Phylogenetics of North American Psoraleeae (Leguminosae): Rates and Dates in a Recent, Rapid Radiation

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetics of North American Psoraleeae (Leguminosae): Rates and Dates in a Recent, Rapid Radiation Brigham Young University BYU ScholarsArchive Theses and Dissertations 2006-12-01 Phylogenetics of North American Psoraleeae (Leguminosae): Rates and Dates in a Recent, Rapid Radiation Ashley N. Egan Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Egan, Ashley N., "Phylogenetics of North American Psoraleeae (Leguminosae): Rates and Dates in a Recent, Rapid Radiation" (2006). Theses and Dissertations. 1294. https://scholarsarchive.byu.edu/etd/1294 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. by Brigham Young University in partial fulfillment of the requirements for the degree of Brigham Young University All Rights Reserved BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL and by majority vote has been found to be satisfactory. ________________________ ______________________________________ Date ________________________ ______________________________________ Date ________________________ ______________________________________ Date ________________________ ______________________________________ Date ________________________ ______________________________________ Date BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the format, citations and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library. ________________________ _______________________________________ Date Accepted for the Department ________________________ _______________________________________ Date Accepted for the College ________________________ _______________________________________ Date ABSTRACT ACKNOWLEDGMENTS TABLE OF CONTENTS Abstract v Acknowledgements vii Table of Contents ix List of Tables x List of Figures xi Introduction 1 Chapter 1. Theory of Phylogeny Estimation 4 Gene Trees versus Species Trees 5 Sequence Alignment 6 Models of Evolution 8 Distance Methods 10 Optimality Criteria 11 Searching the Tree Space 14 Confidence Assessment 16 Hypothesis Testing in a Phylogenetic Framework 18 Combining Data 19 Case Study: The Origin of Freshwater Crayfish 19 Glossary 23 References 25 Chapter 2. Phylogenetics, Biogeography, and Endemism of Tribe Psoraleeae (Leguminosae) with an Emphasis on North American Taxa 28 Materials and Methods 30 Results 37 Discussion 47 Conclusions 50 References 51 Chapter 3. Divergence and Diversification in North American Psoraleeae (Leguminosae) 56 Materials and Methods 58 Results 62 Discussion 65 Conclusions 67 References 68 Conclusions 70 Appendix: A New Species of Pediomelum (Fabaceae) from the Lower Piedmont Plateau of Georgia and South Carolina 72 Historical Sketch 73 Comparisons with Congeners 80 Habitat and Ecology 82 Conservation Status 84 References 85 LIST OF TABLES Chapter 2 Table 1. Sample collection information 31 Table 2. Primers 34 Table 3. Geographic variables and areas of distribution 37 Table 4. Maximum Parsimony results 39 Table 5. Bayesian Inference and Maximum Likelihood results 40 Table 6. Regression analysis results 47 Chapter 3 Table 1. Model parameters used for branch length estimation 59 Table 2. Divergence dates 62 Table 3. Nucleotide substitution rates 63 Table 4. Whole-tree statistics for Diversification rates 64 Table 5. Beath-Death Likelihood results 64 LIST OF FIGURES Chapter 1 Figure 28.1. Example phylogeny and Terminology 5 Figure 28.2. Gene Trees/Species Trees 6 Figure 28.3. Jukes Cantor and Kimura-2 parameter models 9 Figure 28.4. Nested hierarchy of nucleotide substitution models 10 Box 28.1. Philosophical and methodological differences 12 Figure 28.5. Freshwater Crayfish maximum likelihood tree 20 Chapter 2 Figure 1. A priori hypotheses of Psoraleeae relationships 30 Figure 2. Map of North American Psoraleeae distributions 38 Figure 3. Bayesian inference nrDNA phylogeny 42 Figure 4. Bayesian inference cpDNA phylogeny 43 Figure 5. Bayesian inference total evidence phylogeny 44 Figure 6. Bayesian inference 99 taxon total evidence phylogeny 45 Chapter 3 Figure 1. Most likely Bayesian inference tree 60 Figure 2. MatK chronogram with range bars 63 Figure 3. Lineage through time plot 65 Appendix Figure 1. Pediomelum piedmontanum 75 Figure 2. Holotype of Pediomelum piedmontanum 76 Figure 3. Fall Line and Pediomelum piedmontanum locales 77 Figure 4. Detailed pictures of Pediomelum piedmontanum 79 INTRODUCTION The discipline of phylogenetics centers on understanding the diversity of life in the context of history. Advances in genetics and molecular biology have increased the number and type of genetic markers available for inferring evolutionary history of the earth’s organisms. Enhancement of DNA sequencing technology and growth of computing power have enabled phylogenetic studies on scales previously unattainable. Today, many studies focus around creating the tree of life, a hypothesis of the evolutionary relationships of all life forms. Plant systematics is leading this foray, with the seminal work of the angiosperm phylogeny group (APG 2003), who have revolutionized plant classification at family and ordinal levels (Soltis, Soltis et al. 2006). Much focus has centered on understanding the origin of land plants (Karol, McCourt et al. 2001) and seed plants (Donoghue and Doyle 2000; Soltis, Soltis et al. 2002; Zanis, Soltis et al. 2002). Many researchers continue to contribute to the plant tree of life through higher level phylogenetic studies among orders and families, with works too numerous to list here. The legume family, Fabaceae or Leguminosae, is one of the most vital plant families in terms of economic importance, with species used for food, fibers, medicine, oils, and industrial materials, to name a few. Leguminosae has benefited from recent phylogenetic work (Doyle, Doyle et al. 1997; Kajita, Ohashi et al. 2001; Wojciechowski, Lavin et al. 2004). As mentioned, much focus has been on higher level studies, providing good support and knowledge concerning the ‘trunk’ of the plant family tree. Less focus has been given to the ‘tips’ of the plant tree of life, meaning lower level phylogenetic studies centered on the generic and species levels (Crandall and Buhay 2004). This dissertation research contributes to the tips of the tree of life and to Legume systematics by estimating molecular phylogenetic relationships within Psoraleeae, a tribe consisting of nine genera worldwide, with five genera endemic to North America. Several attributes make Psoraleeae an interesting group to study in terms of evolutionary history. Lavin, Herendeen et al. (2005) estimated divergence dates across the Legume family and found Psoraleeae to be the second youngest crown clade in the family with a putative divergence date of 6.3 million years ago. Lavin, Herendeen et al. (2005) also found elevated rates of molecular evolution within this group relative to other legume lineages. A large percentage of the North American members of Psoraleeae are narrowly endemic to specific regions of the United States. These attributes 1 combined make Psoraleeae an excellent system in which to study speciation processes within a recent time frame. This dissertation research focuses on phylogenetic methodology and using phylogenies to answer questions concerning evolutionary history, processes, and outcomes. Chapter 1 presents an overview of phylogenetic theory, comparing and contrasting different methods and issues pertaining to estimation of evolutionary relationships. The methods are then applied to tribe Psoraleeae with an emphasis on North American taxa to estimate molecular phylogenies (Chapter 2). This work provides support for taxonomic revisions within Psoraleeae and presents a new species of Pediomelum in the United States (Appendix). A hypothesis of phylogenetic relationships is just the beginning of a model for the evolutionary history of a group. Phylogenies are important not only for illuminating relationships among taxa, but for acting as a framework for comparative studies and testing of evolutionary hypotheses (Soltis and Soltis 2003). The realm of hypothesis testing within a phylogenetic framework includes delving into questions such as testing alternative classification schemes or biogeographic hypotheses, modeling the molecular evolution of a gene and how natural selection has impacted evolution, estimating population level parameters and interactions, testing models of speciation or estimating divergence dates, to name just a few. This dissertation research utilizes the phylogenetic hypotheses of North American Psoraleeae to test alternative classification schemes (Chapter 2), test correlates of endemism within the group (Chapter 2), estimate divergence dates (Chapter 3), investigate nucleotide substitution rates (Chapter 3), test speciation models and diversification shifts (Chapter 3), and test the impact of past and present climate change (Chapter 3). This research thus contributes to the elucidation of the plant tree of life by contributing to the tips of the Leguminosae branch. In addition, this work contributes insight into the processes of evolution by
Recommended publications
  • Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution
    Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution by William Allen Freyman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology and the Designated Emphasis in Computational and Genomic Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Dr. Bruce G. Baldwin, Chair Dr. John P. Huelsenbeck Dr. Brent D. Mishler Dr. Kipling W. Will Fall 2017 Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution Copyright 2017 by William Allen Freyman Abstract Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution by William Allen Freyman Doctor of Philosophy in Integrative Biology and the Designated Emphasis in Computational and Genomic Biology University of California, Berkeley Dr. Bruce G. Baldwin, Chair Key evolutionary transitions have shaped the tree of life by driving the processes of spe- ciation and extinction. This dissertation aims to advance statistical and computational ap- proaches that model the timing and nature of these transitions over evolutionary trees. These methodological developments in phylogenetic comparative biology enable formal, model- based, statistical examinations of the macroevolutionary consequences of trait evolution. Chapter 1 presents computational tools for data mining the large-scale molecular sequence datasets needed for comparative phylogenetic analyses. I describe a novel metric, the miss- ing sequence decisiveness score (MSDS), which assesses the phylogenetic decisiveness of a matrix given the pattern of missing sequence data. In Chapter 2, I introduce a class of phylogenetic models of chromosome number evolution that accommodate both anagenetic and cladogenetic change.
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Use of Organelle Markers to Study Genetic Diversity in Soybean
    Chapter 26 Use of Organelle Markers to Study Genetic Diversity in Soybean Lidia Skuza, Ewa Filip and Izabela Szućko Additional information is available at the end of the chapter http://dx.doi.org/10.5772/52028 1. Introduction Soybean is the most important crop provider of proteins and oil used in animal nutrition and for human consumption. Plant breeders continue to release improved cultivars with en‐ hanced yield, disease resistance, and quality traits. It is also the most planted genetically modified crop. The narrow genetic base of current soybean cultivars may lack sufficient al‐ lelic diversity to counteract vulnerability to shifts in environmental variables. An investiga‐ tion of genetic relatedness at a broad level may provide important information about the historical relationship among different genotypes. Such types of study are possible thanks to different markers application, based on variation of organelle DNA (mtDNA or cpDNA). 2. Mitochondrial genome 2.1. Genomes as markers Typically, all sufficiently variable DNA regions can be used in genetic studies of popula‐ tions and in interspecific studies. Because of in seed plants chloroplasts and mitochondria are mainly inherited uniparentally, organelle genomes are often used because they carry more information than nuclear markers, which are inherited biparentally. The main benefit is that there is only one allele per cell and per organism, and, consequently, no recombina‐ tion between two alleles can occur. With different dispersal distances, genomes inherited bi‐ parentally, maternally and paternally, also reveal significant differences in their genetic variability among populations. In particular, maternally inherited markers show diversity within a population much better [1].
    [Show full text]
  • Investgating Determinants of Phylogeneic Accuracy
    IMPACT OF MOLECULAR EVOLUTIONARY FOOTPRINTS ON PHYLOGENETIC ACCURACY – A SIMULATION STUDY Dissertation Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in Biology by Bhakti Dwivedi UNIVERSITY OF DAYTON August, 2009 i APPROVED BY: _________________________ Gadagkar, R. Sudhindra Ph.D. Major Advisor _________________________ Robinson, Jayne Ph.D. Committee Member Chair Department of Biology _________________________ Nielsen, R. Mark Ph.D. Committee Member _________________________ Rowe, J. John Ph.D. Committee Member _________________________ Goldman, Dan Ph.D. Committee Member ii ABSTRACT IMPACT OF MOLECULAR EVOLUTIONARY FOOTPRINTS ON PHYLOGENETIC ACCURACY – A SIMULATION STUDY Dwivedi Bhakti University of Dayton Advisor: Dr. Sudhindra R. Gadagkar An accurately inferred phylogeny is important to the study of molecular evolution. Factors impacting the accuracy of a phylogenetic tree can be traced to several consecutive steps leading to the inference of the phylogeny. In this simulation-based study our focus is on the impact of the certain evolutionary features of the nucleotide sequences themselves in the alignment rather than any source of error during the process of sequence alignment or due to the choice of the method of phylogenetic inference. Nucleotide sequences can be characterized by summary statistics such as sequence length and base composition. When two or more such sequences need to be compared to each other (as in an alignment prior to phylogenetic analysis) additional evolutionary features come into play, such as the overall rate of nucleotide substitution, the ratio of two specific instantaneous, rates of substitution (rate at which transitions and transversions occur), and the shape parameter, of the gamma distribution (that quantifies the extent of iii heterogeneity in substitution rate among sites in an alignment).
    [Show full text]
  • News from the CREW
    Volume 6 • March 200 News from the CREW lthough 2009 has been a Asteraceae family) in full flower. REW, the Custodians of Areally challenging year with These plants are usually rather C Rare and Endangered the global recession having had inconspicuous and are very hard Wildflowers, is a programme a heavy impact on all of us, it to spot when not flowering, so that involves volunteers from we were very lucky to catch it could not break the strong spir- the public in the monitoring it of CREW. Amidst the great in flower. The CREW team has taken a special interest in the and conservation of South challenges we came up tops genus Marasmodes (we even Africa’s threatened plants. once again, with some excep- have a day in April dedicated to CREW aims to capacitate a tionally great discoveries. the monitoring of this genus) network of volunteers from as they all occur in the lowlands a range of socio-economic Our first great adventure for and are severely threatened. I backgrounds to monitor the year took place in the knew from the herbarium speci- and conserve South Afri- Villiersdorp area. We had to mens that there have not been ca’s threatened plant spe- collect flowering material of any collections of Marasmodes Prismatocarpus lycioides, a data cies. The programme links from the Villiersdorp area and volunteers with their local deficient species in the Campan- was therefore very excited conservation agencies and ulaceae family. We rediscovered about this discovery. As usual, this species in the area in 2008 my first reaction was: ‘It’s a particularly with local land and all we had to go on was a new species!’ but I soon so- stewardship initiatives to en- scrappy nonflowering branch.
    [Show full text]
  • Vitis Vinifera L.)
    UNIVERSIDAD POLITÉCNICA DE CARTAGENA DEPARTAMENTO DE CIENCIA Y TECNOLOGÍA AGRARIA GENETIC TRANSFORMATION AND ELICITATION TO OBTAIN MEDICINAL COMPOUNDS IN GRAPEVINE ( Vitis vinifera L.) AND IN Bituminaria bituminosa (L.) STIRT. María Pazos Navarro 2012 UNIVERSIDAD POLITÉCNICA DE CARTAGENA DEPARTAMENTO DE CIENCIA Y TECNOLOGÍA AGRARIA GENETIC TRANSFORMATION AND ELICITATION TO OBTAIN MEDICINAL COMPOUNDS IN GRAPEVINE ( Vitis vinifera L.) AND IN Bituminaria bituminosa (L.) STIRT. María Pazos Navarro Directora Mercedes Dabauza Micó 2012 Acknowledgements ACKNOWLEDGEMENTS Me gustaría dar las gracias a todas aquellas personas que han tenido algo que ver en la realización de esta tesis, ya sea de manera directa o indirecta. Espero no olvidar mencionar a nadie… Primero de todo, quiero agradecer a mi directora de tesis, la Dra. Mercedes Dabauza, su esfuerzo y paciencia durante la realización de esta tesis. Al final de todo seguimos llevándonos muy bien, y puedo decir que además de una gran directora de tesis, es una muy buena amiga. Muchas gracias por todo. Elena, Domingo y Antonio muchas gracias por esos viajes a Cartagena a las clases del Master. Entre todos hacíamos menos aburridos esos viajes. No puedo olvidarme del Equipo de Fruticultura del IMIDA; que puedo decir de ell@s: Pepe Cos y Antonio Carrillo, lo que me he reido y lo bien que me lo he pasado con vosotros emasculando flores; muchísimas gracias por esos buenos recuerdos, hacéis un buen tándem, seguid así. Marga, amiga mía, después de tantos años creo que nos lo hemos dicho casi todo; así que solo te digo que ¡dentro de poco te tocará a ti! Ten paciencia.
    [Show full text]
  • Final Report Template
    Native Legumes as a Grain Crop for Diversification in Australia RIRDC Publication No. 10/223 RIRDCInnovation for rural Australia Native Legumes as a Grain Crop for Diversification in Australia by Megan Ryan, Lindsay Bell, Richard Bennett, Margaret Collins and Heather Clarke October 2011 RIRDC Publication No. 10/223 RIRDC Project No. PRJ-000356 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-188-4 ISSN 1440-6845 Native Legumes as a Grain Crop for Diversification in Australia Publication No. 10/223 Project No. PRJ-000356 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Phylogeny Inference Based on Parsimony and Other Methods Using Paup*
    8 Phylogeny inference based on parsimony and other methods using Paup* THEORY David L. Swofford and Jack Sullivan 8.1 Introduction Methods for inferring evolutionary trees can be divided into two broad categories: thosethatoperateonamatrixofdiscretecharactersthatassignsoneormore attributes or character states to each taxon (i.e. sequence or gene-family member); and those that operate on a matrix of pairwise distances between taxa, with each distance representing an estimate of the amount of divergence between two taxa since they last shared a common ancestor (see Chapter 1). The most commonly employed discrete-character methods used in molecular phylogenetics are parsi- mony and maximum likelihood methods. For molecular data, the character-state matrix is typically an aligned set of DNA or protein sequences, in which the states are the nucleotides A, C, G, and T (i.e. DNA sequences) or symbols representing the 20 common amino acids (i.e. protein sequences); however, other forms of discrete data such as restriction-site presence/absence and gene-order information also may be used. Parsimony, maximum likelihood, and some distance methods are examples of a broader class of phylogenetic methods that rely on the use of optimality criteria. Methods in this class all operate by explicitly defining an objective function that returns a score for any input tree topology. This tree score thus allows any two or more trees to be ranked according to the chosen optimality criterion. Ordinarily, phylogenetic inference under criterion-based methods couples the selection of The Phylogenetic Handbook: a Practical Approach to Phylogenetic Analysis and Hypothesis Testing, Philippe Lemey, Marco Salemi, and Anne-Mieke Vandamme (eds.).
    [Show full text]
  • C10 Beano2.Gen-Wis
    LEGUMINOSAE PART DEUX Papilionoideae, Genista to Wisteria Revised May the 4th 2015 BEAN FAMILY 2 Pediomelum PAPILIONACEAE cont. Genista Petalostemum Glycine Pisum Glycyrrhiza Psoralea Hylodesmum Psoralidium Lathyrus Robinia Lespedeza Securigera Lotus Strophostyles Lupinus Tephrosia Medicago Thermopsis Melilotus Trifolium Onobrychis Vicia Orbexilum Wisteria Oxytropis Copyrighted Draft GENISTA Linnaeus DYER’S GREENWEED Fabaceae Genista Genis'ta (jen-IS-ta or gen-IS-ta) from a Latin name, the Plantagenet kings & queens of England took their name, planta genesta, from story of William the Conqueror, as setting sail for England, plucked a plant holding tenaciously to a rock on the shore, stuck it in his helmet as symbol to hold fast in risky undertaking; from Latin genista (genesta) -ae f, the plant broom. Alternately from Celtic gen, or French genet, a small shrub (w73). A genus of 80-90 spp of small trees, shrubs, & herbs native of Eurasia. Genista tinctoria Linnaeus 1753 DYER’S GREENWEED, aka DYER’S BROOM, WOADWAXEN, WOODWAXEN, (tinctorius -a -um tinctor'ius (tink-TORE-ee-us or tink-TO-ree-us) New Latin, of or pertaining to dyes or able to dye, used in dyes or in dyeing, from Latin tingo, tingere, tinxi, tinctus, to wet, to soak in color; to dye, & -orius, capability, functionality, or resulting action, as in tincture; alternately Latin tinctōrius used by Pliny, from tinctōrem, dyer; at times, referring to a plant that exudes some kind of stain when broken.) An escaped shrub introduced from Europe. Shrubby, from long, woody roots. The whole plant dyes yellow, & when mixed with Woad, green. Blooms August. Now, where did I put that woad? Sow at 18-22ºC (64-71ºF) for 2-4 wks, move to -4 to +4ºC (34-39ºF) for 4-6 wks, move to 5-12ºC (41- 53ºF) for germination (tchn).
    [Show full text]
  • Exploring the Tempo of Species Diversification in Legumes
    South African Journal of Botany 89 (2013) 19–30 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Exploring the tempo of species diversification in legumes E.J.M. Koenen a,1, J.M. de Vos a,1,2, G.W. Atchison a, M.F. Simon b, B.D. Schrire c, E.R. de Souza d, L.P. de Queiroz d, C.E. Hughes a,⁎ a Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland b Embrapa Recursos Genéticos e Biotecnologia, PqEB, Caixa Postal 02372 Brasilia-DF, Brasil c Herbarium, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK d Universidade Estadual de Feira de Santana, Dept. de Ciências Biológicas, Feira de Santana, Bahia, Brasil article info abstract Available online 12 August 2013 Whatever criteria are used to measure evolutionary success – species numbers, geographic range, ecological abundance, ecological and life history diversity, background diversification rates, or the presence of rapidly Edited by JS Boatwright evolving clades – the legume family is one of the most successful lineages of flowering plants. Despite this, we still know rather little about the dynamics of lineage and species diversification across the family through the Keywords: Cenozoic, or about the underlying drivers of diversification. There have been few attempts to estimate net Species diversification species diversification rates or underlying speciation and extinction rates for legume clades, to test whether Leguminosae among-lineage variation in diversification rates deviates from null expectations, or to locate species diversifica- Calliandra fi Indigofereae tion rate shifts on speci c branches of the legume phylogenetic tree.
    [Show full text]
  • Genetic Change and Rates of Cladogenesis
    GENETIC CHANGE AND RATES OF CLADOGENESIS JOHN C. AVISE* AND FRANCISCO J. AYALA Depariment of Genetics, University of Californiu, Davis, California 95616 Manuscript received May 12, 1975 Revised copy received July 28, 1975 ABSTRACT Models are introduced which predict ratios of mean levels of genetic divergence in species-rich versus species-poor phylads under two competing assumptions: (1) genetic differentiation is a function of time, unrelated to the number of cladogenetic events and (2) genetic differentiation is proportional to the number of speciation events in the group. The models are simple, general, and biologically real, but not precise. They lead to qualitatively distinct predic- tions about levels of genetic divergence depending upon the relationship between rates of speciation and amount of genetic change. When genetic dis- tance between species is a function of time, mean genetic distances in speciose and depauperate phylads of equal evolutionary age are very similar. On the contrary, when genetic distance is a function of the number of speciations in the history of a phylad, the ratio of mean genetic distances separating species in speciose versus depauperate phylads is greater than one, and increases rapidly as the frequency of speciations in one group relative to the other increases. The models may be tested with data from natural populations to assess (1) possible correlations between rates of anagenesis and cladogenesis and (2) the amount of genetic differentiation accompanying the speciation process. The data collected in electrophoretic surveys and other kinds of studies can be used to test the predictions of the models. For this purpose genetic distances need to be measured in speciose and depauperate phylads of equal evolutionary age.
    [Show full text]
  • Lineages, Splits and Divergence Challenge Whether the Terms Anagenesis and Cladogenesis Are Necessary
    Biological Journal of the Linnean Society, 2015, , – . With 2 figures. Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary FELIX VAUX*, STEVEN A. TREWICK and MARY MORGAN-RICHARDS Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Received 3 June 2015; revised 22 July 2015; accepted for publication 22 July 2015 Using the framework of evolutionary lineages to separate the process of evolution and classification of species, we observe that ‘anagenesis’ and ‘cladogenesis’ are unnecessary terms. The terms have changed significantly in meaning over time, and current usage is inconsistent and vague across many different disciplines. The most popular definition of cladogenesis is the splitting of evolutionary lineages (cessation of gene flow), whereas anagenesis is evolutionary change between splits. Cladogenesis (and lineage-splitting) is also regularly made synonymous with speciation. This definition is misleading as lineage-splitting is prolific during evolution and because palaeontological studies provide no direct estimate of gene flow. The terms also fail to incorporate speciation without being arbitrary or relative, and the focus upon lineage-splitting ignores the importance of divergence, hybridization, extinction and informative value (i.e. what is helpful to describe as a taxon) for species classification. We conclude and demonstrate that evolution and species diversity can be considered with greater clarity using simpler, more transparent terms than anagenesis and cladogenesis. Describing evolution and taxonomic classification can be straightforward, and there is no need to ‘make words mean so many different things’. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.
    [Show full text]