Applied T-Rflp Analyses for the Identification And

Total Page:16

File Type:pdf, Size:1020Kb

Applied T-Rflp Analyses for the Identification And APPLIED T-RFLP ANALYSES FOR THE IDENTIFICATION AND CHARACTERIZATION OF MICROBIAL POPULATIONS ASSOCIATED WITH DAMPING-OFF INCIDENCE IN A TRANSITIONAL ORGANIC CROPPING SYSTEM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By María Soledad Benítez, M.S. * * * The Ohio State University 2008 Dissertation Committee: Approved by: Dr. Brian McSpadden Gardener, Adviser Dr. Terrence L. Graham ___________________________ Dr. Warren Dick Adviser Dr. Enrico Bonello Plant Pathology Graduate Program ABSTRACT Within agricultural ecosystems the abundance and activities of diverse microbial populations affecting plant health can be significantly influenced by farm management practices. This work describes the effects of transitional cropping strategies on damping- off incidence and on soil and rhizosphere bacterial, fungal and oomycete communities. Specifically, individual microbial populations were associated with damping-off incidence and the suppression thereof, and two novel bacterial species were characterized for their ability to reduce seedling disease severity. Soils from an organic transition experiment exhibited different levels of damping-off suppression, with a perennial mixed hay transition consistently suppressing damping-off of tomato and soybean. Microbial community analyses were performed from the rhizosphere and surrounding soil of tomato and soybean seedlings grown in soils previously exposed to different transition strategies. The abundance of Pseudomonas and DAPG-producing Pseudomonas populations, did not clearly associate with disease levels. However, the analysis of bacterial, fungal and oomycete community profiles (generated from terminal restriction fragment length polymorphism of 16S and ITS genes, respectively) revealed individual members of the community (expressed as a terminal restriction fragment, TRF) that statistically associated with disease suppression or disease. Bacterial TRF more abundant in the mixed hay suppressive treatment were negatively correlated with disease incidence. In ii silico analysis of bacterial database sequences indicated that species of known biocontrol agents produce a TRF size corresponding to those identified in this study. Fungal and oomycete TRF abundance and diversity tended to be lower in the mixed hay transition strategy. Fungal and oomycete isolates of the genus Fusarium, Chaetomium and Pythium, among others, generate TRF that match those associated with disease in the studied transition strategies. Sequence information obtained from the bacterial T-RFLP data was used to identify and isolate two novel bacterial species from the mixed hay soils. Mitsuaria and Burkholderia isolates were phylogenetically related to the TRF sequences associated with disease suppression, inhibited pathogen growth in vitro, and reduced seedling disease severity. This work establishes the power of T-RFLP based screening of microbial communities to identify and direct the recovery of functionally important microorganisms in soil. iii To my parents iv ACKNOWLEGMENTS I would like to acknowledge first my advisor, Brian McSpadden Gardener for his support and guidance during this process, and especially for believing in me and encouraging me hard enough so to convince me to move into the PhD program. In addition thanks for starting me into a project that resulted being not only very productive and full of learning experiences but more than anything very fun to work in. I would like to thank the members of my student advisory committee, Terrance Graham, Warren Dick and Enrico Bonello, for all your helpful comments and support. Special thanks to the Department of Plant Pathology, professors, staff and students, for allowing me to be part of this program and making my time at this department so enjoyable but at the same time intellectually challenging. Thanks to all the people that in these years have shared the lab with me: Seth, Sonia, Jeff, Alejandra, Carrie, Kelly, Gloria, Dario, Jessica, Fulya, Guleray, Raghu, Laura, Amara, Clara, Jackie, Ethan, with a very special thank you for Rosa, Sunny, Dorith and Pal. A very special thank you to all those with whom I shared very nice moments during my stat at Ohio State: Wirat, Angel, Jose, Santiago, Miguel, Alieta, Frances, Andrea, Carla, Julio, Audrey, Diego, Fulya, Sawsan, Xiulan, Kirk, Luciana, Juan Pablo, v Sandra, Rodrigo, Alex, Sanja, Hanbae, Vanessa, Maggie, Hehe, Zhifen, Joe, Jorunn, Jing, Vero, Kristhen, Jhonny, Freddy, Carmen, Loren, Lynn... Of course thanks to my friend Gaby, who from California was a great support during these times, also thanks to Nessy, David and Pancho. The greatest thanks of all to my family, for their patience and support. Thanks to my mom for teaching me so early about the scientific method. Also for coming so many times to visit me, being such a good company and a great friend of my friends, and thanks to my dad, my sister and my nieces for letting her come. Thanks for my dad for being my scientific and work ethic role model. Thanks to my sister’s unconditional support. Thanks for Ale for her patience and understanding. Thanks to my brother who I know is proud of me. Finally thanks to all of you who will eventually be reading this thesis. Don’t wonder too much why I didn’t mention your names in it, it will have taken too much space. That includes my “witch” friends, my high school friends, my college friends, my cousins, aunts and grandma, and all other “unclassified” friends. iv VITA 1978 Born, Quito, Ecuador 1996-2002 Licenciatura, Biological Sciences, Pontificia Universidad Católica del Ecuador, Quito 2002-2004 Auxiliary Professor and Research Associate, Department of Biological Sciences, Pontificia Universidad Católica del Ecuador, Quito 2007 MSc, The Oho State University, obtained as a successful completion of the candidacy examination 2004 – present Graduate Research Associate, Department of Plant Pathology, The Ohio State University PUBLICATIONS 1. Baysal, F., Benítez, MS., Kleinhenz, M., Miller, S., McSpadden Gardener, B. 2008. Field Management Effects on Damping-off and Early Season Vigor of Crops in a Transitional Organic Cropping System. Phytopathology 98:562-570. 2. Benítez, MS., Baysal Tustas, F., Rotenberg, D., Kleinhenz, M.D., Cardina, J., Stinner, D., Miller, S.A., McSpadden Gardener, B. 2007. Multiple statistical approaches of community fingerprint data reveal bacterial populations associated with disease suppression arising from the application of different organic field management strategies. Soil Biology and Biochemistry 39: 2289-2301. 3. Rotenberg, D., Joshi, R., Benítez, MS., Gutierrez Chapin, L., Camp, A., Zumpetta, C., Osborne, A., Dick, W.A., McSpadden Gardener, B. B. 2007. Farm management effects on rhizosphere colonization by native populations of 2,4- diacetylphloroglucinol-producing Pseudomonas spp. and their contributions to crop health. Phytopathology 97: 756-766. 4. Pérez, O., Benítez, MS., Nath, K., Heasman, J., del Pino, E.M., Elinson, R. 2007. Comparative analysis of Xenopus VegT, the meso-endodermal determinant, identifies an unusual conserved sequence. Differentiation 75: 559-565. vii 1. McSpadden Gardener, B., Benítez, MS., Camp, A., Zumpetta, C. 2006. Evaluation of a seed treatment containing a phlD+ strain Pseudomonas fluorescens on organic soybeans, 2005. Biological and Cultural Tests 21:FC046. 2. del Pino, E.M., Avila, M-E., Pérez, O.D., Benítez, MS., Alarcón, I., Noboa, V., Moya, I. 2004. Development of the dendrobatid frog Colostethus machalilla. Int. J. Dev. Biol. 48: 663-670. 3. Benítez, MS. and del Pino, E.M. 2002. Expression of Brachyury During Development of the Dendrobatid Frog Colostethus machalilla. Dev. Dyn. 225:592–596. FIELDS OF STUDY Major Field: Plant Pathology viii TABLE OF CONTENTS Page Abstract ………………………………………………………………………... ii Dedication……………………………………………………………………… iv Acknowledgments……………………………………………………………... v Vita…………………………………………………………………………….. vii Table of Contents………………………………………………………………. ix List of Tables…………………………………………………………………... xi List of Figures………………………………………………………………….. xiv Chapters: 1. Setting up the stage: Identification of a disease suppression differential Introduction…………………………………………………………. 1 Identification of a disease suppressive differential: Transitional organic cropping system effects on soybean and tomato seedling damping-off and vigor……………………………………………… 6 Transition strategy and compost amendment effects on soil chemistry……………………………………………………………. 8 Transition strategy and compost amendment effects on soybean and tomato damping-off and seedling vigor…………………………….. 10 Transition strategy effects on the abundance and incidence of DAPG-producing Pseudomonas colonizing the rhizosphere of tomato and soybean………………………………………………… 13 Summary……………………………………………………………. 19 References…………………………………………………………... 21 2. Multiple statistical approaches of community fingerprint data reveal bacterial populations associated with general disease suppression arising from the application of different organic field management Abstract………………………………………………………….. 41 Introduction……………………………………………………… 42 Materials and Methods…………………………………………... 46 Results…………………………………………………………… 50 Discussion……………………………………………………….. 58 Acknowledgements……………………………………………… 64 References……………………………………………………….. 65 ix 3. Association of multiple fungal and oomycete populations with damping-off disease incidence in soils previously managed under different organic transition strategies Abstract………………………………………………………….
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • METABOLIC EVOLUTION in GALDIERIA SULPHURARIA By
    METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA By CHAD M. TERNES Bachelor of Science in Botany Oklahoma State University Stillwater, Oklahoma 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2015 METABOLIC EVOLUTION IN GALDIERIA SUPHURARIA Dissertation Approved: Dr. Gerald Schoenknecht Dissertation Adviser Dr. David Meinke Dr. Andrew Doust Dr. Patricia Canaan ii Name: CHAD M. TERNES Date of Degree: MAY, 2015 Title of Study: METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA Major Field: PLANT SCIENCE Abstract: The thermoacidophilic, unicellular, red alga Galdieria sulphuraria possesses characteristics, including salt and heavy metal tolerance, unsurpassed by any other alga. Like most plastid bearing eukaryotes, G. sulphuraria can grow photoautotrophically. Additionally, it can also grow solely as a heterotroph, which results in the cessation of photosynthetic pigment biosynthesis. The ability to grow heterotrophically is likely correlated with G. sulphuraria ’s broad capacity for carbon metabolism, which rivals that of fungi. Annotation of the metabolic pathways encoded by the genome of G. sulphuraria revealed several pathways that are uncharacteristic for plants and algae, even red algae. Phylogenetic analyses of the enzymes underlying the metabolic pathways suggest multiple instances of horizontal gene transfer, in addition to endosymbiotic gene transfer and conservation through ancestry. Although some metabolic pathways as a whole appear to be retained through ancestry, genes encoding individual enzymes within a pathway were substituted by genes that were acquired horizontally from other domains of life. Thus, metabolic pathways in G. sulphuraria appear to be composed of a ‘metabolic patchwork’, underscored by a mosaic of genes resulting from multiple evolutionary processes.
    [Show full text]
  • Metagenomic Shotgun Sequencing Analysis of Canalicular Concretions in Lacrimal Canaliculitis Cases
    Article Metagenomic Shotgun Sequencing Analysis of Canalicular Concretions in Lacrimal Canaliculitis Cases Yukinobu Okajima 1,*, Takashi Suzuki 1, Chika Miyazaki 2, Satoshi Goto 3, Sho Ishikawa 4 , Yuka Suzuki 1, Kotaro Aoki 5 , Yoshikazu Ishii 5, Kazuhiro Tateda 5 and Yuichi Hori 1 1 Department of Ophthalmology, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan; [email protected] (T.S.); [email protected] (Y.S.); [email protected] (Y.H.) 2 Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashi-nanba cho, Amagasaki 661-0892, Japan; [email protected] 3 Department of Ophthalmology, School of Medicine, The Jikei University, 3-19-18 Shinbashi-nishi, Minato-ku, Tokyo 105-8471, Japan; [email protected] 4 Department of Ophthalmology, School of Medicine, Saitama University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; [email protected] 5 Department of Microbiology and Infectious Diseases, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan; [email protected] (K.A.); [email protected] (Y.I.); [email protected] (K.T.) * Correspondence: [email protected]; Tel.: +81-3-3762-4151; Fax: +81-3-3298-0030 Abstract: Lacrimal canaliculitis is a rare infection of the lacrimal canaliculi with canalicular con- cretions formed by aggregation of organisms. Metagenomic shotgun sequencing analysis using next-generation sequencing has been used to detect pathogens directly from clinical samples. Using Citation: Okajima, Y.; Suzuki, T.; this technology, we report cases of successful pathogen detection of canalicular concretions in lacrimal Miyazaki, C.; Goto, S.; Ishikawa, S.; canaliculitis cases.
    [Show full text]
  • 1 Supplementary Information Ugly Ducklings – the Dark Side of Plastic
    Supplementary Information Ugly ducklings – The dark side of plastic materials in contact with potable water Lisa Neu1,2, Carola Bänziger1, Caitlin R. Proctor1,2, Ya Zhang3, Wen-Tso Liu3, Frederik Hammes1,* 1 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland 2 Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland 3 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, USA Table of contents Table S1 Exemplary online blog entries on biofouling in bath toys Figure S1 Images of all examined bath toys Figure S2 Additional images of bath toy biofilms by OCT Figure S3 Additional images on biofilm composition by SEM Figure S4 Number of bacteria and proportion of intact cells in bath toy biofilms Table S2 Classification of shared OTUs between bath toys Table S3 Shared and ‘core’ communities in bath toys from single households Table S4 Richness and diversity Figure S5 Classification of abundant OTUs in real bath toy biofilms Table S5 Comparison of most abundant OTUs in control bath toy biofilms Figure S6 Fungal community composition in bath toy biofilms Table S6 Conventional plating results for indicator bacteria and groups Table S7 Bioavailability of migrating carbon from control bath toys’ material Water chemistry Method and results (Table S8) Table S9 Settings for Amplification PCR and Index PCR reactions 1 Table S1: Exemplary online blog entries on biofouling inside bath toys Issue - What is the slime? Link Rub-a-dub-dub, https://www.babble.com/baby/whats-in-the-tub/ what’s in the tub? What’s the black stuff http://blogs.babycenter.com/momstories/whats-the-black- in your squeeze toys? stuff-in-your-squeeze-toys/ Friday Find: NBC’s http://www.bebravekeepgoing.com/2010/03/friday-find-nbcs- Today Show segment: today-show-segment-do.html Do bath toys carry germs? Yuck.
    [Show full text]
  • Community Structure Analysis 9
    Biodegradation of Polystyrene Foam by the Microorganisms from Landfill Pat Pataranutaporn ! Assistant prof. Savaporn Supaphol prof. Amornrat Phongdara Sureeporn Nualkaew Hi, I would like to invite you to take a look on my research Pat Introduction !3 “Styrofoam” Polystyrene Disadvantage Physical Properties ! • chemical formula is (C8H8)n • Non-biodegradable in the environment • monomer styrene • Made from non-renewable petroleum products • Thermoplastic • Chronic, low-level exposure risks undetermined • blowing agents Introduction !4 Bacteria nutritional requirements ! ‣ Energy source Biodegradation ‣ Carbon source Possibly work? ‣ Nitrogen source ‣ Minerals ‣ Water ‣ Growth factors Polystyrene structure http://faculty.ccbcmd.edu/courses/bio141/ lecguide/unit6/metabolism/growth/factors.html Introduction !5 Aims of the research ‣To identify the microbe that able to growth in the condition that polystyrene is a sole carbon source ! ‣To study the changing of microbe community structure in the selective culture which polystyrene is a sole carbon source ! ‣To observe the biodegradability of polystyrene To analyse the by product of polystyrene after degradation Methodology Methodology !7 Agar cultivation Community fingerprint 2 16s Ribosomal RNA Microbe Screening months later identification sampling Cultivation Molecular cloning Phylogenetic tree Degradability observation (SEM) Methodology Microbe sampling & cultivation !8 Agar cultivation Community fingerprint 2 16s Ribosomal RNA Microbe Screening months later identification sampling Cultivation
    [Show full text]
  • Interplay of Microbial Communities with Mineral Environments in Coralline Algae
    Science of the Total Environment 757 (2021) 143877 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Interplay of microbial communities with mineral environments in coralline algae Patricia M. Valdespino-Castillo a,1, Andrea Bautista-García b,1, Fabio Favoretto b,c, Martín Merino-Ibarra d, Rocío J. Alcántara-Hernández e, Teresa Pi-Puig e,f, F. Sergio Castillo d, Silvia Espinosa-Matías g, Hoi-Ying Holman a, Anidia Blanco-Jarvio b,⁎ a Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States b Laboratorio de Bioingeniería y Ciencias Ambientales (BICA), Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico c Gulf of California Marine Program, Scripps Institution of Oceanography, University of California San Diego, CA, United States d Unidad Académica de Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico e Instituto de Geología, Universidad Nacional Autónoma de México, Mexico City, Mexico f Laboratorio Nacional de Geoquímica y Mineralogía (LANGEM), Universidad Nacional Autónoma de México, Mexico City, Mexico g Laboratorio de Microscopía Electrónica de Barrido, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico HIGHLIGHTS GRAPHICAL ABSTRACT • The interplay of microorganisms and algal mineral bioconstructions remains poorly understood. • Carbonates rich in Fe and Mg found make CA relevant targets to study coastal resilience. • Halophiles and evaporite minerals con- currently suggest halophilic microenvi- ronments in the thallus. • Bacterial microbiota correlated signifi- cantly with temperature and nutrients. • Key bacteria might play relevant roles in adaptive responses of coralline algae.
    [Show full text]
  • Study on Diversity of Endophytic Bacterial Communities in Seeds of Hybrid Maize and Their Parental Lines
    Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines Yang Liu, Shan Zuo, Liwen Xu, Yuanyuan Zou & Wei Song Archives of Microbiology ISSN 0302-8933 Volume 194 Number 12 Arch Microbiol (2012) 194:1001-1012 DOI 10.1007/s00203-012-0836-8 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Arch Microbiol (2012) 194:1001–1012 DOI 10.1007/s00203-012-0836-8 ORIGINAL PAPER Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines Yang Liu • Shan Zuo • Liwen Xu • Yuanyuan Zou • Wei Song Received: 29 August 2011 / Revised: 23 May 2012 / Accepted: 30 July 2012 / Published online: 15 August 2012 Ó Springer-Verlag 2012 Abstract The seeds of plants are carriers of a variety of bacterium Acinetobacter (9.26 %) was also the second beneficial bacteria and pathogens. Using the non-culture dominant bacterium of its male parent. In the hybrid methods of building 16S rDNA libraries, we investigated Jingdan 28, the second dominant bacterium Pseudomonas the endophytic bacterial communities of seeds of four (12.78 %) was also the second dominant bacterium of its hybrid maize offspring and their respective parents.
    [Show full text]
  • Specificity in Legume-Rhizobia Symbioses
    International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga).
    [Show full text]
  • Mesorhizobium Ciceri LMS-1 Expressing an Exogenous
    Letters in Applied Microbiology ISSN 0266-8254 ORIGINAL ARTICLE Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints F.X. Nascimento1, C. Brı´gido1, B.R. Glick2, S. Oliveira1 and L. Alho1 1 Laborato´ rio de Microbiologia do Solo, I.C.A.A.M., Instituto de Cieˆ ncias Agra´ rias e Ambientais Mediterraˆ nicas, Universidade de E´ vora, E´ vora, Portugal 2 Department of Biology, University of Waterloo, Waterloo, ON, Canada Keywords Abstract 1-aminocyclopropane-1-carboxylate deaminase, acdS, chickpea, Mesorhizobium, Aims: Our goal was to understand the symbiotic behaviour of a Mesorhizobium root rot, soil. strain expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which was used as an inoculant of chickpea (Cicer arietinum) plants Correspondence growing in soil. Luı´s Alho, Instituto de Cieˆ ncias Agra´ rias e Methods and Results: Mesorhizobium ciceri LMS-1 (pRKACC) was tested for Ambientais Mediterraˆ nicas, Universidade de its plant growth promotion abilities on two chickpea cultivars (ELMO and E´ vora, Apartado 94, 7002-554 E´ vora, Portugal. E-mail: [email protected] CHK3226) growing in nonsterilized soil that displayed biotic and abiotic con- straints to plant growth. When compared to its wild-type form, the M. ciceri 2012 ⁄ 0247: received 8 February 2012, LMS-1 (pRKACC) strain showed an increased nodulation performance of c. revised 27 March 2012 and accepted 29 125 and 180% and increased nodule weight of c. 45 and 147% in chickpea cul- March 2012 tivars ELMO and CHK3226, respectively. Mesorhizobium ciceri LMS-1 (pRKACC) was also able to augment the total biomass of both chickpea plant doi:10.1111/j.1472-765X.2012.03251.x cultivars by c.
    [Show full text]
  • Characterization of Bacterial Communities Associated
    www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5.
    [Show full text]
  • Phylogeny of Nitrogenase Structural and Assembly Components Reveals New Insights Into the Origin and Distribution of Nitrogen Fixation Across Bacteria and Archaea
    microorganisms Article Phylogeny of Nitrogenase Structural and Assembly Components Reveals New Insights into the Origin and Distribution of Nitrogen Fixation across Bacteria and Archaea Amrit Koirala 1 and Volker S. Brözel 1,2,* 1 Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA; [email protected] 2 Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa * Correspondence: [email protected]; Tel.: +1-605-688-6144 Abstract: The phylogeny of nitrogenase has only been analyzed using the structural proteins NifHDK. As nifHDKENB has been established as the minimum number of genes necessary for in silico predic- tion of diazotrophy, we present an updated phylogeny of diazotrophs using both structural (NifHDK) and cofactor assembly proteins (NifENB). Annotated Nif sequences were obtained from InterPro from 963 culture-derived genomes. Nif sequences were aligned individually and concatenated to form one NifHDKENB sequence. Phylogenies obtained using PhyML, FastTree, RapidNJ, and ASTRAL from individuals and concatenated protein sequences were compared and analyzed. All six genes were found across the Actinobacteria, Aquificae, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Deferribacteres, Firmicutes, Fusobacteria, Nitrospira, Proteobacteria, PVC group, and Spirochaetes, as well as the Euryarchaeota. The phylogenies of individual Nif proteins were very similar to the overall NifHDKENB phylogeny, indicating the assembly proteins have evolved together. Our higher resolution database upheld the three cluster phylogeny, but revealed undocu- Citation: Koirala, A.; Brözel, V.S. mented horizontal gene transfers across phyla. Only 48% of the 325 genera containing all six nif genes Phylogeny of Nitrogenase Structural and Assembly Components Reveals are currently supported by biochemical evidence of diazotrophy.
    [Show full text]
  • Functional Genomics Approaches to Studying Symbioses Between Legumes and Nitrogen-Fixing Rhizobia
    Review Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia Martina Lardi and Gabriella Pessi * ID Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-635-2904 Received: 9 April 2018; Accepted: 16 May 2018; Published: 18 May 2018 Abstract: Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen- deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia). Keywords: alpha-rhizobia; beta-rhizobia; symbiosis; transcriptomics; proteomics; metabolomics; flavonoids; root exudates; root nodule 1. Introduction Nitrogen fixation in agricultural systems is of enormous agricultural importance, as it increases in situ the fixed nitrogen content of soil and can replace expensive and harmful chemical fertilizers [1]. For over a hundred years, all of the described symbiotic relationships between legumes and nitrogen-fixing rhizobia were confined to the alpha-proteobacteria (alpha-rhizobia) group, which includes Bradyrhizobium, Mesorhizobium, Methylobacterium, Rhizobium, and Sinorhizobium [2].
    [Show full text]