Phylogenetic Tree-Building

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Tree-Building Inlernalionol Journal/or Parasilo/og.y, Vol. 26, No. 6, pp. 589417, 1996 Copyright ~0 1996 Australian Society for Parasitology. Pubhshed by Elsevia Science Ltd Pergamon Printed in Great Britain PII: SOO20-7519(96)00044-6 002&7519/96 $15.00+0.00 INVITED REVIEW Phylogenetic Tree-building DAVID A. MORRISON Molecular Parasitology Unit, University of Technology Sydney, Westbourne Street, Gore Hill, NS W 2065, Australia (Received 13 October 1995; accepted 3 March 1996) Abstract-Morrison D. A. 1996. Phylogenetic tree-building. Iniernationul Journal fir Parasitology 26: 589-617. Cladistic analysis is an approach to phylogeny reconstruction that groups taxa in such a way that those with historically more-recent ancestors form groups nested within groups of taxa with moredistant ancestors. This nested set of taxa can be represented as a branching diagram or tree (a cladogram), which is an hypothesis of the evolutionary history of the taxa. The analysis is performed by searching for nested groups of shared derived character states. These shared derived character states dehne monophyletic groups of taxa (clades), which include all of the descendants of the most recent common ancestor. If all of the characters for a set of taxa are congruent, then reconstructing the phylogenetic tree is unproblematic. However, most real data sets contain incongruent characters, and consequently a wide range of tree-building methods has been developed. These methods differ in a variety of characteristics, and they may produce topologically distinct trees for a single data set. None of the currently-available methods are simultaneously efficient, powerful, consistent and robust, and thus there is no single ideal method. However, many of them appear to perform well under a wide range of conditions, with the exception of the UPGMA method and the fnvariants method. Copyright 0 1996 Australian Society for Parasitology. Published by Elsevier Science Ltd. Key words: Phylogeny; evolution; cladistics; cladograms. INTRODUCTION English of Hennig (1966). These methods are now usually referred to as “cladistics”, and the evolution- If we accept the proposition that evolution exists, ary diagrams they produce “cladograms”, to distin- then meaningful comparisons among organisms must guish them from all prior phylogenetic studies, many ultimately include a phylogenetic context (Maddison of which were neither explicit nor repeatable (note & Maddison, 1992). This is because the evolutionary that I am using the word cladistics to include a wide relationships among a group of taxa constrain any class of explicit and repeatable phylogenetic analyses, other possible relationships that might exist. It is thus which may be a broader definition than would not surprising that in biology there has been a long be accepted by many phylogeneticists, who would history of attempts to deal with the reconstruction of restrict the term to the more strictly Hennigian genealogical history (Nelson & Platnick, 1981; Mayr, methods). The current interest in cladistic analyses 1982; Stevens, 1994), notwithstanding the difficulties has inevitably led to a proliferation of data analysis associated with producing testable hypotheses about techniques; and the apparent plethora of methods for historically unique events. phylogenetic analysis is typical of a young science It is, however, only in the last 30 years that still coming to terms with both its aspirations and its widespread attempts have been made by systematists constraints. to produce explicit and repeatable methods for It is therefore important for practitioners to under- the construction of phylogenetic trees (Felsenstein, stand the limitations of the available techniques as 1982), notably with the translation from German into well as to appreciate their capabilities (Felsenstein, Tel: +61-2-3304159; Fax: +61-2-3304003; 1982). Unfortunately, the current wide choice among E-mail: [email protected]. possible phylogenetic methods seems to be daunting 589 590 D. A. Morrison for many people, and they thus acquire little knowl- PHYLOGENETIC ANALYSIS edge of the relative advantages and disadvantages of the various methods. This is unfortunate, because the Cladistics choice of data-analysis methods should be based on The study of evolutionary processes has often been their apparent appropriateness for the data at hand, considered to be unscientific because it deals with rather than on the local availability of computer historically unique events (Popper, 1957). Hypoth- programs or on historical inertia (Hillis, Allard & eses concerning these events are thus not universal (in Miyamoto, 1993). It is my purpose here to review the either space or time) and, therefore, they are consid- phylogenetic inference methods that are currently ered to be untestable in the contemporary world. The available, and to indicate what is currently known sociological development of phylogenetic analysis about their strengths and weaknesses. This will allow has consequently been based largely on the erection a more informed decision to be made when assessing of what have been called “evolutionary scenarios” which of the methods might be appropriate for a describing the presumed genealogical history of particular data set. the organisms under study. The number of such Along the way, I will attempt to make clear some scenarios that may be created is, of course, limited of the aspects of phylogenetic analysis that are obvi- solely by the imagination of the researcher, and none ously misunderstood by non-specialists, and to dispel of the scenarios are likely to be open to falsification. a few widely-held misconceptions. My discussion will Cladistic analysis can thus be seen as an attempt to focus on molecular sequence data (particularly DNA base phylogenetic analysis on a more objective foot- and RNA), since trees derived from this source are ing, where the phylogenetic hypotheses are explicitly increasingly those with which parasitologists are stated, along with the evidence supporting (and con- working (e.g., Nadler, 1990), there being a limit to tradicting) them, and are then subjected to quantita- the usefulness of phenotypic characteristics for tive testing. Its practitioners therefore claim that constructing phylogenetic trees for most parasites. cladistics is designed to make phylogenetic analysis Indeed, it is the proliferation of molecular data sets into an hypothetico-deductive science, where explicit that is introducing many people from outside of hypotheses are subjected to repeatable attempts at systematics to the science of phylogeny (Miyamoto & falsification. Cracraft, 1991; Hillis, Huelsenbeck & Cunningham, Note that the claimed advantages of cladistic 1994a); and it is for this reason that phylogenetic analysis are not intended to denigrate pre-cladistic principles need to be clearly introduced to non- biologists, nor is there any suggestion that these experts. Furthermore, many of the recent advances in biologists did not apply their minds to phylogenetic cladistics have been motivated by attempts to deal questions. However, it is clear that pre-cladistic phy- with problems that are specific to molecular data logenetic analyses were not necessarily based on (Penny et al., 1990), and the similarities and differ- repeatable methods that produced explicit hypoth- ences between traditional and molecular phylogeny eses of evolutionary relationship which could be thus need to be emphasized. subjected to falsification (Nelson & Platnick, 1981). I do not intend to describe the tree-building Furthermore, the taxonomic groups produced by techniques in any great detail, partly because most pre-cladistic biologists were not necessarily mono- of them are covered in the excellent review by phyletic (see below), and therefore did not always Swofford & Olsen (1990) and in the books by Nei reflect evolutionary history. Post-Darwinian biolo- (1987) and Li & Graur (1991), and partly because gists have had the unenviable task of producing nothing is more intimidating to most biologists than taxonomic schemes that should, in theory, reflect mathematics. I concentrate much more on those evolutionary history, without any theoretical frame- aspects of phylogenetic analysis that are likely to be work for how they should go about discovering what of most practical and theoretical interest to non- the evolutionary history actually was (Stevens, 1994). experts. I start by summarizing the principles of Cladistics is an attempt to provide this theoretical cladistic analysis, before proceeding to a review of framework. the alternative methods for constructing clado- Cladistic analysis as an approach to phylogeny grams. A number of introductory reviews covering attempts to group taxa on the basis of their ancestry. similar topics, but from different perspectives, in- In the analysis, taxa are grouped in such a way that clude those of Felsenstein (1988), Olsen (1988) those with historically more-recent ancestors form Sneath (1989), Beanland & Howe (1992), Hillis groups nested within groups of taxa with more- et al. (1993) and Stewart (1993); and there is also distant ancestors. The analytical technique is the worthwhile introductory book by Forey et al. based on a widely-held view of the mode of the (1992). evolutionary process: species are lineages undergoing Invited Review 591 divergent evolution with modification of their for Character 16 in Table 1 possession of denticles, intrinsic attributes, the attributes being transformed dermal scales, epidermal scales, feathers and
Recommended publications
  • Investgating Determinants of Phylogeneic Accuracy
    IMPACT OF MOLECULAR EVOLUTIONARY FOOTPRINTS ON PHYLOGENETIC ACCURACY – A SIMULATION STUDY Dissertation Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in Biology by Bhakti Dwivedi UNIVERSITY OF DAYTON August, 2009 i APPROVED BY: _________________________ Gadagkar, R. Sudhindra Ph.D. Major Advisor _________________________ Robinson, Jayne Ph.D. Committee Member Chair Department of Biology _________________________ Nielsen, R. Mark Ph.D. Committee Member _________________________ Rowe, J. John Ph.D. Committee Member _________________________ Goldman, Dan Ph.D. Committee Member ii ABSTRACT IMPACT OF MOLECULAR EVOLUTIONARY FOOTPRINTS ON PHYLOGENETIC ACCURACY – A SIMULATION STUDY Dwivedi Bhakti University of Dayton Advisor: Dr. Sudhindra R. Gadagkar An accurately inferred phylogeny is important to the study of molecular evolution. Factors impacting the accuracy of a phylogenetic tree can be traced to several consecutive steps leading to the inference of the phylogeny. In this simulation-based study our focus is on the impact of the certain evolutionary features of the nucleotide sequences themselves in the alignment rather than any source of error during the process of sequence alignment or due to the choice of the method of phylogenetic inference. Nucleotide sequences can be characterized by summary statistics such as sequence length and base composition. When two or more such sequences need to be compared to each other (as in an alignment prior to phylogenetic analysis) additional evolutionary features come into play, such as the overall rate of nucleotide substitution, the ratio of two specific instantaneous, rates of substitution (rate at which transitions and transversions occur), and the shape parameter, of the gamma distribution (that quantifies the extent of iii heterogeneity in substitution rate among sites in an alignment).
    [Show full text]
  • Phylogeny Inference Based on Parsimony and Other Methods Using Paup*
    8 Phylogeny inference based on parsimony and other methods using Paup* THEORY David L. Swofford and Jack Sullivan 8.1 Introduction Methods for inferring evolutionary trees can be divided into two broad categories: thosethatoperateonamatrixofdiscretecharactersthatassignsoneormore attributes or character states to each taxon (i.e. sequence or gene-family member); and those that operate on a matrix of pairwise distances between taxa, with each distance representing an estimate of the amount of divergence between two taxa since they last shared a common ancestor (see Chapter 1). The most commonly employed discrete-character methods used in molecular phylogenetics are parsi- mony and maximum likelihood methods. For molecular data, the character-state matrix is typically an aligned set of DNA or protein sequences, in which the states are the nucleotides A, C, G, and T (i.e. DNA sequences) or symbols representing the 20 common amino acids (i.e. protein sequences); however, other forms of discrete data such as restriction-site presence/absence and gene-order information also may be used. Parsimony, maximum likelihood, and some distance methods are examples of a broader class of phylogenetic methods that rely on the use of optimality criteria. Methods in this class all operate by explicitly defining an objective function that returns a score for any input tree topology. This tree score thus allows any two or more trees to be ranked according to the chosen optimality criterion. Ordinarily, phylogenetic inference under criterion-based methods couples the selection of The Phylogenetic Handbook: a Practical Approach to Phylogenetic Analysis and Hypothesis Testing, Philippe Lemey, Marco Salemi, and Anne-Mieke Vandamme (eds.).
    [Show full text]
  • An Introduction to Phylogenetic Analysis
    This article reprinted from: Kosinski, R.J. 2006. An introduction to phylogenetic analysis. Pages 57-106, in Tested Studies for Laboratory Teaching, Volume 27 (M.A. O'Donnell, Editor). Proceedings of the 27th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 383 pages. Compilation copyright © 2006 by the Association for Biology Laboratory Education (ABLE) ISBN 1-890444-09-X All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. Use solely at one’s own institution with no intent for profit is excluded from the preceding copyright restriction, unless otherwise noted on the copyright notice of the individual chapter in this volume. Proper credit to this publication must be included in your laboratory outline for each use; a sample citation is given above. Upon obtaining permission or with the “sole use at one’s own institution” exclusion, ABLE strongly encourages individuals to use the exercises in this proceedings volume in their teaching program. Although the laboratory exercises in this proceedings volume have been tested and due consideration has been given to safety, individuals performing these exercises must assume all responsibilities for risk. The Association for Biology Laboratory Education (ABLE) disclaims any liability with regards to safety in connection with the use of the exercises in this volume. The focus of ABLE is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises.
    [Show full text]
  • Phylogeny Codon Models • Last Lecture: Poor Man’S Way of Calculating Dn/Ds (Ka/Ks) • Tabulate Synonymous/Non-Synonymous Substitutions • Normalize by the Possibilities
    Phylogeny Codon models • Last lecture: poor man’s way of calculating dN/dS (Ka/Ks) • Tabulate synonymous/non-synonymous substitutions • Normalize by the possibilities • Transform to genetic distance KJC or Kk2p • In reality we use codon model • Amino acid substitution rates meet nucleotide models • Codon(nucleotide triplet) Codon model parameterization Stop codons are not allowed, reducing the matrix from 64x64 to 61x61 The entire codon matrix can be parameterized using: κ kappa, the transition/transversionratio ω omega, the dN/dS ratio – optimizing this parameter gives the an estimate of selection force πj the equilibrium codon frequency of codon j (Goldman and Yang. MBE 1994) Empirical codon substitution matrix Observations: Instantaneous rates of double nucleotide changes seem to be non-zero There should be a mechanism for mutating 2 adjacent nucleotides at once! (Kosiol and Goldman) • • Phylogeny • • Last lecture: Inferring distance from Phylogenetic trees given an alignment How to infer trees and distance distance How do we infer trees given an alignment • • Branch length Topology d 6-p E 6'B o F P Edo 3 vvi"oH!.- !fi*+nYolF r66HiH- .) Od-:oXP m a^--'*A ]9; E F: i ts X o Q I E itl Fl xo_-+,<Po r! UoaQrj*l.AP-^PA NJ o - +p-5 H .lXei:i'tH 'i,x+<ox;+x"'o 4 + = '" I = 9o FF^' ^X i! .poxHo dF*x€;. lqEgrE x< f <QrDGYa u5l =.ID * c 3 < 6+6_ y+ltl+5<->-^Hry ni F.O+O* E 3E E-f e= FaFO;o E rH y hl o < H ! E Y P /-)^\-B 91 X-6p-a' 6J.
    [Show full text]
  • EVOLUTIONARY INFERENCE: Some Basics of Phylogenetic Analyses
    EVOLUTIONARY INFERENCE: Some basics of phylogenetic analyses. Ana Rojas Mendoza CNIO-Madrid-Spain. Alfonso Valencia’s lab. Aims of this talk: • 1.To introduce relevant concepts of evolution to practice phylogenetic inference from molecular data. • 2.To introduce some of the most useful methods and computer programmes to practice phylogenetic inference. • • 3.To show some examples I’ve worked in. SOME BASICS 11--ConceptsConcepts ofof MolecularMolecular EvolutionEvolution • Homology vs Analogy. • Homology vs similarity. • Ortologous vs Paralogous genes. • Species tree vs genes tree. • Molecular clock. • Allele mutation vs allele substitution. • Rates of allele substitution. • Neutral theory of evolution. SOME BASICS Owen’s definition of homology Richard Owen, 1843 • Homologue: the same organ under every variety of form and function (true or essential correspondence). •Analogy: superficial or misleading similarity. SOME BASICS 1.Concepts1.Concepts ofof MolecularMolecular EvolutionEvolution • Homology vs Analogy. • Homology vs similarity. • Ortologous vs Paralogous genes. • Species tree vs genes tree. • Molecular clock. • Allele mutation vs allele substitution. • Rates of allele substitution. • Neutral theory of evolution. SOME BASICS Similarity ≠ Homology • Similarity: mathematical concept . Homology: biological concept Common Ancestry!!! SOME BASICS 1.Concepts1.Concepts ofof MolecularMolecular EvolutionEvolution • Homology vs Analogy. • Homology vs similarity. • Ortologous vs Paralogous genes. • Species tree vs genes tree. • Molecular clock.
    [Show full text]
  • Math/C SC 5610 Computational Biology Lecture 12: Phylogenetics
    Math/C SC 5610 Computational Biology Lecture 12: Phylogenetics Stephen Billups University of Colorado at Denver Math/C SC 5610Computational Biology – p.1/25 Announcements Project Guidelines and Ideas are posted. (proposal due March 8) CCB Seminar, Friday (Mar. 4) Speaker: Jack Horner, SAIC Title: Phylogenetic Methods for Characterizing the Signature of Stage I Ovarian Cancer in Serum Protein Mas Time: 11-12 (Followed by lunch) Place: Media Center, AU008 Math/C SC 5610Computational Biology – p.2/25 Outline Distance based methods for phylogenetics UPGMA WPGMA Neighbor-Joining Character based methods Maximum Likelihood Maximum Parsimony Math/C SC 5610Computational Biology – p.3/25 Review: Distance Based Clustering Methods Main Idea: Requires a distance matrix D, (defining distances between each pair of elements). Repeatedly group together closest elements. Different algorithms differ by how they treat distances between groups. UPGMA (unweighted pair group method with arithmetic mean). WPGMA (weighted pair group method with arithmetic mean). Math/C SC 5610Computational Biology – p.4/25 UPGMA 1. Initialize C to the n singleton clusters f1g; : : : ; fng. 2. Initialize dist(c; d) on C by defining dist(fig; fjg) = D(i; j): 3. Repeat n ¡ 1 times: (a) determine pair c; d of clusters in C such that dist(c; d) is minimal; define dmin = dist(c; d). (b) define new cluster e = c S d; update C = C ¡ fc; dg Sfeg. (c) define a node with label e and daughters c; d, where e has distance dmin=2 to its leaves. (d) define for all f 2 C with f 6= e, dist(c; f) + dist(d; f) dist(e; f) = dist(f; e) = : (avg.
    [Show full text]
  • Clustering and Phylogenetic Approaches to Classification: Illustration on Stellar Tracks Didier Fraix-Burnet, Marc Thuillard
    Clustering and Phylogenetic Approaches to Classification: Illustration on Stellar Tracks Didier Fraix-Burnet, Marc Thuillard To cite this version: Didier Fraix-Burnet, Marc Thuillard. Clustering and Phylogenetic Approaches to Classification: Il- lustration on Stellar Tracks. 2014. hal-01703341 HAL Id: hal-01703341 https://hal.archives-ouvertes.fr/hal-01703341 Preprint submitted on 7 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Clustering and Phylogenetic Approaches to Classification: Illustration on Stellar Tracks D. Fraix-Burnet1, M. Thuillard2 1 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France email: [email protected] 2 La Colline, 2072 St-Blaise, Switzerland February 7, 2018 This pedagogicalarticle was written in 2014 and is yet unpublished. Partofit canbefoundin Fraix-Burnet (2015). Abstract Classifying objects into groups is a natural activity which is most often a prerequisite before any physical analysis of the data. Clustering and phylogenetic approaches are two different and comple- mentary ways in this purpose: the first one relies on similarities and the second one on relationships. In this paper, we describe very simply these approaches and show how phylogenetic techniques can be used in astrophysics by using a toy example based on a sample of stars obtained from models of stellar evolution.
    [Show full text]
  • Phylogenetics
    Phylogenetics What is phylogenetics? • Study of branching patterns of descent among lineages • Lineages – Populations – Species – Molecules • Shift between population genetics and phylogenetics is often the species boundary – Distantly related populations also show patterning – Patterning across geography What is phylogenetics? • Goal: Determine and describe the evolutionary relationships among lineages – Order of events – Timing of events • Visualization: Phylogenetic trees – Graph – No cycles Phylogenetic trees • Nodes – Terminal – Internal – Degree • Branches • Topology Phylogenetic trees • Rooted or unrooted – Rooted: Precisely 1 internal node of degree 2 • Node that represents the common ancestor of all taxa – Unrooted: All internal nodes with degree 3+ Stephan Steigele Phylogenetic trees • Rooted or unrooted – Rooted: Precisely 1 internal node of degree 2 • Node that represents the common ancestor of all taxa – Unrooted: All internal nodes with degree 3+ Phylogenetic trees • Rooted or unrooted – Rooted: Precisely 1 internal node of degree 2 • Node that represents the common ancestor of all taxa – Unrooted: All internal nodes with degree 3+ • Binary: all speciation events produce two lineages from one • Cladogram: Topology only • Phylogram: Topology with edge lengths representing time or distance • Ultrametric: Rooted tree with time-based edge lengths (all leaves equidistant from root) Phylogenetic trees • Clade: Group of ancestral and descendant lineages • Monophyly: All of the descendants of a unique common ancestor • Polyphyly:
    [Show full text]
  • Molecular Phylogenetics: Principles and Practice
    REVIEWS STUDY DESIGNS Molecular phylogenetics: principles and practice Ziheng Yang1,2 and Bruce Rannala1,3 Abstract | Phylogenies are important for addressing various biological questions such as relationships among species or genes, the origin and spread of viral infection and the demographic changes and migration patterns of species. The advancement of sequencing technologies has taken phylogenetic analysis to a new height. Phylogenies have permeated nearly every branch of biology, and the plethora of phylogenetic methods and software packages that are now available may seem daunting to an experimental biologist. Here, we review the major methods of phylogenetic analysis, including parsimony, distance, likelihood and Bayesian methods. We discuss their strengths and weaknesses and provide guidance for their use. statistical Systematics Before the advent of DNA sequencing technologies, phylogenetics, creating the emerging field of 2,18,19 The inference of phylogenetic phylogenetic trees were used almost exclusively to phylogeography. In species tree methods , the gene relationships among species describe relationships among species in systematics and trees at individual loci may not be of direct interest and and the use of such information taxonomy. Today, phylogenies are used in almost every may be in conflict with the species tree. By averaging to classify species. branch of biology. Besides representing the relation- over the unobserved gene trees under the multi-species 20 Taxonomy ships among species on the tree of life, phylogenies
    [Show full text]
  • The Generalized Neighbor Joining Method
    Ruriko Yoshida The Generalized Neighbor Joining method Ruriko Yoshida Dept. of Statistics University of Kentucky Joint work with Dan Levy and Lior Pachter www.math.duke.edu/~ruriko Oxford 1 Ruriko Yoshida Challenge We would like to assemble the fungi tree of life. Francois Lutzoni and Rytas Vilgalys Department of Biology, Duke University 1500+ fungal species http://ocid.nacse.org/research/aftol/about.php Oxford 2 Ruriko Yoshida Many problems to be solved.... http://tolweb.org/tree?group=fungi Zygomycota is not monophyletic. The position of some lineages such as that of Glomales and of Engodonales-Mortierellales is unclear, but they may lie outside Zygomycota as independent lineages basal to the Ascomycota- Basidiomycota lineage (Bruns et al., 1993). Oxford 3 Ruriko Yoshida Phylogeny Phylogenetic trees describe the evolutionary relations among groups of organisms. Oxford 4 Ruriko Yoshida Constructing trees from sequence data \Ten years ago most biologists would have agreed that all organisms evolved from a single ancestral cell that lived 3.5 billion or more years ago. More recent results, however, indicate that this family tree of life is far more complicated than was believed and may not have had a single root at all." (W. Ford Doolittle, (June 2000) Scienti¯c American). Since the proliferation of Darwinian evolutionary biology, many scientists have sought a coherent explanation from the evolution of life and have tried to reconstruct phylogenetic trees. Oxford 5 Ruriko Yoshida Methods to reconstruct a phylogenetic tree from DNA sequences include: ² The maximum likelihood estimation (MLE) methods: They describe evolution in terms of a discrete-state continuous-time Markov process.
    [Show full text]
  • Rapid Neighbour-Joining
    Rapid Neighbour-Joining Martin Simonsen, Thomas Mailund and Christian N. S. Pedersen Bioinformatics Research Center (BIRC), University of Aarhus, C. F. Møllers All´e,Building 1110, DK-8000 Arhus˚ C, Denmark. fkejseren,mailund,[email protected] Abstract. The neighbour-joining method reconstructs phylogenies by iteratively joining pairs of nodes until a single node remains. The cri- terion for which pair of nodes to merge is based on both the distance between the pair and the average distance to the rest of the nodes. In this paper, we present a new search strategy for the optimisation criteria used for selecting the next pair to merge and we show empirically that the new search strategy is superior to other state-of-the-art neighbour- joining implementations. 1 Introduction The neighbour-joining (NJ) method by Saitou and Nei [8] is a widely used method for phylogenetic reconstruction, made popular by a combination of com- putational efficiency combined with reasonable accuracy. With its cubic running time by Studier and Kepler [11], the method scales to hundreds of species, and while it is usually possible to infer phylogenies with thousands of species, tens or hundreds of thousands of species is infeasible. Various approaches have been taken to improve the running time for neighbour-joining. QuickTree [5] was an attempt to improve performance by making an efficient implementation. It out- performed the existing implementations but still performs as a O n3 time algo- rithm. QuickJoin [6, 7], instead, uses an advanced search heuristic when searching for the pair of nodes to join. Where the straight-forward search takes time O n2 per join, QuickJoin on average reduces this to O (n) and can reconstruct large trees in a small fraction of the time needed by QuickTree.
    [Show full text]
  • A Comparative Analysis of Popular Phylogenetic Reconstruction Algorithms
    A Comparative Analysis of Popular Phylogenetic Reconstruction Algorithms Evan Albright, Jack Hessel, Nao Hiranuma, Cody Wang, and Sherri Goings Department of Computer Science Carleton College MN, 55057 [email protected] Abstract Understanding the evolutionary relationships between organisms by comparing their genomic sequences is a focus of modern-day computational biology research. Estimating evolutionary history in this way has many applications, particularly in analyzing the progression of infectious, viral diseases. Phylogenetic reconstruction algorithms model evolutionary history using tree-like structures that describe the estimated ancestry of a given set of species. Many methods exist to infer phylogenies from genes, but no one technique is definitively better for all types of sequences and organisms. Here, we implement and analyze several popular tree reconstruction methods and compare their effectiveness on both synthetic and real genomic sequences. Our synthetic data set aims to simulate a variety of research conditions, and includes inputs that vary in number of species. For our case-study, we use the genes of 53 apes and compare our reconstructions against the well-studied evolutionary history of primates. Though our implementations often represent the simplest manifestations of these complex methods, our results are suggestive of fundamental advantages and disadvantages that underlie each of these techniques. Introduction A phylogenetic tree is a tree structure that represents evolutionary relationship among both extant and extinct species [1]. Each node in a tree represents a different species, and internal nodes in a tree represent most common ancestors of their direct child nodes. The length of a branch in a phylogenetic tree is an indication of evolutionary distance.
    [Show full text]