Skull Science

Total Page:16

File Type:pdf, Size:1020Kb

Skull Science id you ever find a bone while exploring In addition to teeth, other skull structures can the woods and wonder what animal it tell you whether an animal is a meat-or plant- belonged to? Bones, especially mammal eater. For example, there are numerous sites on skulls and jaws, can tell you a lot about the skull for muscle attachment, which vary the animal they came from. Whether it’s from species to species. In carnivores and just a partial jaw or a full skull, the bone’s omnivores, there is a ridge on top of the skull size, shape and structure provides you with called a sagittal crest. The site of muscle clues to the mammal’s identity and habits. attachment for the strong muscle that controls If you’re lucky enough to find an entire the crushing lower jaw, the sagittal crest is mammal skull, the first thing you should look quite pronounced on opossum and fisher, and at is its general size and shape. Is it large like less pronounced on coyote, raccoon and otter. a deer, or small like a rabbit? Is the skull Since herbivores typically have smaller jaw streamlined and narrow like an opossum, or muscles, they lack an obvious crest. broader and rounder like a raccoon? Are there Another interesting feature on a skull is the teeth, and if so, how many and what do they position and size of the eye sockets. Predators, look like? such as coyote and otter, generally have for- Teeth are great visual clues to an animal’s ward-facing eyes. This provides them with 3-D identity. They indicate what and how an animal vision, enabling them to more accurately locate eats. In many mammals, the teeth are quite and follow prey. In contrast, prey species, such distinctive. By examining the dentition (number as rabbits, have relatively large eyes located on and form of the teeth), you can tell whether the sides of their head. This gives them great the animal is a meat-eater (carnivore), plant- peripheral vision, aiding them in locating preda- eater (herbivore) or both (omnivore). Sharp, tors and warning them about sneak attacks. pointed teeth such as canines and carnassials While all mammal species have specific traits (last upper premolar and first lower molar and adaptations, keep in mind that animals can that meet with a scissorslike action) are used also be highly variable within a species, adjusting for tearing and shearing meat, indicating a to available conditions. For example, coyotes are carnivore. Broad, somewhat flat teeth are generally meat eaters, but will also eat fruit. used for crushing and grinding vegetation, Raccoons and opossums are considered omni- indicating an herbivore. Since omnivores, such vores, but they may be entirely carnivorous or as raccoons and humans, eat both plants and vegetarian depending on food availability. And meat, they have sharp teeth in the front to rip while deer are herbivores, they have been and cut, and flattened teeth in the back to observed to eat fish on occasion. mash their food. So next time you’re in the woods, or even in The condition of teeth (and bones) can pro- your own backyard, look around and see if you vide you with information about the animal’s can spot any mammal bones. While finding a history. For instance, heavily worn, damaged complete skull is rare, you’ll be amazed at what and cracked teeth may indicate that an animal you can find, and surprised at the amount of is old. Likewise, chipped, broken or missing information those bones reveal. teeth, or broken bones could mean the animal The following are a few mammals whose was in an accident or fight. bones you might find in New York’s outdoors. NYS Department of Environmental Conservation Text by Eileen Stegemann Reprinted from the New York State Conservationist, April 2006 Artwork - Jean Gawalt / Layout & design - Frank Herec To subscribe, visit www.theconservationist.org or call 1-800-678-6399 sagittal crest canines carnassial COYOTE Rabbit’s peripheral vision Skulls and teeth reveal a lot about an animal’s habits. This coyote has for- ward-facing eyes for binocular vision, canines for puncturing flesh, and a heavy carnassial pair for crushing dog-like animal, the coyote’s skull is bones. In contrast, a rabbit has eyes on Arather long with a large braincase and an the side of its head to see danger elongated snout. Like other predators, the approaching from almost any direction. eyes are located on the front of the head, giving the coyote binocular vision and better depth perception. Though largely a meat eater, a coyote's diet consists of a wide range of available foods, including deer, Rabbits snip rabbits, rodents, carrion, fruit, birds and twigs neatly insects. The coyote’s teeth are specially (left), while deer shred adapted for eating meat. It has large, round, the edges pointed canines for grabbing and stabbing (right). prey, and blade-like premolars and molars for both shearing and crushing bones. The skull has a low sagittal crest for muscle attachment to the crushing lower jaw. Beaver’s incisors remove wood like a chisel. he continent’s largest rodent, the beaver losely related to rodents, the eastern ts "masked" face familiar to many, the Thas a thickly muscled body supported by Ccottontail rabbit is an herbivore, eating Iraccoon is a mischievous creature often large bones. Its skull and jaws are heavy to a variety of plants, including tender green known for getting into people’s garbage. support the four large bright-orange incisor vegetation, garden produce, bark and buds of An omnivore, it will eat vertebrates, teeth (two on top, two on bottom). Like all trees, vines and shrubs. Its jaw contains both invertebrates, fruits, nuts, berries, mice, rodents, the beaver’s chisel-like incisors are upper and lower front incisors which enable young birds, crayfish, frogs and turtle and deeply rooted in the skull and continue to it to neatly snip off plants. Unlike rodents, the bird eggs. It has a broad, rounded skull grow throughout the animal’s life. They use cottontail has two pairs of upper incisors— with a large brain case, and with eye these sharp teeth to fell trees for both food a small incisor lies behind each large, deeply- sockets that face forward like a predator’s. and building material. The incisors automat- grooved upper incisor. Popular prey for a The jaw contains canines and ripping teeth ically sharpen one another when the uppers number of predator species, the cottontail’s as well as grinding teeth, but like a bear, meet the lowers. Constant gnawing keeps skull has very large eyes sockets located on the raccoon has broad, low-crowned the teeth from growing too long. The its sides. This eye placement provides a wide molars shaped for crushing rather than beaver’s molar teeth function much like a field of vision, enabling the cottontail to more cutting. The raccoon’s scientific name, wood rasp, shredding and grating woody effectively spot predators. You can test this: lotor, refers to its habit of washing food plant fibers. Eye sockets and ear openings try to sneak up on a rabbit, even one that is before eating it. are located high on the beaver’s skull, facing away from you! In addition, the cotton- enabling this animal to see and hear while tail has very thin, light bones, which help the floating on the water’s surface. animal to run more quickly. n herbivore, the white-tailed deer is large, mostly aquatic weasel, the river he opossum is North America’s only Aconsidered a browser or grazer, eating Aotter’s streamlined body is perfectly Tmarsupial. Recognized by its long, leaves, stems, buds of woody plants, fruits, shaped for moving quickly through water. bare, prehensile tail used during climbing, vines, mushrooms, grasses and acorns. Its skull is slightly flattened with an elongated it is a primitive animal with a very small The white-tail’s broad molar teeth are high- braincase, and its eye sockets are set high on braincase. Opportunistic, the opossum is crested and quite sharp for cutting, slicing the head, close to the nose. This eye place- an omnivore, eating whatever is available, and grinding. Like all mammals, the teeth ment enables this predator to accurately such as fruits, berries, insects, reptiles, wear down progressively as the deer grows view the surroundings while floating on the amphibians, smaller mammals, carrion older. Because a white-tail lacks upper inci- surface. The river otter eats fish and and garbage. Its skull can be distin- sors, it tears, shreds or roughly shears off crustaceans, amphibians (particularly frogs), guished from other mammals’ by the vegetation when eating, rather than neatly insects, birds and mammals. It has large, large number of teeth—a total of 50 in an snipping it like a rabbit. One distinguishing sharp canines for grasping prey, and its other adult, including 10 upper and 8 lower inci- feature of a deer’s elongated skull is the teeth are adapted for slicing and crushing. sors, large canine teeth, and a number of large gap on the lower jaw between the Otters range over wide territories, and their grinding teeth. The opossum’s skull contains front incisors and back teeth. A prey high metabolic rates make them voracious a number of strong muscle attachment species, the deer’s eyes are set somewhat eaters. sites, including a tall, well-defined, blade- to the side for better peripheral vision. like sagittal crest..
Recommended publications
  • Veterinary Dentistry Extraction
    Veterinary Dentistry Extraction Introduction The extraction of teeth in the dog and cat require specific skills. In this chapter the basic removal technique for a single rooted incisor tooth is developed for multi-rooted and canine teeth. Deciduous teeth a nd feline teeth, particularly those affected by odontoclastic resorptive lesions, also require special attention. Good technique requires careful planning. Consider if extraction is necessary, and if so, how is it best accomplished. Review the root morphology and surrounding structures using pre-operative radiographs. Make sure you have all the equipment you need, and plan pre and post-operative management. By the end of this chapter you should be able to: ü Know the indications for extracting a tooth ü Unders tand the differing root morphology of dog and cat teeth ü Be able to select an extraction technique and equipment for any individual tooth ü Know of potential complications and how to deal with them ü Be able to apply appropriate analgesic and other treatment. Indications for Extraction Mobile Teeth Mobile teeth are caused by advanced periodontal disease and bone loss. Crowding of Teeth Retained deciduous canine. Teeth should be considered for extraction when they are interfering with occlusion or crowding others (e.g. supernumerary teeth). Retained Deciduous Teeth Never have two teeth of the same type in the same place at the same time. This is the rule of dental succession. Teeth in the Line of a Fracture Consider extracting any teeth in the line of a fracture of the mandible or maxilla. Teeth Destroyed by Disease Teeth ruined by advanced caries, feline neck lesions etc.
    [Show full text]
  • What Can I Learn from a Skull? Animal Skulls Have Evolved for Millions of Years to Protect Vertebrate’S Brains and Sensory Organs
    What Can I Learn From a Skull? Animal skulls have evolved for millions of years to protect vertebrate’s brains and sensory organs. Many of an animal’s dietary and social patterns can be deduced by examining its skull and teeth. HERBIVORE OMNIVORE CARNIVORE White-tailed Deer Virginia Opossum Coyote (Odocoileus virginianus) (Didelphis virginiana) (Canis latrans) TEETH SHOW DIET . The hardest and longest-lasting bone in the body is tooth enamel. The most common fossils are teeth, followed by jaws. Unlike other animals, mammals have only two sets of teeth, the first (often called ‘milk teeth’) erupts after birth. After puberty, a larger set, with more and bigger teeth to fill larger jawbones, emerges. There are four different types of teeth – • Incisors are the front teeth, used for cutting and grasping. • Canines are next to incisors and are used for tearing. • Premolars , located behind the canines, have sharp edges for crushing food. • Molars , the very back teeth, are broad, flat grinders. Generally, herbivores have large incisors to nip vegetation and premolars and molars to grind it into food; very few have canines. Carnivores, who eat meat, generally have small incisors, very large canines and sharp premolars and molars. Omnivores eat almost everything and their teeth reflect their Lakeside Nature Center 4701 E Gregory, KCMO 64132 816-513-8960 www.lakesidenaturecenter.org preferences; they have all four types of teeth. In fact, if you’d like to see an excellent example of an omnivore’s teeth, look in the mirror. EYE PLACEMENT IDENTIFIES PREDATORS . Carnivores generally have large eyes, placed so that the eyes look forward and the areas of vision of the two eyes overlap.
    [Show full text]
  • Shape Evolution and Sexual Dimorphism in the Mandible of the Dire Wolf, Canis Dirus, at Rancho La Brea Alexandria L
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2014 Shape evolution and sexual dimorphism in the mandible of the dire wolf, Canis Dirus, at Rancho la Brea Alexandria L. Brannick [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, and the Paleontology Commons Recommended Citation Brannick, Alexandria L., "Shape evolution and sexual dimorphism in the mandible of the dire wolf, Canis Dirus, at Rancho la Brea" (2014). Theses, Dissertations and Capstones. Paper 804. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. SHAPE EVOLUTION AND SEXUAL DIMORPHISM IN THE MANDIBLE OF THE DIRE WOLF, CANIS DIRUS, AT RANCHO LA BREA A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Alexandria L. Brannick Approved by Dr. F. Robin O’Keefe, Committee Chairperson Dr. Julie Meachen Dr. Paul Constantino Marshall University May 2014 ©2014 Alexandria L. Brannick ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS I thank my advisor, Dr. F. Robin O’Keefe, for all of his help with this project, the many scientific opportunities he has given me, and his guidance throughout my graduate education. I thank Dr. Julie Meachen for her help with collecting data from the Page Museum, her insight and advice, as well as her support. I learned so much from Dr.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Comparison of Greater Palatine Nerve Block with Intravenous Fentanyl for Postoperative Analgesia Following Palatoplasty in Children
    Jemds.com Original Research Article Comparison of Greater Palatine Nerve Block with Intravenous Fentanyl for Postoperative Analgesia Following Palatoplasty in Children Amol Singam1, Saranya Rallabhandi2, Tapan Dhumey3 1Department of Anaesthesiology, JNMC, DMIMS, Sawangi Meghe, Wardha Maharashtra, India. 2Department of Anaesthesiology, JNMC, DMIMS, Sawangi Meghe, Wardha, Maharashtra, India. 3Department of Anaesthesiology, JNMC, DMIMS, Sawangi Meghe, Wardha, Maharashtra, India. ABSTRACT BACKGROUND Good pain relief after palatoplasty is important as inadequate analgesia with vigorous Corresponding Author: cry leads to wound dehiscence, removal of sutures and extra nursing care. Decrease Dr. Saranya Rallabhandi, in oxygen requirement and cardio-respiratory demand occur with good pain relief Assisstant Professor, and also promotes early recovery. Preoperative opioids have concerns like sedation, Department of Anesthesiology, AVBRH, DMIMS (DU), Sawangi Meghe, respiratory depression and airway compromise. Greater palatine nerve block with Wardha- 442001, Maharashtra, India. bupivacaine is safe and effective without the risk of respiratory depression. The study E-mail: [email protected] was done to compare pain relief postoperatively with intravenous fentanyl and greater palatine nerve block in children following palatoplasty. DOI: 10.14260/jemds/2020/549 METHODS How to Cite This Article: 80 children of ASA I & II, between 1 to 7 years were included and allocated into two Singam A, Rallabhandi S, Dhumey T. Comparison of greater palatine nerve block groups of 40 each. Analgesic medication was given preoperatively after induction of with intravenous fentanyl for postoperative general anaesthesia, children in Group B received greater palatine nerve block with analgesia following palatoplasty in -1 2 mL 0.25% inj. Bupivacaine (1 mL on each side) and Group F received 2 μg Kg I.V.
    [Show full text]
  • 6. the Pharynx the Pharynx, Which Forms the Upper Part of the Digestive Tract, Consists of Three Parts: the Nasopharynx, the Oropharynx and the Laryngopharynx
    6. The Pharynx The pharynx, which forms the upper part of the digestive tract, consists of three parts: the nasopharynx, the oropharynx and the laryngopharynx. The principle object of this dissection is to observe the pharyngeal constrictors that form the back wall of the vocal tract. Because the cadaver is lying face down, we will consider these muscles from the back. Figure 6.1 shows their location. stylopharyngeus suuperior phayngeal constrictor mandible medial hyoid bone phayngeal constrictor inferior phayngeal constrictor Figure 6.1. Posterior view of the muscles of the pharynx. Each of the three pharyngeal constrictors has a left and right part that interdigitate (join in fingerlike branches) in the midline, forming a raphe, or union. This raphe forms the back wall of the pharynx. The superior pharyngeal constrictor is largely in the nasopharynx. It has several origins (some texts regard it as more than one muscle) one of which is the medial pterygoid plate. It assists in the constriction of the nasopharynx, but has little role in speech production other than helping form a site against which the velum may be pulled when forming a velic closure. The medial pharyngeal constrictor, which originates on the greater horn of the hyoid bone, also has little function in speech. To some extent it can be considered as an elevator of the hyoid bone, but its most important role for speech is simply as the back wall of the vocal tract. The inferior pharyngeal constrictor also performs this function, but plays a more important role constricting the pharynx in the formation of pharyngeal consonants.
    [Show full text]
  • Lab Manual Axial Skeleton Atla
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the axial skeleton, which consists of the bones that form the axis of the body. The axial skeleton includes bones in the skull, vertebrae, and thoracic cage, as well as the auditory ossicles and hyoid bone. In addition to learning about all the bones of the axial skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the axial skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens. You may also find it helpful to palpate bones on yourself or make drawings of the bones with the bone markings labeled.
    [Show full text]
  • The Skull O Neurocranium, Form and Function O Dermatocranium, Form
    Lesson 15 ◊ Lesson Outline: ♦ The Skull o Neurocranium, Form and Function o Dermatocranium, Form and Function o Splanchnocranium, Form and Function • Evolution and Design of Jaws • Fate of the Splanchnocranium ♦ Trends ◊ Objectives: At the end of this lesson, you should be able to: ♦ Describe the structure and function of the neurocranium ♦ Describe the structure and function of the dermatocranium ♦ Describe the origin of the splanchnocranium and discuss the various structures that have evolved from it. ♦ Describe the structure and function of the various structures that have been derived from the splanchnocranium ♦ Discuss various types of jaw suspension and the significance of the differences in each type ◊ References: ♦ Chapter: 9: 162-198 ◊ Reading for Next Lesson: ♦ Chapter: 9: 162-198 The Skull: From an anatomical perspective, the skull is composed of three parts based on the origins of the various components that make up the final product. These are the: Neurocranium (Chondocranium) Dermatocranium Splanchnocranium Each part is distinguished by its ontogenetic and phylogenetic origins although all three work together to produce the skull. The first two are considered part of the Cranial Skeleton. The latter is considered as a separate Visceral Skeleton in our textbook. Many other morphologists include the visceral skeleton as part of the cranial skeleton. This is a complex group of elements that are derived from the ancestral skeleton of the branchial arches and that ultimately gives rise to the jaws and the skeleton of the gill
    [Show full text]
  • Metastatic Skull Tumours: Diagnosis and Management Mitsuya K, Nakasu Y European Association of Neurooncology Magazine 2014; 4 (2) 71-74
    Volume 4 (2014) // Issue 2 // e-ISSN 2224-3453 European Association of NeuroOncology Magazine Neurology · Neurosurgery · Medical Oncology · Radiotherapy · Paediatric Neuro- oncology · Neuropathology · Neuroradiology · Neuroimaging · Nursing · Patient Issues Metastatic Skull Tumours: Diagnosis and Management Mitsuya K, Nakasu Y European Association of NeuroOncology Magazine 2014; 4 (2) 71-74 Homepage www.kup.at/ journals/eano/index.html Online Database Featuring Author, Key Word and Full-Text Search Member of the THE EUROPEAN ASSOCIATION OF NEUROONCOLOGY Indexed in EMBASE Krause & Pachernegg GmbH . VERLAG für MEDIZIN und WIRTSCHAFT . A-3003 Gablitz, Austria Metastatic Skull Tumours Metastatic Skull Tumours: Diagnosis and Management Koichi Mitsuya, Yoko Nakasu Abstract: Metastases of the skull are classifi ed Magnetic resonance imaging is the primary diag- skull metastasis. Surgery is indicated in selected into 2 anatomical groups, presenting distinct clin- nostic tool. Skull metastasis is a focal lesion with patients with good performance status who need ical features. One is calvarial metastasis, which a low-intensity signal on T1-weighted images. En- immediate decompression, cosmetic recovery, or is usually asymptomatic but may cause dural in- hanced T1-weighted images with fat-suppression histological diagnosis. Eur Assoc NeuroOncol vasion, dural sinus occlusion, or cosmetic prob- show tumour, dural infi ltration, and cranial nerve Mag 2014; 4 (2): 71–4. lems. The other is skull-base metastasis, which involvements. Irradiation is the effective and fi rst- presents with cranial-nerve involvement leading line therapy for most skull metastases. Chemo- to devastating symptoms. A high index of suspi- therapy or hormonal therapy is applied depending cion based on new-onset cranial nerve defi cits on tumour sensitivity.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Conservation Genetics of African Wild Dogs Lycaon Pictus (Temminck, 1820) in South Africa
    Conservation genetics of African wild dogs Lycaon pictus (Temminck, 1820) in South Africa By Janet Marguerite Edwards Supervisors : Prof Michael J Somers Prof Paulette Bloomer Ms Harriet T Davies-Mostert Submitted in partial fulfilment of the requirements for the degree MAGISTER SCIENTIAE in the Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria December 2009 © University of Pretoria Conservation genetics of African wild dogs Lycaon pictus (Temminck, 1820) in South Africa By Janet Marguerite Edwards Supervisor: Professor Michael J Somers Centre for Wildlife Management University of Pretoria Pretoria Co-supervisors: Professor Paulette Bloomer Molecular Ecology and Evolution Programme Department of Genetics University of Pretoria Pretoria Ms HT Davies-Mostert Carnivore Conservation Group Endangered Wildlife Trust Johannesburg Department: Centre for Wildlife Management Intended degree: Magister Scientiae ii Declaration I declare that this dissertation, which I hereby submit for the degree Magister Scientiae at the University of Pretoria, is my own work and has not been previously submitted by me for a degree at this or any other tertiary institution. Date: ………………………… Signature: ………………………… iii Dissertation summary The African wild dog Lycaon pictus is Africa’s second most endangered carnivore. Only 14 out of 39 countries in Africa still have wild dogs present. This makes the populations of wild dogs in South Africa very valuable with respect to the entire species. Kruger National Park (Kruger) has the only self-sustaining and viable population of wild dogs in South Africa, making Kruger the core area of conservation for South African wild dogs. It is of vital importance to know the numbers of wild dogs present in Kruger.
    [Show full text]
  • Analysis of Snake Creek Burial Cave Mustela Fossils Using Linear
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2014 Analysis of Snake Creek Burial Cave Mustela fossils using Linear & Landmark-based Morphometrics: Implications for Weasel Classification & Black- footed Ferret Conservation Nathaniel S. Fox III East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Geology Commons Recommended Citation Fox, Nathaniel S. III, "Analysis of Snake Creek Burial Cave Mustela fossils using Linear & Landmark-based Morphometrics: Implications for Weasel Classification & Black-footed Ferret Conservation" (2014). Electronic Theses and Dissertations. Paper 2339. https://dc.etsu.edu/etd/2339 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Analysis of Snake Creek Burial Cave Mustela fossils using Linear & Landmark-based Morphometrics: Implications for Weasel Classification & Black-footed Ferret Conservation _______________________________________ A thesis presented to the faculty of the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences _______________________________________ by Nathaniel S. Fox May 2014 _______________________________________ Dr. Steven C. Wallace, Chair Dr. Jim I. Mead Dr. Blaine W. Schubert Keywords: Mustela, weasels, morphometrics, classification, conservation, Pleistocene, Holocene ABSTRACT Analysis of Snake Creek Burial Cave Mustela fossils using Linear & Landmark-based Morphometrics: Implications for Weasel Classification & Black-footed Ferret Conservation by Nathaniel S.
    [Show full text]