Sec61 Complex Subcellular Localisation

Total Page:16

File Type:pdf, Size:1020Kb

Sec61 Complex Subcellular Localisation Journal of Cell Science 112, 1477-1486 (1999) 1477 Printed in Great Britain © The Company of Biologists Limited 1999 JCS0213 The Sec61 complex is located in both the ER and the ER-Golgi intermediate compartment Julia J. A. Greenfield and Stephen High* School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK *Author for correspondence (e-mail: [email protected]) Accepted 12 February; published on WWW 22 April 1999 SUMMARY The heteromeric Sec61 complex is composed of α, β and γ in both the ER and the ERGIC/Golgi fractions of the subunits and forms the core of the mammalian ER gradient. The presence of the Sec61 subunits in a post-ER translocon. Oligomers of the Sec61 complex form a compartment suggests that these proteins can escape the transmembrane channel where proteins are translocated ER and be recycled back, despite the fact that none of them across and integrated into the ER membrane. We have contain any known membrane protein retrieval signals studied the subcellular localisation of the Sec61 complex such as cytosolic di-lysine or di-arginine motifs. We also using both wild-type COS1 cells and cells transfected found that another translocon component, the glycoprotein with GFP-tagged Sec61α. By double labelling TRAM, was present in post-ER compartments as immunofluorescence microscopy the GFP-tagged Sec61α demonstrated by subcellular fractionation. Our data was found in both the ER and the ER-Golgi intermediate indicate that the core components of the mammalian ER compartment (ERGIC) but not in the trans-Golgi network. translocon are not permanently resident in the ER, but Immunofluorescence studies of endogenous Sec61β and rather that they are maintained in the ER by a specific Sec61γ showed that these proteins are also located in both retrieval mechanism. the ER and the ERGIC. Using the alternative strategy of subcellular fractionation, we have shown that wild-type Key words: Endoplasmic reticulum, Translocation, GFP, ERGIC, ER Sec61α, β and γ, and GFP-tagged Sec61α, are all present retrieval INTRODUCTION known ER retention or retrieval signals normally associated with resident ER proteins. ER resident proteins are generally The Sec61 complex is a core component of the mammalian believed to be retained in the ER either by their exclusion from translocon, forming a channel across the endoplasmic transport vesicles that exit the ER, or by their specific retrieval reticulum (ER) membrane through which newly synthesised from post ER compartments, or by a combination of both secretory proteins are translocated and via which membrane mechanisms (Harter and Wieland, 1996). proteins are integrated (High and Laird, 1997; Rapoport et al., Proteins that have been shown to be exclusively located in 1996). In addition to its central role in protein translocation and the ER, and that do not therefore apparently require any integration at the ER membrane, the Sec61 complex has also specific retrieval mechanism, include cytochrome p450 been shown to be capable of the retrograde transport, or (Szczesna-Skorupa and Kemper, 1993) and aldehyde dislocation, of misfolded proteins from the ER and into the dehydrogenase (Masaki et al., 1996). In the case of cytochrome cytosol prior to their degradation via the proteosome (Wiertz p450, it has been suggested that the large, bulky, cytoplasmic et al., 1996). domain may be responsible for its exclusion from transport The Sec61 complex is composed of three subunits, α, β and vesicles; and indeed ER retention information has been γ, which form a heterotrimer (Rapoport et al., 1996) and localised both in this region and in the N-terminal multiple copies of these heterotrimers surround a central transmembrane domain (Szczesna-Skorupa et al., 1995). It has aqueous pore which spans the ER membrane (Beckmann et al., also been proposed that some ER proteins, such as the 1997; Hanein et al., 1996). Whilst Sec61α is a polytopic ribophorins, form an interacting network of supramolecular protein with ten transmembrane spans, Sec61β and Sec61γ complexes that are excluded from transport vesicles (Ivessa et span the membrane only once (Rapoport et al., 1996). al., 1992). Although the Sec61 complex is known to play a crucial role in Specific motifs that mediate ER residency by retention have promoting translocation at the ER membrane, its exact not yet been described; in contrast, all retrieval mechanisms subcellular location has not been studied in any detail. appear to involve specific signals within the sequences of the Furthermore, none of the Sec61 subunits contain any of the resident ER proteins. The best characterised retrieval signal is 1478 J. J. A. Greenfield and S. High the KDEL sequence at the C terminus of ER lumenal proteins resident proteins that have escaped the ER (Bannykh et al., of mammalian cells (Pelham, 1990). Proteins with a KDEL 1998). In other systems, particularly the yeast Saccharomyces retrieval motif bind to the KDEL receptor (ERD2) and are then cerevisiae, it has been suggested that certain ER proteins, for recycled back to the ER (Lewis and Pelham, 1992a). The example some ER chaperones and components of the KDEL receptor is mainly localised in the first post-ER membrane translocation machinery, are efficiently sorted away compartment, the ERGIC (ER to Golgi intermediate from cargo destined for export at the ER. These components compartment) together with the cis-Golgi (Griffiths et al., are therefore largely excluded from the transport vesicles 1994). As a consequence of its retrieval function, the KDEL leaving the ER (reviewed by Aridor and Balch, 1996). receptor has also been localised to the ER, albeit to a lesser We have studied the localisation of the Sec61 complex in extent than to the ERGIC or cis-Golgi (Griffiths et al., 1994). mammalian cells using two approaches, namely fluorescence A number of single-spanning membrane proteins have a microscopy and subcellular fractionation. The wild-type carboxy-terminal di-lysine or an amino-terminal di-arginine Sec61α protein was tagged with the green fluorescent protein retrieval motif (reviewed by Teasdale and Jackson, 1996), and (GFP) in order to facilitate its visualisation in both fixed and these are found in type I and type II membrane proteins, live cells, and to establish its subcellular location. The respectively. COP1 subunits have been shown to bind directly subcellular location of the endogenous Sec61β and Sec61γ to proteins bearing the cytosolic di-lysine motif and are subunits were also studied by indirect immunofluorescence believed to function in the retrieval of the proteins to the ER microscopy, and in all cases double labelling studies were (Cosson and Letourneur, 1994). Very little is known about the carried out. Taken together with the results from the subcellular ER retention and retrieval of multiple spanning membrane fractionation studies we find that a proportion of all three proteins. subunits of the Sec61 complex are found beyond the ER of In order to ensure the minimum leakage of proteins from the mammalian cells and are clearly present in the ERGIC. We ER some proteins possess a combination of both retention and suggest that the Sec61 complex is transported between the ER retrieval signals. Hence, Sec12p, a yeast protein involved in the and the ERGIC, and that its ER location is dependent upon a formation of ER transport vesicles, has a transmembrane recycling mechanism. domain that acts as a retention signal and an N-terminal cytoplasmic domain which is involved in retrieval (Sato et al., 1996). Tang et al. (1997) later showed that the transmembrane MATERIALS AND METHODS domain was responsible for the formation of oligomers, and that this was the molecular basis for preventing the exit of Materials Sec12p from the ER. Clearly proteins which lack any COS1 African green monkey kidney SV40 transformed cell line retention/retrieval information in their sequence can be (ECACC no. 88031701) was obtained from the European collection retained in the ER if they are in a stable complex with other of animal cell cultures. proteins that do contain such information (Zhen et al., 1995). The Sec61α canine cDNA was a gift from T. Rapoport (Harvard The ER-Golgi intermediate compartment, or ERGIC, (also Medical School, Boston, USA). Restriction enzymes used for known as the intermediate compartment or ‘vesicular tubular recombinant DNA procedures were obtained from New England structures’), is the first recycling compartment of the Biolabs (Hitchin, UK) and Promega (Southampton, UK). T4 DNA ligase and alkaline phosphatase were from Boehringer Mannheim mammalian secretory pathway. It was originally identified as (Lewes, UK). PCR was carried out using QuikChangeTM site-directed the compartment where Semliki Forest virus-infected cells mutagenesis kit (Stratagene, Cambridge, UK). 35[S]methionine was accumulated envelope glycoproteins when intracellular from NEN-Dupont (Stevenage, UK). Bismaleimidohexane (BMH) transport was arrested by incubation at 15°C (Saraste and cross-linking reagent was from Pierce and Warriner (Chester,UK). Kuismanen, 1984). It is usually defined by the presence of Rabbit reticulocyte lysate and the amino acid mixture minus resident marker proteins such as human ERGIC53 (Schweizer methionine were from Promega. The 7-methylguanosine 5′ et al., 1988), its rat homologue p58 (Saraste and Svensson, monophosphate was from Ambion (Austin Texas). Protein A and G 1991) and the KDEL receptor (Tang et al., 1993). These Sepharose came from Zymed (San Francisco,
Recommended publications
  • A Clearer Picture of the ER Translocon Complex Max Gemmer and Friedrich Förster*
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs231340. doi:10.1242/jcs.231340 REVIEW A clearer picture of the ER translocon complex Max Gemmer and Friedrich Förster* ABSTRACT et al., 1986). SP-equivalent N-terminal transmembrane helices that The endoplasmic reticulum (ER) translocon complex is the main gate are not cleaved off can also target proteins to the ER through the into the secretory pathway, facilitating the translocation of nascent same mechanism. In this SRP-dependent co-translational ER- peptides into the ER lumen or their integration into the lipid membrane. targeting mode, ribosomes associate with the ER membrane via ER Protein biogenesis in the ER involves additional processes, many of translocon complexes. These membrane protein complexes them occurring co-translationally while the nascent protein resides at translocate nascent soluble proteins into the ER, integrate nascent the translocon complex, including recruitment of ER-targeted membrane proteins into the ER membrane, mediate protein folding ribosome–nascent-chain complexes, glycosylation, signal peptide and membrane protein topogenesis, and modify them chemically. In cleavage, membrane protein topogenesis and folding. To perform addition to co-translational protein import and translocation, distinct such varied functions on a broad range of substrates, the ER ER translocon complexes enable post-translational translocation and translocon complex has different accessory components that membrane integration. This post-translational pathway is widespread associate with it either stably or transiently. Here, we review recent in yeast (Panzner et al., 1995), whereas higher eukaryotes primarily structural and functional insights into this dynamically constituted use it for relatively short peptides (Schlenstedt and Zimmermann, central hub in the ER and its components.
    [Show full text]
  • X-Ray Structure of a Protein-Conducting Channel
    articles X-ray structure of a protein-conducting channel Bert van den Berg1*, William M. Clemons Jr1*, Ian Collinson2, Yorgo Modis3, Enno Hartmann4, Stephen C. Harrison3 & Tom A. Rapoport1 1Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA 2Max Planck Institute of Biophysics, Marie-Curie-Strasse 13-15, D-60439 Frankfurt am Main, Germany 3Howard Hughes Medical Institute, Children’s Hospital and Harvard Medical School, 320 Longwood Avenue, Boston, Massachusetts 02115, USA 4University Luebeck, Institute for Biology, Ratzeburger Allee 160, Luebeck, D-23538, Germany * These authors contributed equally to this work ........................................................................................................................................................................................................................... A conserved heterotrimeric membrane protein complex, the Sec61 or SecY complex, forms a protein-conducting channel, allowing polypeptides to be transferred across or integrated into membranes. We report the crystal structure of the complex from Methanococcus jannaschii at a resolution of 3.2 A˚ . The structure suggests that one copy of the heterotrimer serves as a functional translocation channel. The a-subunit has two linked halves, transmembrane segments 1–5 and 6–10, clamped together by the g-subunit. A cytoplasmic funnel leading into the channel is plugged by a short helix. Plug displacement can open the channel into an ‘hourglass’ with a ring of hydrophobic residues at its constriction. This ring may form a seal around the translocating polypeptide, hindering the permeation of other molecules. The structure also suggests mechanisms for signal-sequence recognition and for the lateral exit of transmembrane segments of nascent membrane proteins into lipid, and indicates binding sites for partners that provide the driving force for translocation.
    [Show full text]
  • Active and Passive Displacement of Transmembrane Domains Both Occur During Opsin Biogenesis at the Sec61 Translocon
    2826 Research Article Active and passive displacement of transmembrane domains both occur during opsin biogenesis at the Sec61 translocon Nurzian Ismail, Samuel G. Crawshaw and Stephen High* Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK *Author for correspondence (e-mail: [email protected]) Accepted 13 April 2006 Journal of Cell Science 119, 2826-2836 Published by The Company of Biologists 2006 doi:10.1242/jcs.03018 Summary We used a site-specific crosslinking approach to study the that its lateral exit from the translocon is clearly dependent membrane integration of the polytopic protein opsin at the upon the synthesis of subsequent transmembrane domains. endoplasmic reticulum. We show that transmembrane By contrast, the lateral exit of the third transmembrane domain 1 occupies two distinct Sec61-based environments domain occurred independently of any such requirement. during its integration. However, transmembrane domains Thus, even within a single polypeptide chain, distinct 2 and 3 exit the Sec61 translocon more rapidly in a process transmembrane domains display different requirements that suggests a displacement model for their integration for their integration through the endoplasmic reticulum where the biosynthesis of one transmembrane domain translocon, and the displacement of one transmembrane would facilitate the exit of another. In order to investigate domain by another is not a global requirement for this hypothesis further, we studied the integration
    [Show full text]
  • Protein Folding and Quality Control in the ER
    Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Protein Folding and Quality Control in the ER Kazutaka Araki and Kazuhiro Nagata Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 803-8555, Japan Correspondence: [email protected] The endoplasmic reticulum (ER) uses an elaborate surveillance system called the ER quality control (ERQC) system. The ERQC facilitates folding and modification of secretory and mem- brane proteins and eliminates terminally misfolded polypeptides through ER-associated degradation (ERAD) or autophagic degradation. This mechanism of ER protein surveillance is closely linked to redox and calcium homeostasis in the ER, whose balance is presumed to be regulated by a specific cellular compartment. The potential to modulate proteostasis and metabolism with chemical compounds or targeted siRNAs may offer an ideal option for the treatment of disease. he endoplasmic reticulum (ER) serves as a complex in the ER membrane (Johnson and Tprotein-folding factory where elaborate Van Waes 1999; Saraogi and Shan 2011). After quality and quantity control systems monitor arriving at the translocon, translation resumes an efficient and accurate production of secretory in a process called cotranslational translocation and membrane proteins, and constantly main- (Hegde and Kang 2008; Zimmermann et al. tain proper physiological homeostasis in the 2010). Numerous ER-resident chaperones and ER including redox state and calcium balance. enzymes aid in structural and conformational In this article, we present an overview the recent maturation necessary for proper protein fold- progress on the ER quality control system, ing, including signal-peptide cleavage, N-linked mainly focusing on the mammalian system.
    [Show full text]
  • Squaring the EMC – How Promoting Membrane Protein Biogenesis Impacts Cellular Functions and Organismal Homeostasis Norbert Volkmar1 and John C
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs243519. doi:10.1242/jcs.243519 REVIEW Squaring the EMC – how promoting membrane protein biogenesis impacts cellular functions and organismal homeostasis Norbert Volkmar1 and John C. Christianson2,* ABSTRACT changed recently with a flurry of studies providing compelling Integral membrane proteins play key functional roles at organelles evidence that the EMC can function as an insertase, promoting and the plasma membrane, necessitating their efficient and biogenesis of transmembrane domain (TMD)-containing proteins at accurate biogenesis to ensure appropriate targeting and activity. The the ER. Here, we discuss recent advances in EMC biology and re- endoplasmic reticulum membrane protein complex (EMC) has recently evaluate the phenotypes once attributed to the EMC in light of this new emerged as an important eukaryotic complex for biogenesis of integral functional insight. membrane proteins by promoting insertion and stability of atypical and sub-optimal transmembrane domains (TMDs). Although confirmed as a Features of the EMC bona fide complex almost a decade ago, light is just now being shed on The EMC was first described as an integral membrane protein the mechanism and selectivity underlying the cellular responsibilities of complex in yeast, with similar genetic interaction patterns and the EMC. In this Review, we revisit the myriad of functions attributed the whose six protein products co-precipitated as a hetero-oligomer EMC through the lens of these new mechanistic insights, to address (Jonikas et al., 2009). Two other membrane proteins, SOP4 and questions of the cellular and organismal roles the EMC has evolved to YDR056C, also co-purified with this complex (Jonikas et al., 2009) undertake.
    [Show full text]
  • Characterization of Five Transmembrane Proteins: with Focus on the Tweety, Sideroflexin, and YIP1 Domain Families
    fcell-09-708754 July 16, 2021 Time: 14:3 # 1 ORIGINAL RESEARCH published: 19 July 2021 doi: 10.3389/fcell.2021.708754 Characterization of Five Transmembrane Proteins: With Focus on the Tweety, Sideroflexin, and YIP1 Domain Families Misty M. Attwood1* and Helgi B. Schiöth1,2 1 Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, 2 Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia Transmembrane proteins are involved in many essential cell processes such as signal transduction, transport, and protein trafficking, and hence many are implicated in different disease pathways. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e., the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. This analysis investigates the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). More Edited by: Angela Wandinger-Ness, than half of the 58 proteins identified with the 5TM architecture belong to 12 families University of New Mexico, with two or more members. Interestingly, more than half the proteins in the dataset United States function in localization activities through movement or tethering of cell components and Reviewed by: more than one-third are involved in transport activities, particularly in the mitochondria. Nobuhiro Nakamura, Kyoto Sangyo University, Japan Surprisingly, no receptor activity was identified within this dataset in large contrast with Diego Bonatto, other TM groups. The three major 5TM families, which comprise nearly 30% of the Departamento de Biologia Molecular e Biotecnologia da UFRGS, Brazil dataset, include the tweety family, the sideroflexin family and the Yip1 domain (YIPF) Martha Martinez Grimes, family.
    [Show full text]
  • Mrna Encoding Sec61β, a Tail-Anchored Protein, Is Localized on the Endoplasmic Reticulum Xianying A
    © 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 3398-3410 doi:10.1242/jcs.168583 RESEARCH ARTICLE mRNA encoding Sec61β, a tail-anchored protein, is localized on the endoplasmic reticulum Xianying A. Cui, Hui Zhang, Lena Ilan, Ai Xin Liu, Iryna Kharchuk and Alexander F. Palazzo* ABSTRACT is due in part to the activity of mRNA receptors, such as p180 (also Although one pathway for the post-translational targeting of tail- known as RRBP1) (Cui et al., 2012, 2013). anchored proteins to the endoplasmic reticulum (ER) has been well ER localization of mRNAs encoding secretory and membrane- defined, it is unclear whether additional pathways exist. Here, we bound proteins might not be universal. Some of these mRNAs provide evidence that a subset of mRNAs encoding tail-anchored appear to be translated by free (i.e. non-ER associated) ribosomes, proteins, including Sec61β and nesprin-2, is partially localized to and their encoded polypeptides are then targeted to the ER post- the surface of the ER in mammalian cells. In particular, Sec61b translationally. One group of membrane proteins thought to be mRNA can be targeted to, and later maintained on, the ER using exclusively inserted into membranes post-translationally are tail- both translation-dependent and -independent mechanisms. Our anchored proteins (Rabu et al., 2009; Borgese and Fasana, 2011; data suggests that this process is independent of p180 (also Hegde and Keenan, 2011). These proteins have a single TMD known as RRBP1), a known mRNA receptor on the ER, and within the last 50 amino acids from the C-terminus and display their the transmembrane domain recognition complex (TRC) pathway functional N-terminal domain towards the cytosol (Kutay et al., components, TRC40 (also known as ASNA1) and BAT3 (also 1993).
    [Show full text]
  • Protein Translocation Across the Rough Endoplasmic Reticulum
    Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Protein Translocation across the Rough Endoplasmic Reticulum Elisabet C. Mandon, Steven F. Trueman, and Reid Gilmore Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324 Correspondence: [email protected] The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein trans- location and membrane protein integration. rotein translocation across the rough endo- somes that are actively engaged in protein trans- Pplasmic reticulum (RER) is an ancient and lation. evolutionarily conserved process that is analo- Consistent with this high density of mem- gous to protein export across the cytoplasmic brane-bound ribosomes, the RER is a major site membranes of eubacterial and archaebacteri- of protein biosynthesis in eukaryotic cells. The al cells both with respect to the mechanism nuclear envelope, the Golgi, lysosome, peroxi- and core components. The RER membrane of some, plasma membrane, and endosomes are eukaryotic cells is contiguous with the nuclear biosynthetically derived from the rough ER. envelope and is morphologically composed of The three major groups of proteins that are syn- interconnected cisternae and tubules.
    [Show full text]
  • Crystal Structure of a Substrate-Engaged Secy Protein-Translocation Channel
    Crystal structure of a substrate-engaged SecY protein-translocation channel The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Li, Long, Eunyong Park, JingJing Ling, Jessica Ingram, Hidde Ploegh, and Tom A. Rapoport. “Crystal Structure of a Substrate- Engaged SecY Protein-Translocation Channel.” Nature 531, no. 7594 (March 7, 2016): 395–399. As Published http://dx.doi.org/10.1038/nature17163 Publisher Springer Nature Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/107210 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nature. Manuscript Author Author manuscript; Manuscript Author available in PMC 2016 September 07. Published in final edited form as: Nature. 2016 March 17; 531(7594): 395–399. doi:10.1038/nature17163. Crystal structure of a substrate-engaged SecY protein- translocation channel Long Li#1,$, Eunyong Park#1,3, JingJing Ling2, Jessica Ingram2, Hidde Ploegh2, and Tom A. Rapoport1,$ 1Howard Hughes Medical Institute and Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, MA 02115, USA. 2Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. # These authors contributed equally to this work. Abstract Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61α, consists of two halves that form an hourglass-shaped pore with a constriction in 1 10 the middle of the membrane and a lateral gate that faces lipid - .
    [Show full text]
  • Mapping the Membrane Proteome of Anaerobic Gut Fungi Identifies a Wealth of Carbohydrate Binding Proteins and Transporters Susanna Seppälä1,2, Kevin V
    Seppälä et al. Microb Cell Fact (2016) 15:212 DOI 10.1186/s12934-016-0611-7 Microbial Cell Factories RESEARCH Open Access Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters Susanna Seppälä1,2, Kevin V. Solomon2,3, Sean P. Gilmore2, John K. Henske2 and Michelle A. O’Malley2* Abstract Background: Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and trans- porting biomass hydrolysates within a competitive and rather extreme environment. Results: Using sequence analyses and homology, we identified membrane protein-coding sequences from assem- bled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unex- pectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains.
    [Show full text]
  • Stepwise Gating of the Sec61 Protein-Conducting Channel by Sec63 and Sec62
    ARTICLES https://doi.org/10.1038/s41594-020-00541-x Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62 Samuel Itskanov 1, Katie M. Kuo2, James C. Gumbart2,3 and Eunyong Park 4,5 ✉ Many proteins are transported into the endoplasmic reticulum by the universally conserved Sec61 channel. Post-translational transport requires two additional proteins, Sec62 and Sec63, but their functions are poorly defined. In the present study, we determined cryo-electron microscopy (cryo-EM) structures of several variants of Sec61–Sec62–Sec63 complexes from Saccharomyces cerevisiae and Thermomyces lanuginosus and show that Sec62 and Sec63 induce opening of the Sec61 channel. Without Sec62, the translocation pore of Sec61 remains closed by the plug domain, rendering the channel inactive. We further show that the lateral gate of Sec61 must first be partially opened by interactions between Sec61 and Sec63 in cytosolic and lumi- nal domains, a simultaneous disruption of which completely closes the channel. The structures and molecular dynamics simula- tions suggest that Sec62 may also prevent lipids from invading the channel through the open lateral gate. Our study shows how Sec63 and Sec62 work together in a hierarchical manner to activate Sec61 for post-translational protein translocation. n all organisms, about a third of proteins are transported across complex22–25. In fungal species, the Sec complex also contains or integrated into a membrane upon synthesis by the ribosome. the additional nonessential proteins Sec71 and Sec72, which are IMost of these translocation processes occur in the endoplas- bound to Sec63 in the cytosol. In the ER lumen, Sec63 recruits the mic reticulum (ER) membrane in eukaryotes or the plasma mem- heat-specific protein Hsp70 ATPase BiP to the complex to power brane in prokaryotes, mediated by the conserved, heterotrimeric, translocation26,27.
    [Show full text]
  • Sec61 Blockade by Mycolactone Inhibits Antigen Cross-Presentation
    Sec61 blockade by mycolactone inhibits antigen PNAS PLUS cross-presentation independently of endosome- to-cytosol export Jeff E. Grotzkea,1, Patrycja Kozikb,1,2, Jean-David Morelc,d,1, Francis Impense,f,g, Natalia Pietrosemolih, Peter Cresswella,i,3,4, Sebastian Amigorenab,j,k,3,4, and Caroline Demangelc,d,3,4 aDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; bCentre de Recherche, Institut Curie, 75005 Paris, France; cImmunobiology of Infection Unit, Institut Pasteur, 75015 Paris, France; dINSERM, U1221, 75005 Paris, France; eVlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium; fVIB Proteomics Core, 9000 Ghent, Belgium; gDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium; hCenter of Bioinformatics, Biostatistics, and Integrative Biology, Institut Pasteur, Unité de Service et de Recherche 3756 Institut Pasteur CNRS, 75015 Paris, France; iDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT 06520; jINSERM, U932, 75005 Paris, France; and kCBT507 Institut Gustave Roussy-Curie, INSERM Center of Clinical Investigation, 75005 Paris, France Contributed by Peter Cresswell, June 8, 2017 (sent for review March 29, 2017; reviewed by Jose A. Villadangos and Emmanuel J. Wiertz) Although antigen cross-presentation in dendritic cells (DCs) is ref. 4). These observations have led to the hypothesis that antigen critical to the initiation of most cytotoxic immune responses, export might “hijack” a channel used during retrotranslocation of the intracellular mechanisms and traffic pathways involved are misfolded proteins from the ER during ERAD. still unclear. One of the most critical steps in this process, the export The ERAD process uses a multiprotein complex consisting of of internalized antigen to the cytosol, has been suggested to be lectins, chaperones, disulfide isomerases, E3 ubiquitin ligases, mediated by Sec61.
    [Show full text]