Plants of the American Continent with Antimalarial Activity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coreopsideae Daniel J
Chapter42 Coreopsideae Daniel J. Crawford, Mes! n Tadesse, Mark E. Mort, "ebecca T. Kimball and Christopher P. "andle HISTORICAL OVERVIEW AND PHYLOGENY In a cladistic analysis of morphological features of Heliantheae by Karis (1993), Coreopsidinae were reported Morphological data to be an ingroup within Heliantheae s.l. The group was A synthesis and analysis of the systematic information on represented in the analysis by Isostigma, Chrysanthellum, tribe Heliantheae was provided by Stuessy (1977a) with Cosmos, and Coreopsis. In a subsequent paper (Karis and indications of “three main evolutionary lines” within "yding 1994), the treatment of Coreopsidinae was the the tribe. He recognized ! fteen subtribes and, of these, same as the one provided above except for the follow- Coreopsidinae along with Fitchiinae, are considered ing: Diodontium, which was placed in synonymy with as constituting the third and smallest natural grouping Glossocardia by "obinson (1981), was reinstated following within the tribe. Coreopsidinae, including 31 genera, the work of Veldkamp and Kre# er (1991), who also rele- were divided into seven informal groups. Turner and gated Glossogyne and Guerreroia as synonyms of Glossocardia, Powell (1977), in the same work, proposed the new tribe but raised Glossogyne sect. Trionicinia to generic rank; Coreopsideae Turner & Powell but did not describe it. Eryngiophyllum was placed as a synonym of Chrysanthellum Their basis for the new tribe appears to be ! nding a suit- following the work of Turner (1988); Fitchia, which was able place for subtribe Jaumeinae. They suggested that the placed in Fitchiinae by "obinson (1981), was returned previously recognized genera of Jaumeinae ( Jaumea and to Coreopsidinae; Guardiola was left as an unassigned Venegasia) could be related to Coreopsidinae or to some Heliantheae; Guizotia and Staurochlamys were placed in members of Senecioneae. -
Download Herbal Gram.Pdf
The Arenal Volcano. Photo ©2010 Steven Foster Plants of By Rafael Ocampo and Michael J. Balick, PhD 32 | HerbalGram 87 2010 www.herbalgram.org Chaya Cnidoscolus chayamansa Photo ©2010 Steven Foster Editor's Note: In 1994, Paul Schulick, founder of the herb and dietary supplement company New Chapter (Brattleboro, VT), established Finca Luna Nueva, an organic farm, in the volcanic rainforest of northern Costa Rica. Its mission is the organic production of tropical plants for use in New Chapter’s products. A decade later, through the enthusiasm and commitment of three other individuals, Rafael Ocampo, Steven Farrell, and Thomas Newmark, along with the hard work of many local people, Semillas Sagradas—the Sacred Seed Sanc- tuary—was established on the grounds of Finca Luna Nueva. This sanctuary is now a place where a collec- tion of over 300 species of medicinal plants grows, is studied by researchers, and enjoyed by visitors. Semillas Sagradas, the first in a movement of many similar gardens to be established around the world, is devoted to preserving the diversity of local and regional medicinal plants, as well as the traditional wisdom and cultural knowledge of healing herbs. A book celebrating the plants of Semillas Sagradas was American Botanical Council permission to excerpt passages on published in 2009, co-authored by Rafael Ocampo and Michael a few of the medicinal plant species profiled in the book. Those J. Balick, PhD, and edited by Ruth Goldstein and Katherine excerpts are reprinted here with only minor stylistic editing. Herrera. Ocampo is a botanist, author, and technical advisor The American Botanical Council thanks the book’s authors on many medicinal plant projects in Central America, and Dr. -
Survey of Roadside Alien Plants in Hawai`I Volcanoes National Park and Adjacent Residential Areas 2001–2005
Technical Report HCSU-032 SURVEY OF ROADSIDE ALIEN PLANts IN HAWAI`I VOLCANOES NATIONAL PARK AND ADJACENT RESIDENTIAL AREAS 2001–2005 Linda W. Pratt1 Keali`i F. Bio2 James D. Jacobi1 1 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kilauea Field Station, P.O. Box 44, Hawaii National Park, HI 96718 2 Hawai‘i Cooperative Studies Unit, University of Hawai‘i at Hilo, P.O. Box 44, Hawai‘i National Park, HI 96718 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 September 2012 This product was prepared under Cooperative Agreement CA03WRAG0036 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-032 SURVEY OF ROADSIDE ALIEN PLANTS IN HAWAI`I VOLCANOES NATIONAL PARK AND ADJACENT RESIDENTIAL AREAS 2001–2005 1 2 1 LINDA W. PRATT , KEALI`I F. BIO , AND JAMES D. JACOBI 1 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kīlauea Field Station, P.O. Box 44, Hawai`i Volcanoes National Park, HI 96718 2 Hawaii Cooperative Studies Unit, University of Hawai`i at Hilo, Hilo, HI 96720 Hawai`i Cooperative Studies Unit University of Hawai`i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 September 2012 This article has been peer reviewed and approved for publication consistent with USGS Fundamental Science Practices ( http://pubs.usgs.gov/circ/1367/ ). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. -
Plantae, Magnoliophyta, Asterales, Asteraceae, Senecioneae, Pentacalia Desiderabilis and Senecio Macrotis: Distribution Extensions and First Records for Bahia, Brazil
Check List 4(1): 62–64, 2008. ISSN: 1809-127X NOTES ON GEOGRAPHIC DISTRIBUTION Plantae, Magnoliophyta, Asterales, Asteraceae, Senecioneae, Pentacalia desiderabilis and Senecio macrotis: Distribution extensions and first records for Bahia, Brazil. Aristônio M. Teles João R. Stehmann Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica. Caixa Postal 486, CEP 31270-091, Belo Horizonte, MG, Brazil. E-mail: [email protected] Senecioneae is the biggest Tribe of the Asteraceae state of Minas Gerais (Cabrera 1957; Hind (Nordestam 1996), comprising 150 genera (more 1993a). Senecio macrotis is a robust herb or than 9 % of all genera) and 3,500 species (about shrub, with lyrate-pinnatisect leaves, discoid 15 % of all species of the Family) (Nordenstam heads, and paniculate capitulescences (Cabrera 2007). The circumscription of many Senecioneae 1957). It is found typically in the Campos genera has changed, especially Senecio L., with Rupestres of the Espinhaço range, growing in about 1,250 species (Bremer 1994; Frodin 2004; altitudes ranging from 900 to 1,000 m (Vitta 2002). Nordenstam 2007). To Brazilian Senecioneae, Hind (1993a) estimated the occurrence of 97 The genus Pentacalia Cass., formerly included in species belonging to eight genera, and the more the synonymy of Senecio (lato sensu) (Barkley useful works to identify them are Cabrera (1950, 1985) and resurrected by Robinson and 1957), Cabrera and Klein (1975), Robinson Cuatrecasas (1978), comprises about 205 species (1980), Hind (1993a; 1993b; 1994; 1999), and distributed along Tropical America (Jeffrey 1992). Teles et al. (2006). Hind (1993a) cited the occurrence of two Brazilian species, P. desiderabilis (Vell.) Cuatrec. Senecio (stricto sensu) is characterized by annual and P. -
Phytosociological Study of a Riverine Forest Remnant from Taquari River, State of Rio Grande Do Sul, Brazil
Hoehnea 45(1): 149-158, 1 tab., 5 fi g., 2018 http://dx.doi.org/10.1590/2236-8906-79/2017 Phytosociological study of a riverine forest remnant from Taquari river, State of Rio Grande do Sul, Brazil Fabiane Lucheta 1,5, Gabriel Nicolini2, Gerson Luiz Ely Junior2, Marilaine Tremarin2, Marelise Teixeira2, Úrsula Arend3, Natália Mossmann Koch4 and Elisete Maria de Freitas2 Received: 19.10.2017; accepted: 1.02.2018 ABSTRACT - (Phytosociological study of a riverine forest remnant from Taquari river, State of Rio Grande do Sul, Brazil). Aiming to characterize the structure of the arboreal community in a riverine forest remnant of the Taquari river, State of Rio Grande do Sul, 42 sampling units of 100 m2 (10 × 10 m) were located. Phytosociological parameters were also assessed and the indexes of Shannon diversity (H’) and Pielou evenness (J) were evaluated. A total of 39 species, 21 families, 2.83 nats ind-1 for H’ and 0.77 for J were recorded. Among the species found, the endemic Callisthene inundata O.L. Bueno, A.D. Nilson & R.G. Magalh. and Picrasma crenata (Vell.) Engl. are included in the list of endangered species. The density found was of 1,557.14 ind ha-1. Luehea divaricata Mart. and Lonchocarpus nitidus Benth. showed the highest indexes of importance values. Besides contributing to the knowledge of species distribution and community structure, this study points out the need for conservation of existing native forest remnants. Keywords: alien species, arboreal community, endemic species, riparian vegetation, Taquari-Antas river basin RESUMO - (Estudo fi tossociológico de um remanescente da fl oresta ribeirinha do rio Taquari, Estado do Rio Grande do Sul, Brasil). -
Mise En Page 1
Systematic revision of the genus Isostigma Less. (Asteraceae, Coreopsideae) Guadalupe Peter Abstract Résumé PETER, G. (2009). Systematic revision of the genus Isostigma Less. (Aster- PETER, G. (2009). Révision systématique du genre Isostigma Less. (Aster- aceae, Coreopsideae). Candollea 64: 5-30. In English, English and French aceae, Coreopsideae). Candollea 64: 5-30. En anglais, résumés anglais et abstracts. français. Isostigma Less. (Asteraceae, Coreopsideae) is a South Ameri- Isostigma Less. (Asteraceae, Coreopsideae) est un genre sud- can genus, distributed in Argentina, Brazil, Bolivia, Paraguay, américain, distribué en Argentine, au Brésil, en Bolivie, au and Uruguay. This genus has 2 subgenus (Isostigma Less. and Paraguay et en Uruguay. Ce genre comprend 2 sous-genres Microtrichon Guad. Peter) including 11 species (Isostigma acaule (Isostigma Less. et Microtrichon Guad. Peter) incluant 11 (Baker) Chodat, Isostigma brasiliense (Gardner) B. D. Jacks., espèces (Isostigma acaule (Baker) Chodat, Isostigma brasi- Isostigma cordobense Cabrera, Isostigma dissitifolium Baker, liense (Gardner) B. D. Jacks., Isostigma cordobense Cabrera, Isostigma herzogii Hassl., Isostigma hoffmannii Kuntze, Iso - Isostigma dissitifolium Baker, Isostigma herzogii Hassl., stigma molfinianum Sherff, Isostigma peucedanifolium (Spreng.) Isostigma hoffmannii Kuntze, Isostigma molfinianum Sherff, Less., Isostigma scorzonerifolium (Baker) Sherff, Isostigma sim- Isostigma peucedanifolium (Spreng.) Less., Isostigma scorzo- plicifolium Less. and Isostigma sparsifolium Guad. Peter) and nerifolium (Baker) Sherff, Isostigma simplicifolium Less. et 6 varieties. Here are described the new subgenus Microtrichon Isostigma sparsifolium Guad. Peter) et 6 variétés. Ici sont and the taxon Isostigma peucedanifolium var. strictum Guad. décrits le nouveau sous-genre Microtrichon et le taxon Peter. Three new status and combinations are made: Isostigma Isostigma peucedanifolium var. strictum Guad. Peter. Trois peucedanifolium var. -
Chromosome Numbers in Compositae, XII: Heliantheae
SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII. -
New Insights on Bidens Herzogii (Coreopsideae, Asteraceae), an Endemic Species from the Cerrado Biogeographic Province in Bolivia
Ecología en Bolivia 52(1): 21-32. Mayo 2017. ISSN 1605-2528. New insights on Bidens herzogii (Coreopsideae, Asteraceae), an endemic species from the Cerrado biogeographic province in Bolivia Novedades en el conocimiento de Bidens herzogii (Coreopsideae, Asteraceae), una especie endémica de la provincia biogeográfica del Cerrado en Bolivia Arturo Castro-Castro1, Georgina Vargas-Amado2, José J. Castañeda-Nava3, Mollie Harker1, Fernando Santacruz-Ruvalcaba3 & Aarón Rodríguez2,* 1 Cátedras CONACYT – Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango (CIIDIR-Durango), Instituto Politécnico Nacional. 2 Herbario Luz María Villarreal de Puga (IBUG), Instituto de Botánica, Departamento de Botánica y Zoología, Universidad de Guadalajara. Apartado postal 1-139, Zapopan 45101, Jalisco, México. *Author for correspondence: [email protected] 3 Laboratorio de Cultivo de Tejidos, Departamento de Producción Agrícola, Universidad de Guadalajara. Apartado postal 1-139, Zapopan 45101, Jalisco, México. Abstract The morphological limits among some Coreopsideae genera in the Asteraceae family are complex. An example is Bidens herzogii, a taxon first described as a member of the genus Cosmos, but recently transferred to Bidens. The species is endemic to Eastern Bolivia and it grows on the Cerrado biogeographic province. Recently collected specimens, analysis of herbarium specimens, and revisions of literature lead us to propose new data on morphological description and a chromosome counts for the species, a tetraploid, where x = 12, 2n = 48. Lastly, we provide data on geographic distribution and niche modeling of B. herzogii to predict areas of endemism in Eastern Bolivia. This area is already known for this pattern of endemism, and the evidence generated can be used to direct conservation efforts. -
Floristic, Diversity and Spatial Distribution of Tree Species in a Dry Forest in Southern Brazil
Freitas et al.: Floristic diversity and spatial distribution of tree species - 511 - FLORISTIC, DIVERSITY AND SPATIAL DISTRIBUTION OF TREE SPECIES IN A DRY FOREST IN SOUTHERN BRAZIL FREITAS, W. K.1* ‒ MAGALHÃES, L. M. S.2 ‒ VIVÈS, L. R.1 1Postgraduate Program in Environmental Technology - PGTA – Fluminense Federal University – UFF. Av. dos Trabalhadores, 420, 27.255-125, Vila Santa Cecília, Volta Redonda, RJ, Brasil (e-mail: [email protected]) 2Department of Environmental Sciences and the Postgraduate Program in Sustainable Development Practices - PPGPDS – Rural Federal University of Rio de Janeiro – UFRRJ, Rod. BR-465, km 7,23851-970, Seropédica, RJ, Brasil (e-mail: [email protected]) *Corresponding author e-mail: [email protected]; tel: +55-24-2107-3434 (Received 2nd Jul 2016; accepted 11th Oct 2016) Abstract. This study was conducted in a fragment of deciduous seasonal forest (DSF), located between the municipalities of Piratuba and Ipira, Santa Catarina. The objective was to evaluate the floristic composition and the successional stage through the ecological groups, the Shannon diversity index (H') and the dispersal syndromes of species, also using the H' and the McGinnies index (IGA) to determine the pattern of spatial distribution of species. 14 transects were installed, each with 1,000 m2, considering all trees with Diameter at Breast Hight (DBH) ≤ 4.0 cm. In total, 2,125 individuals were sampled, belonging to 113 species and 34 families. Myrtaceae and Fabaceae were the families with the highest species richness, with 14.2% and 11.5%, respectively. Euphorbiaceae and Lauraceae added approximately 25% of the individuals. The most abundant species were Actiniostemon concolor (Spreng.) Müll. -
Leonotis Nepetifolia (Lion's Ear)
Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 2008. Predicting Invasive Plants in Florida using the Australian Weed Risk Assessment. Invasive Plant Science and Management 1: 178-195. Leonotis nepetifolia (lion's ear) Question number Question Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to Florida's USDA climate zones (0-low; 1-intermediate; 2-high) 2 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatility) 2.04 Native or naturalized in habitats with periodic inundation 2.05 Does the species have a history of repeated introductions outside its natural y range? 3.01 Naturalized beyond native range y 0 3.02 Garden/amenity/disturbance weed y 0 3.03 Weed of agriculture y 0 3.04 Environmental weed n 0 3.05 Congeneric weed y 0 4.01 Produces spines, thorns or burrs n 0 4.02 Allelopathic n 0 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens 4.07 Causes allergies or is otherwise toxic to humans n 0 4.08 Creates a fire hazard in natural ecosystems n 0 4.09 Is a shade tolerant plant at some stage of its life cycle y 1 4.1 Grows on infertile soils (oligotrophic, limerock, or excessively draining soils) y 1 4.11 Climbing or smothering growth habit n 0 4.12 Forms -
Portada Reporte De Plantas Nativas
A Selection of Native Plants with Ornamental Potential for Use in Urban and Rural Habitats: An Ex situ Conservation Assessment Parque Zoológico y Jardín Botánico Nacional Simón Bolívar San José, Costa Rica 14-15 February, 2019 FINAL REPORT Organized and funded: Rodríguez, J.E., Formoso, C., Cabezas, F. & Matamoros, Y. (Eds). 2020. A Selection of Native Plants with Ornamental Potential for Use in Urban and Rural Habitats: An Ex situ Conservation Assessment. 14-15 February, 2019. Parque Zoológico y Jardín Botánico Nacional Simón Bolívar, San José, Costa Rica. Conservation Planning Specialist Group UICN SSC (CPSG Mesoamerica). Thanks to Barry E. Hammel, Willow Zuchowski, Gerardo Herrera and Esteban Jiménez for their consistent and patient support during the Workshop and the writing of the Final Report. Cover Picture: Pseudogynoxys cummingii. Fernando Cabezas. Thanks to Lizbeth Ovares, Paula Álvarez and Cristina Formoso from Fundación Pro Zoológicos for their effort in taking notes during the Workshop and thus getting a more complete Final Report. A contribution between Fundación Pro Zoologicos and the IUCN SSC Conservation Planning Specialists Group (CPSG Mesoamerica). CPSG, SSC and IUCN promote workshops and other forums for the analysis and consideration of conservation-related problems and consider that the reports of these meetings are very useful when they are widely distributed. The opinions and recommendations expressed in this report reflect the issues discussed and the ideas expressed by workshop participants and do not necessarily -
Seeds of Threatened Trees and Palms from Rio Grande Do Sul, BRAZIL 1 Leandro Dal Ri¹; Nicole Rosa²; Josy Zarur De Matos¹; Thais Padilha²
Seeds of threatened trees and palms from Rio Grande do Sul, BRAZIL 1 Leandro Dal Ri¹; Nicole Rosa²; Josy Zarur de Matos¹; Thais Padilha² ¹ Fundação Zoobotânica do Estado do Rio Grande do Sul, Brasil, Av. Dr. Salvador França, 1427, Porto Alegre, 90690-000 ² Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brasil, 90650-970 Pictures taken in the Morphological seed analysis Laboratory – Seed bank of Botanic Garden of Porto Alegre, RS, BRAZIL. Produced by: Juliana Philipp & Cassie Kelsey © Leandro Dal Ri[[email protected]]; Forestry, Msc. in Botany. [fieldguides.fieldmuseum.org] [1142] version 1 7/2019 1 Annona cacans Warm. 2 Annona neosericea H. Rainer 3 Duguetia lanceolata A. St.-Hil. Spreng. 4 Aspidosperma quebracho-blanco Schltr. ANNONACEAE (VU) ANNONACEAE (CR) ANNONACEAE (EN) APOCYNACEAE (EN) 5 Aspidosperma riedelii Müll. Arg. 6 Rauvolfia sellowii Müll. Arg. 7 Aralia warmingiana (Marchal) J. Wen. 8 Butia catarinensis Noblick & Lorenzi APOCYNACEAE (CR) APOCYNACEAE (EN) ARALIACEAE (VU) ARACACEAE (CR) 9 Butia witeckii K. Soares & Longhi 10 Trithrinax brasiliensis Mart. 11 Gleditsia amorphoides (Griseb.) Taub. 12 Myrocarpus frondosus Allemão ARACACEAE (CR) ARACACEAE (CR) FABACEAE (EN) FABACEAE (VU) Seeds of threatened trees and palms from Rio Grande do Sul, BRAZIL 2 Leandro Dal Ri¹; Nicole Rosa²; Josy Zarur de Matos¹; Thais Padilha² ¹ Fundação Zoobotânica do Estado do Rio Grande do Sul, Brasil, Av. Dr. Salvador França, 1427, Porto Alegre, 90690-000 ² Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brasil, 90650-970 Pictures taken in the Morphological seed analysis Laboratory – Seed bank of Botanic Garden of Porto Alegre, RS, BRAZIL.