6.005 Elements of Software Construction Fall 2008

Total Page:16

File Type:pdf, Size:1020Kb

6.005 Elements of Software Construction Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.005 Elements of Software Construction Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 10/15/2008 Today’s Topics how to avoid debugging ¾assertions ¾code reviews how to do it when you have to ¾reducing test cases ¾hypothesis-driven debugging ¾binary search Debugging very hard bugs Rob Miller ¾Heisenbugs Fall 2008 © Robert Miller 2008 © Robert Miller 2008 Defensive Programming First Defense: Impossible By Design first defense against bugs is to make them impossible in the language ¾Java makes buffer overflow bugs impossible ¾automatic array bounds checking make buffer overflow bugs impossible second defense against bugs is to not make them ¾static typing eliminates many runtime type errors ¾correctness: get things riihght first time in the protocols/libraries/modules third defense is to make bugs easy to find ¾TCP/IP guarantees that data is not reordered ¾local visibility of errors: if things fail, we'd rather they fail loudly and ¾BigInteger guarantees that there will be no overflow immediately – e.g. with assertions in self-imposed conventions fourth defense is extensive testing ¾immutable objects can be passed around and shared without fear ¾uncover as many bugs as possible ¾caution: you have to keep the discipline last resort is dbidebugging • get the language to hel p you as much as possible , e.g. with pritivate and final ¾needed when effect of bug is distant from cause © Robert Miller 2008 © Robert Miller 2008 1 10/15/2008 Second Defense: Correctness Third Defense: Immediate Visibility get things right the first time if we can't prevent bugs, we can try to localize them to ¾don’t code before you think! Think before you code. a small part of the program • do your thinking in design; use a pattern to map that design to code ¾fail fast: the earlier a problem is observed, the easier it is to fix especially true when debugging is going to be hard ¾assertions: catch bugs early, before failure has a chance to contaminate (and be obscured by) further computation ¾concurrency • in Java: assert boolean-expression simplicity is key • note that you must enable assertions with -ea ¾modularity ¾unit testing: when you test a module in isolation, you can be confident that • divide program into chunks that are easy to understand any bug you find is in that unit (or in the test driver) • use abstract data types with well-defined interfaces ¾regression testing: run tests as often as possible when changing code. • avoid rep exposure • if a test fails, the bug is probably in the code you just changed ¾specification when localized to a single method or small module, • write specs for all modules, so that an explicit, well-defined contract bugs can be found simply by studying the program text exists between each module and its client © Robert Miller 2008 © Robert Miller 2008 Example: Assertions Code Review /* other eyes looking at the code can find bugs * Returns n!, the number of permutations of n objects. * n must be nonnegative. */ code review public static int fact(int n) { where would ¾carefu l, systematic study of source code by others (not origi nal author) if (n == 0) return 1; assertions be ¾analogous to proofreading an English paper else return n * fact(n-1); usefully added } to this code? ¾look for bugs, poor style, design problems, etc. ¾formal inspection: several people read code separately, then meet to /* discuss it * Returns (n choose k), the number of distinct subsets ¾lightweight methods: over-the-shoulder walkthrough, or by email * of size k in a set of size n. * Requires 0 <= k <= n. ¾manyygpq dev groups require a code review before commit */ code review complements other techniques public static int combinations(int n, int k) { ¾code reviews can find many bugs cheaply return fact(n) / (fact(k) * fact(n-k)); } ¾also test the understandability and maintainability of the code ¾three proven techniques for reducing bugs: reasoning, code reviews, testing © Robert Miller 2008 © Robert Miller 2008 2 10/15/2008 Let’s Review Some Code How to Debug public class PigLatin { 1) reproduce the bug with a small test case static String[] words; ¾find a small, repeatable test case that produces the failure (may take effort, public static String toPigLatin(String s) { but helps clarify the bug, and also gives you something for regression) words = s.split(" "); ¾don't move on to next step until you have a repeatable test String result = ""; 2) find the cause for (int i = 0; i <= words.length; ++i) { piggify(i); ¾narrow down location and proximate cause result += words[i]; ¾study the data / hypothesize / experiment / repeat } ¾may change code to get more information return result; } ¾don't move on to next step until you understand the cause public static void piggify(int i) { 3) fix the bug if (words[i].startsWith("a") || words[i].startsWith("e") || ...) { ¾is it a simple typo, or is it a design flaw? does it occur elsewhere? words[i] += "yay"; } else { 4) add test case to regression tests words[i] = words[i].substring(1); ¾then run regression tests to ensure that the bug appears to be fixed, and words[i] += words[i].charAt(0) + "ay"; no new bugs have been introduced by the fix } } © Robert Miller 2008 © Robert Miller 2008 } Reducing to a Simple Test Case Example find simplest input that will provoke bug /** * Returns true if and only if s contains t as a substring, ¾usually not the input that originally revealed existence of the bug * e.g. contains("hello world", "world") == true. ¾start with data that revealed bug */ ¾keep paring it down (binary search can help) public static boolean contains(String s, String t) { ... } ¾often leads directly to an understanding of the cause same idea is useful at many levels of a system ¾a user discovers that ¾method arguments contains("Life is wonderful! I am so very very happy all the time“, "very happy") ¾input files incorrectly returns false ¾keystrokes and mouse clicks in a GUI wronggpp approach: ¾try to trace the execution of contains() for this test case right approach: ¾first try to reduce the size of the test case ¾even better: bracket the bug with a test case that fails and similar test cases that succeed © Robert Miller 2008 © Robert Miller 2008 3 10/15/2008 Code for contains() Finding the Cause /** exploit modularity * Returns true if and only if s contains t as a substring, * e.g. contains("hello world", "world") == true. ¾start with everything, take away pieces until bug goes */ ¾start with nothing, add pieces back in until bug appears public static boolean contains(String s, String t) { take advantage of modular reasoning search: for (int i = 0; i < s.length(); ++i) { ¾trace through program, viewing intermediate results for (int j = 0; j < t.length(); ++j, ++i) { ¾insert assertions targeted at the bug if (s.charAt(i) != t.charAt(j)) continue search; ¾design all data structures to be printable (i.e., implement toString()) } ¾println is a surprisingly useful and universal tool return true; } • in large systems, use a logging infrastructure instead of println return false; use binary search to speed things up } ¾bug happens somewhere between first and last statement ¾so do binary search on the ordered set of statements © Robert Miller 2008 © Robert Miller 2008 Example: Finding a Sudoku Bug Regression Testing suppose a Sudoku solver produces the wrong answer whenever you find and fix a bug ¾store the input that elicited the bug 3.... 7.... Sudoku ¾store the correct output ...... ...... solver ¾add it to your test suite ...... ...... why regression tests help ¾helps to populate test suite with good test cases • remember that a test is good if it elicits a bug – and every regression parse make SAT SAT interpret print test did in one version of your code input formula solver assignment output ¾protects against reversions that reintroduce bug ¾the buggy may be an easy error to make ( since it happ ened once already) test-first debugging ¾when a bug arises, immediately write a test case for it that elicits it Note that this isn’t a state machine diagram or a module dependence diagram; it ¾once you find and fix the bug, the test case will pass, and you’ll be done shows data flow, which is often useful for thinking about bugs. © Robert Miller 2008 © Robert Miller 2008 4 10/15/2008 The Ugliest Bugs Example of a heisenbug we’ve had it easy so far public class Bank { int balance; ¾sequential, deterministic programs have repeatable bugs but the real world is not that nice… public Bank(int balance) { ¾tiiiming depen denc ies this.balance = balance; } ¾unpredictable network delays ¾varying processor loads public void deposit(int amount) { ¾concurrency balance += amount; heisenbugs } ¾nondeterministic, hard to reproduce public void withdraw(int amount) { ¾may even disappear when you try to loo k at it with printl n or deb ugger! balance -= amount; one approach } ¾build a lightweight event log (circular buffer) public int getBalance() { ¾log events during execution of program as it runs at speed return balance; ¾when you detect the error, stop program and examine logs } } © Robert Miller 2008 © Robert Miller 2008 Example of a heisenbug Summary // our bank account starts with $100 avoid debugging final Bank account = new Bank(100); // start a bunch of threads ¾it’s not fun and not productive List<Thread> threads = new ArrayList<Thread>(); ¾many of the techniques of this class are designed to save you from bugs for (int i = 0; i < 10; ++i) { approach it systematically Thread t = new Thread(new Runnable() { public void run() { ¾simplify test cases // each thread does a bunch of bank transactions ¾find cause before trying to fix for (int i = 0; i < 10000; ++i) { account.deposit(1); // put a dollar in account.withdraw(1); // take it back out }}}); t.
Recommended publications
  • Testing in the Software Development Life Cycle and Its Importance
    International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 3 Issue 9, September – 2019, Pages: 15-20 Testing in the Software Development Life Cycle and its Importance Noortaj Department of Computing and Technology Abasyn University Peshawar, Pakistan Email: [email protected] Abstract : Software development life cycle is a structure followed by the development team within the software organization imposed on the development of software product. The important role of testing in the software development life cycle is to improve the performance, reliability, and quality of the software. I believe testing should be thoroughly planned and conducted throughout the Software development life cycle for best results. Hence, software testing is facing different challenges. In this article, i have explained different phases of the software development life cycle, different testing techniques and its importance. Keywords: Software Development Life Cycle Testing, Testing in the Software Development Process, Software Testing, Importance of testing. 1. INTRODUCTION Testing plays an important role in the software development life-cycle to recognize the defects in the development process and resolve those defects. But before the explanation of the Software development life cycle, I would like to explain the phases of the software development process. Phase 1 Requirement collection and Analysis: For the collection of requirements a discussion is conducted to analyze the requirements and to state how the problem should be solved. The main work of the requirement collection is to determine the anticipated issues and it helps companies to finalize the necessary timeline in order to complete the work of that system in time.
    [Show full text]
  • Definition of Software Construction Artefacts for Software Construction
    Chapter 3: Internet and Applications Definition of Software Construction Artefacts for Software Construction M.Zinn, G.Turetschek and A.D.Phippen Centre for Information Security and Network Research, University of Plymouth, Plymouth United Kingdom e-mail: [email protected]; [email protected], [email protected] Abstract The definition of a service based software construction process, published in 2007 (Zinn, 2007), builds on the use of software construction artefacts (SCA). These artefacts form useable building blocks (units of modelling) for software, which can be implemented in a software product by a service. The building blocks are categorized in four different types (GUI, data, function and structure). The foundation for the use of these artefacts is the method of the software construction process which constructs the software similar to the methods used in computer aided design (CAD). This paper refines and expands on the definition of the artefacts to present the current state of research in software construction procedures. It will show how the artefacts are constructed and how they can be used in software construction. In addition the software construction artefacts will be compared to components, modules and objects. Based on this definition of the application area, further potential scenarios for the use of the artefacts, as well as their properties and points still being worked on, are shown. The purpose is to create a more exact description, definition of the software construction artefacts to obtain a better understanding of the software construction process. Keywords Computer Aided Design (CAD), software construction process (SCP), software engineering, (web) services, software construction artefacts (SCA) and software construction services (SCS), model driven development (MDD) 1.
    [Show full text]
  • A Parallel Program Execution Model Supporting Modular Software Construction
    A Parallel Program Execution Model Supporting Modular Software Construction Jack B. Dennis Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A. [email protected] Abstract as a guide for computer system design—follows from basic requirements for supporting modular software construction. A watershed is near in the architecture of computer sys- The fundamental theme of this paper is: tems. There is overwhelming demand for systems that sup- port a universal format for computer programs and software The architecture of computer systems should components so users may benefit from their use on a wide reflect the requirements of the structure of pro- variety of computing platforms. At present this demand is grams. The programming interface provided being met by commodity microprocessors together with stan- should address software engineering issues, in dard operating system interfaces. However, current systems particular, the ability to practice the modular do not offer a standard API (application program interface) construction of software. for parallel programming, and the popular interfaces for parallel computing violate essential principles of modular The positions taken in this presentation are contrary to or component-based software construction. Moreover, mi- much conventional wisdom, so I have included a ques- croprocessor architecture is reaching the limit of what can tion/answer dialog at appropriate places to highlight points be done usefully within the framework of superscalar and of debate. We start with a discussion of the nature and VLIW processor models. The next step is to put several purpose of a program execution model. Our Parallelism processors (or the equivalent) on a single chip.
    [Show full text]
  • Object-Oriented Software Construction Oriented Software Construction Software Construction I Software Construction II
    ObjectObject--orientedoriented software construction Analysis/Requirements: What am I doing? Design: Which classes and methods? Implementation: How do I do it? Testing: Does it work? Maintenance: I just turn it in, right? Software Construction I z Programming is not just coding and debugging! z Analysis Analysis – English description of what system models, Design to meet a requirement or specification Implementation – Usually involves working with non-programmer Testing Maintenance to develop detailed specifications Waterfall model of software development z DiDesign: Mtit!Measure twice, cut once! – divide & conquer: system is composed of smaller subsystems which in turn may be composed of even smaller subsystems z OOP, system is decomposed into a set of cooperating objects – Pseudocode: describe tasks, subtasks, and how they relate – hand-simulation: desk-check pseudocode by stepping through it without using a computer – often use diagrams to better communicate the structure of the system z Often flowcharts in procedural languages and UML diagrams in OOP Wright State University, College of Engineering CS 241 Dr. T. Doom, Computer Science & Engineering Computer Programming II 58 Software Construction II z Implementation – Pick a language Analysis Design – emphasize good problem decomposition, Implementation well structured design, and readable, Testing well-documented programming style Maintenance –mayyg need to backtrack and redesign Waterfall model of software development z Testing – submitting input data or sample user interactions and seeing if program reacts properly – typically done in stages, starting with individual components and working up to subsystems, and eventually the entire program – bugs: errors in code or design – debugging: process of removing program bugs Wright State University, College of Engineering CS 241 Dr.
    [Show full text]
  • Integration Testing of Object-Oriented Software
    POLITECNICO DI MILANO DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA E AUTOMATICA Integration Testing of Object-Oriented Software Ph.D. Thesis of: Alessandro Orso Advisor: Prof. Mauro Pezze` Tutor: Prof. Carlo Ghezzi Supervisor of the Ph.D. Program: Prof. Carlo Ghezzi XI ciclo To my family Acknowledgments Finding the right words and the right way for expressing acknowledgments is a diffi- cult task. I hope the following will not sound as a set of ritual formulas, since I mean every single word. First of all I wish to thank professor Mauro Pezze` , for his guidance, his support, and his patience during my work. I know that “taking care” of me has been a hard work, but he only has himself to blame for my starting a Ph.D. program. A very special thank to Professor Carlo Ghezzi for his teachings, for his willingness to help me, and for allowing me to restlessly “steal” books and journals from his office. Now, I can bring them back (at least the one I remember...) Then, I wish to thank my family. I owe them a lot (and even if I don't show this very often; I know this very well). All my love goes to them. Special thanks are due to all my long time and not-so-long time friends. They are (stricty in alphabetical order): Alessandro “Pari” Parimbelli, Ambrogio “Bobo” Usuelli, Andrea “Maken” Machini, Antonio “the Awesome” Carzaniga, Dario “Pitone” Galbiati, Federico “Fede” Clonfero, Flavio “Spadone” Spada, Gianpaolo “the Red One” Cugola, Giovanni “Negroni” Denaro, Giovanni “Muscle Man” Vigna, Lorenzo “the Diver” Riva, Matteo “Prada” Pradella, Mattia “il Monga” Monga, Niels “l’e´ semper chi” Kierkegaard, Pierluigi “San Peter” Sanpietro, Sergio “Que viva Mex- ico” Silva.
    [Show full text]
  • Effective Methods for Software Testing
    Effective Methods for Software Testing Third Edition Effective Methods for Software Testing Third Edition William E. Perry Effective Methods for Software Testing, Third Edition Published by Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN-13: 978-0-7645-9837-1 ISBN-10: 0-7645-9837-6 Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 3MA/QV/QU/QW/IN No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy- right Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: The publisher and the author make no repre- sentations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fit- ness for a particular purpose. No warranty may be created or extended by sales or promo- tional materials.
    [Show full text]
  • A Survey of System Development Process Models
    Models for Action: Developing Practical Approaches to Electronic Records Management and Preservation Center for Technology in Government State Archives and Records Administration A Survey of System Development Process Models Introduction This document provides an overview of the more common system development Process Models, used to guide the analysis, design, development, and maintenance of information systems. There are many different methods and techniques used to direct the life cycle of a software development project and most real-world models are customized adaptations of the generic models. While each is designed for a specific purpose or reason, most have similar goals and share many common tasks. This paper will explore the similarities and differences among these various models and will also discuss how different approaches are chosen and combined to address practical situations. Typical Tasks in the Development Process Life Cycle Professional system developers and the customers they serve share a common goal of building information systems that effectively support business process objectives. In order to ensure that cost-effective, quality systems are developed which address an organization’s business needs, developers employ some kind of system development Process Model to direct the project’s life cycle. Typical activities performed include the following:1 · System conceptualization · System requirements and benefits analysis · Project adoption and project scoping · System design · Specification of software requirements · Architectural design · Detailed design · Unit development · Software integration & testing · System integration & testing · Installation at site · Site testing and acceptance · Training and documentation · Implementation · Maintenance 1 Kal Toth, Intellitech Consulting Inc. and Simon Fraser University; list is partially created from lecture notes: Software Engineering Best Practices, 1997.
    [Show full text]
  • Decision Framework for Selecting a Suitable Software Development Process
    DECISION FRAMEWORK FOR SELECTING A SUITABLE SOFTWARE DEVELOPMENT PROCESS Delft University of Technology Faculty of Technology, Policy and Management Systems Engineering, Policy Analysis and Management (SEPAM) August, 2009 By Itamar Sharon 2 DECISION FRAMEWORK FOR SELECTING A SUITABLE SOFTWARE DEVELOPMENT PROCESS SPM 5910 Master Thesis Faculty of Technology, Policy and Management Section: ICT By Itamar Sharon Student Number: 1192922 August, 2009 Graduation committee: M. dos Santos Soares (first supervisor) Dr. J. Barjis (second supervisor) Dr.ir. J. van den Berg (section professor) C. Bergman (Operations and IT Banking ING supervisor) 3 4 PPREFACE This Thesis report has been written in the period of February – August 2009. In this report I describe the research I have conducted during my internship at Operations and IT Banking ING (OIB ING) which is the final facet of my MSc education in Systems Engineering, Policy Analysis and Management at the faculty of Technology, Policy and Management (TPM), Delft University of Technology. Performing this research and writing this Thesis was, at some periods, a struggle and intellectual challenge. However, most of the times, I felt delighted of the work that I did and the contribution it will finally make. For this research, I could not have wished for a better environment to perform in. The department in which I was stationed (Solution Delivery Centre Call Face NL) was very comfortable as a research setting. I experienced its employees as flexible, interested and most of all very helpful. The most difficult aspect of this graduation project was to conduct it individually. In the entire MSc education programme, every project consisted of multiple project members.
    [Show full text]
  • Continual and Long-Term Improvement in Agile Software Development
    MASARYK UNIVERSITY Faculty of informatics Continual and long-term improvement in agile software development DIPLOMA THESIS Brno 2015 Bc. Juraj Šoltés Declaration I declare that the work in this thesis is my own authorial work, which I have worked out on my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Juraj Šoltés Advisor: doc. RNDr. Tomáš Pitner, Ph.D. ii Acknowledgment I would like to express thanks of gratitude to everyone, who supported me throughout the course of this thesis. My special thanks belong to my advisor, who helped me with the overall idea and structure of my diploma thesis. I would also like to thank my family and friends for material and psychological support, Kentico software for the opportunity of doing my diploma thesis under its roof, my colleagues who helped me to become Scrum master and the On-line marketing team for their patience with me. iii Abstract Diploma thesis deals with the improvement in agile teams and ways how it can be measured and tracked. The work puts emphasis on choosing proper metrics and working with them so that it complies with the principles behind agile manifesto. The metrics then serve as a basis for creating the performance indicators for chosen goals. Several representative indicators for the agile process measuring are created, concretely in areas of collaboration and predictability. These are then used for analysis of the data collected during two releases in Kentico software. The results are compared with the outcome of the team’s retrospectives.
    [Show full text]
  • Software Construction
    Software Construction Bertrand Meyer University of Zurich September-December 2017 Lecture 5: Requirements analysis Statements about requirements: Brooks Source*: Brooks 87 The hardest single part of building a software system is deciding precisely what to build. No other part of the conceptual work is as difficult as establishing the detailed technical requirements, including all the interfaces to people, to machines, and to other software systems. No other part of the work so cripples the resulting system if done wrong. No other part is more difficult to rectify later. *For sources cited, see bibliography 2 2 1 Statements about requirements: Boehm Source*: Boehm 81 Relative cost to correct a defect 70 60 50 40 30 20 10 0 Requirements Design Code Development Acceptance Operation Testing Testing Source: Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981 3 When not done right 80% of interface fault and 20% of implementation faults due to requirements (Perry & Stieg, 1993) 48% to 67% of safety‐related faults in NASA software systems due to misunderstood hardware interface specifications, of which 2/3rds are due to requirements (Lutz, 1993) 85% of defects due to requirements, of which: incorrect assumptions 49%, omitted requirements 29%, inconsistent requirements 13% (Young, 2001). Numerous software bugs due to poor requirements, e.g. Mars Climate Orbiter 4 2 A small case study Source*: Wing 88 Consider a small library database Transactions 1, 2, 4, and 5 are with the following transactions: restricted to staff users, except that 1. Check out a copy of a book. ordinary borrowers can perform Return a copy of a book.
    [Show full text]
  • Lean Thinking in Software Engineering : a Systematic Review
    International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.3, May 2017 LEAN THINKING IN SOFTWARE ENGINEERING : A SYSTEMATIC REVIEW Fernando Sambinelli 1and Marcos Augusto Francisco Borges 2 1Federal Institute of Education, Science and Technology of São Paulo, Hortolândia, Brazil 2School of Technology, University of Campinas, Limeira, Brazil ABSTRACT The field of Software Engineering has suffered considerable transformation in the last decades due to the influence of the philosophy of Lean Thinking. The purpose of this systematic review is to identify practices and approaches proposed by researchers in this area in the last 5 years, who have worked under the influence of this thinking. The search strategy brought together 549 studies, 80 of which were classified as relevant for synthesis in this review. Seventeen tools of Lean Thinking adapted to Software Engineering were catalogued, as well as 35 practices created for the development of software that has been influenced by this philosophy. The study provides a roadmap of results with the current state of the art and the identification of gaps pointing to opportunities for further research. KEYWORDS Lean Thinking, Lean IT, Agile, Software Engineering, Software Development, Systematic Review 1. INTRODUCTION Lean has been studied by researchers for almost half a century [1]. Publications in this field have increased considerably with an increasing number of industries trying to adopt this philosophy of work in its productive processes[2]. The term Lean emerged in the early 1980s when a quality gap was observed between Western and Japanese products, being most clearly noticed in the car manufacturing industry. The most comprehensive research on the differential features of Japanese productive methods was conducted by the International Motor Vehicle Program (IMVP) at the Massachusetts Institute of Technology (MIT) [3].
    [Show full text]
  • An Introduction to Rapid Application Development
    Office of the Chief Government Information Officer AN INTRODUCTION TO RAPID APPLICATION DEVELOPMENT (RAD) [G47a] Version: 1.7 Oct 2009 © The Government of the Hong Kong Special Administrative Region of the People’s Republic of China The contents of this document remain the property of and may not be reproduced in whole or in part without the express permission of the Government of the HKSAR. AN INTRODUCTION TO RAD CONTENTS TABLE OF CONTENTS 1. PURPOSE ..................................................................................................................................................... 1-1 2. SCOPE .......................................................................................................................................................... 2-1 3. REFERENCES ............................................................................................................................................. 3-1 3.1 STANDARDS .................................................................................................................................................3-1 3.2 OTHER REFERENCES .................................................................................................................................3-1 4. DEFINITIONS AND CONVENTIONS ..................................................................................................... 4-1 4.1 DEFINITIONS ................................................................................................................................................4-1 4.2
    [Show full text]