. -
Untargeted Metabolomics of Purple and Orange-Fleshed Sweet Potatoes
www.nature.com/scientificreports OPEN Untargeted metabolomics of purple and orange‑feshed sweet potatoes reveals a large structural diversity of anthocyanins and favonoids Alexandra A. Bennett1,3,4, Elizabeth H. Mahood1,4, Kai Fan2 & Gaurav D. Moghe 1* Anthocyanins are economically valuable phytochemicals of signifcant relevance to human health. Industrially extracted from multiple fruit and vegetable sources, anthocyanin yield and profles can vary between sources and growing conditions. In this study, we focused on three purple‑feshed and one orange‑feshed cultivars of sweet potato—a warm‑weather, nutritious crop of substantial interest to growers in northern, cooler latitudes—to determine the yield and diversity of anthocyanins and favonoids. Acidifed ethanol extraction of lyophilized roots yielded ~ 800 mg average anthocyanins/100 g dry weight from all three cultivars. UHPLC‑DAD‑Orbitrap analysis of sweet potato extracts identifed 18 high‑confdence, mostly acylated peonidin and cyanidin derivatives contributing to > 90% of the total anthocyanin signal. Further assessment of the untargeted Liquid Chromatography–Tandem Mass Spectrometry data using deep learning and molecular networking identifed over 350 favonoid peaks with variable distributions in diferent sweet potato cultivars. These results provide a novel insight into anthocyanin content of purple‑feshed sweet potatoes grown in the northern latitudes, and reveal the large structural diversity of anthocyanins and favonoids in this popular crop. Anthocyanins are water-soluble phytochemical pigments of signifcant health and economic value, which belong to a class of polyphenolic compounds called favonoids. Found in many fruits and vegetables, favonoids possess antioxidant activities of beneft in managing ageing, stress, cancer and other health conditions, which makes them desirable for cosmetic, nutritional and health industry applications1–3. -
Review Article Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols
Hindawi Publishing Corporation ISRN Spectroscopy Volume 2013, Article ID 813563, 45 pages http://dx.doi.org/10.1155/2013/813563 Review Article Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols Riccardo Flamini Consiglio per la Ricerca e la Sperimentazione in Agricoltura-Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Italy Correspondence should be addressed to Riccardo Flamini; riccardo.�amini�entecra.it Received 24 September 2012; Accepted 12 October 2012 Academic �ditors: D.-A. Guo, �. Sta�lov, and M. Valko Copyright © 2013 Riccardo Flamini. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Polyphenols are the principal compounds associated with health bene�c effects of wine consumption and in general are characterized by antioxidant activities. Mass spectrometry is shown to play a very important role in the research of polyphenols in grape and wine and for the quality control of products. e so ionization of LC/MS makes these techniques suitable to study the structures of polyphenols and anthocyanins in grape extracts and to characterize polyphenolic derivatives formed in wines and correlated to the sensorial characteristics of the product. e coupling of the several MS techniques presented here is shown to be highly effective in structural characterization of the large number of low and high molecular weight polyphenols in grape and wine and also can be highly effective in the study of grape metabolomics. 1. Principal Polyphenols of Grape and Wine During winemaking the condensed (or nonhydrolyzable) tannins are transferred to the wine and contribute strongly to Polyphenols are the principal compounds associated to the sensorial characteristic of the product.