Digestive System

Total Page:16

File Type:pdf, Size:1020Kb

Digestive System Digestive System VIBS 443/602 esophagus stomach intestine OBJECTIVES TO UNDERSTAND THE GENERAL ORGANIZATION OF ORGANS OF THE DIGESTIVE SYSTEM AND HOW THEY FUNCTION TO OBTAIN METABOLITES NECESSARY FOR GROWTH AND ENERGY FOR THE BODY, YET MAINTAIN A BARRIER BETWEEN THE ENVIRONMENT AND THE INTERNAL MILIEU OF THE BODY Digestive tract functions as part of the First of Defense against infections •FIRST LINE - PHYSICAL BARRIER – SKIN - STRATUM CORIUM – HCL IN STOMACH – MUCUS IN INTESTINES reak the cycle of transmission OBJECTIVES continued TO IDENTIFY AND DISCRIBE FUNCTIONS OF CELLULAR STRUCTURES, CELLS, AND GROUPS OF CELLS IN THE DIGESTIVE SYSTEM FUNCTION OF the G.I. TRACT MOVEMENT OF FOOD SECRETION OF DIGESTIVE JUICES ABSORPTION OF DIGESTED FOODS, WATER, AND ELECTROLYTES serosa Esophagus serosa Small intestine Esophagus Esophagus Proximal Distal region region More skeletal muscle and more smooth muscle 137 437 cardioesophageal junaion 140 Cardia stomach 145 Fundic stomach 145 145 Fundic stomach 243 Fundic stomach, monkey (PAS) 244 Surface mucus cells of Fundic stomach, rabbit (toluidine blue) 244 Mucus neck cells Fundic stomach, rabbit (toluidine blue) EM 16 • Granules of surface mucous cells • Mitochondria • Nuclei 244 • Lumen EM 15 • Nucleus of parietal cell • Mitochondrion • Canaliculi of parietal cell • Mucous granule of mucous neck cell • Fibroblast EM 15 Parietal cell produces 1. HCl 2. Bicarbonate 3. Intrinsic factor for vitamin B12 absorption by gut needed in red blood cell formation EM 14 • Large granules of chief cell • Granules of an argentaffin cell • Lamina propria • Nuclei 244 EM 14 • Large granules of chief cell • Granules of an argentaffin cell • Lamina propria • Nuclei EM 14 • Large granules of chief cell • Granules of an argentaffin cell • Lamina propria • Nuclei Pyloric stomach, monkey (PAS) 141 147 Pyloroduodenal junction, baboon Next time we will continue with the intestines Digestive System VIBS 443/602 Continued esophagus stomach intestine • Next time Possible unique features of this course • Guest lectures (protein evolution, clinical) • Great/approachable support staff • Friendly learning environment/handouts • EM/cell biology/functional approach • Conferences for application of content/”W” course • Thought creating questions • Timely return of tests results/goes over answers/copies of previous tests • Useful information to future career goals • Humorous lectures/helpful interactions • World travels pictures/adventures Digestive System VIBS 443/602 Continued esophagus stomach intestine Digestive System con’t 152 Duodenum 146 Duodenum, monkey Intestinal villus 1. Brush border 2. Lymphocyte 3. Lamina propria 4. Capillary Intestinal villus 1. Central lacteal 2. Intestinal absorptive cell 3. Brush border 447 4. Blood capillary 5. macrophage EM 17 Basal portion of intestinal absorptive cell 1. Plasma cell 2. Lymphocyte 3. Smooth muscle 4. Intestinal absorptive cell 5. Macrophage 6. Lumen of capillary 7. Pericyte of capillary EM 17 Basal portion of intestinal absorptive cell 1. Plasma cell 2. Lymphocyte 3. Smooth muscle 4. Intestinal absorptive cell 5. Macrophage 6. Lumen of capillary 7. Pericyte of capillary EM 17 Basal portion of intestinal absorptive cell 1. Plasma cell 2. Lymphocyte 3. Smooth muscle 4. Intestinal absorptive cell 5. Macrophage 6. Lumen of capillary 7. Pericyte of capillary 249 Ileum, monkey (PAS) EM 4. Apical portion of intestinal absorptive cell 1. Microvilli of brush border 2. Droplets of goblet cell 3. Terminal web 4. Lipid in SER 5. lumen Basal portion of intestinal absorptive cell 1. Mitochondria 2. Nuclei of intestinal absorptive cell 3. Smooth muscle of muscularis mucosa 4. Basal lamina EM 4b EM 4c Paneth cells and argentaffin cells, jejunum 1. Apical granules of Paneth cells 2. Goblet cell 3. Argentaffin cell with basal granules 148 4. Intestinal absorptive cell 32409 Rat intestine 148 Ileum 250 argentaffin cells of Ileum, monkey 250 goblet cells of Ileum, monkey 153 Large intestine or Colon, monkey Human appendix 204 32412 Summary Saw HOW organs FUNCTION TO OBTAIN METABOLITES NECESSARY FOR GROWTH AND ENERGY FOR THE BODY, YET MAINTAIN A BARRIER BETWEEN THE ENVIRONMENT AND THE INTERNAL MILIEU OF THE BODY • Physical barrier to infection • Immune system interface • Specialization for digestion and absorption and cleaning blood of toxins ingested Summary Next time .
Recommended publications
  • Dispensing of Vitamin Products by Retail Pharmacies in South Africa: Implications for Dietitians
    South African Journal of Clinical Nutrition 2016; 29(4):133–138 http://dx.doi.org/10.1080/16070658.2016.1219468 SAJCN ISSN 1607-0658 EISSN 2221-1268 Open Access article distributed under the terms of the © 2016 The Author(s) Creative Commons License [CC BY-NC 3.0] http://creativecommons.org/licenses/by-nc/3.0 RESEARCH Dispensing of vitamin products by retail pharmacies in South Africa: Implications for dietitians Ilse Trutera* and Liana Steenkampb a Department of Pharmacy, Drug Utilisation Research Unit (DURU), Nelson Mandela Metropolitan University, Port Elizabeth, South Africa b HIV & AIDS Research Unit, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa *Corresponding author, email: [email protected] Objective: The objective of this study was to analyse the dispensing patterns of vitamins (Anatomical Therapeutic Chemical (ATC) group A11) over a one-year period in a group of community pharmacies in South Africa. Design and setting: A retrospective drug utilisation study was conducted on community pharmacy electronic dispensing records in South Africa recorded in 2013. Outcome measures: All products for ATC subgroup A11 were extracted and analysed. Results: A total of 164 233 vitamin products were dispensed to 84 805 patients (62.64% female patients). Males received on average 2.09 (SD = 2.63) vitamin products per year, compared to 1.84 (SD = 2.13) products for females. Ergocalciferol (A11CC01) was the most often dispensed (37.48% of all vitamin products), followed by plain Vitamin B-complex products (A11EA00) accounting for 32.77%. Ergocalciferol (vitamin D2) is only available on prescription (50 000 IU tablets or 50 000 IU/ml oily drops) in South Africa.
    [Show full text]
  • Vitamins Minerals Nutrients
    vitamins minerals nutrients Vitamin B12 (Cyanocobalamin) Snapshot Monograph Vitamin B12 Nutrient name(s): (Cyanocobalamin) Vitamin B12 Most Frequent Reported Uses: Cyanocobalamin • Homocysteine regulation Methylcobalamin • Neurological health, including Adenosylcobalamin (Cobamamide) diabetic neuropathy, cognitive Hydroxycobalamin (European) function, vascular dementia, stroke prevention • Anemias, including pernicious and megaloblastic • Sulfite sensitivity Cyanocobalamin Introduction: Vitamin B12 was isolated from liver extract in 1948 and reported to control pernicious anemia. Cobalamin is the generic name of vitamin B12 because it contains the heavy metal cobalt, which gives this water-soluble vitamin its red color. Vitamin B12 is an essential growth factor and plays a role in the metabolism of cells, especially those of the gastrointestinal tract, bone marrow, and nervous tissue. Several different cobalamin compounds exhibit vitamin B12 activity. The most stable form is cyanocobalamin, which contains a cyanide group that is well below toxic levels. To become active in the body, cyanocobalamin must be converted to either methylcobalamin or adenosylcobalamin. Adenosylcobalamin is the primary form of vitamin B12 in the liver. © Copyright 2013, Integrative Health Resources, LLC | www.metaboliccode.com A protein in gastric secretions called intrinsic factor binds to vitamin B12 and facilitates its absorption. Without intrinsic factor, only a small percentage of vitamin B12 is absorbed. Once absorbed, relatively large amounts of vitamin B12 can be stored in the liver. The body actually reabsorbs vitamin B12 in the intestines and returns much of it to the liver, allowing for very little to be excreted from the body. However, when there are problems in the intestines, such as the microflora being imbalanced resulting in gastrointestinal inflammation, then vitamin B12 deficiencies can occur.
    [Show full text]
  • Self-Administering a Vitamin B12 Injection
    Self-administering a Vitamin B12 injection This is usually given as an intramuscular injection, every 2-3 months. Alternatives to an intramuscular injection are: Oral Vitamin B12 at a dose of at least 1000mcg per day. • Available as tablets or a spray. They can be bought over the counter and available at most health food stores and pharmacies. • Oral Vitamin B12 is not recommended if: - If you have a bowel condition such as inflammatory bowel disease, Coeliac disease, small bowel overgrowth, bile acid malabsorption and short bowel (you will require injections) - You require an initial loading of B12 (soon after diagnosis) It is important to monitor your symptoms if you change to oral B12. If symptoms return, then the oral/sublingual dose can be increased to 2000mcg or you may need to consider starting back on injections. https://www.hollandandbarrett.com/shop/product/betteryou-pure-energy-b12-boost-oral-spray-60099160?skuid=099160 https://www.hollandandbarrett.com/search?query=%20Vitamin%20B12%20Tablets&utm_medium=cpc&utm_source=google&isSearch=true# gclid=EAIaIQobChMIh5nLgOH26AIVxLTtCh0JIA_GEAAYASAAEgJL-fD_BwE&gclsrc=aw.ds Subcutaneous (SC) injection; this is off-licence but still effective. It is considered an easier method of administration. It is how insulin and blood thinning medication are usually self-administered. Equipment needed to self-inject - Prescribed medicine - 1 syringe (2 ml) - 2 needles (1 for drawing up the drug and 1 for administration – you can use the same size needle for both). o For an IM injection; the needle gauge should be 19-25. The needle length is 1- 1 ½ inches (up to 3 inches for larger adults) o For a SC injection; the needle gauge should be 25-27.
    [Show full text]
  • Dietary Reference Intakes (Dris): Recommended Dietary Allowances and Adequate Intakes, Vitamins Food and Nutrition Board, Institute of Medicine, National Academies
    Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Vitamins Food and Nutrition Board, Institute of Medicine, National Academies Life Stage Vitamin A Vitamin C Vitamin D Vitamin E Vitamin K Thiamin Riboflavin Niacin Vitamin B6 Folate Vitamin B12 Pantothenic Biotin Choline Group (µg/d)a (mg/d) (µg/d)b,c (mg/d) d (µg/d) (mg/d) (mg/d) (mg/d)e (mg/d) (µg/d)f (µg/d) Acid (mg/d) (µg/d) (mg/d)g Infants 0 to 6 mo 400* 40* 10 4* 2.0* 0.2* 0.3* 2* 0.1* 65* 0.4* 1.7* 5* 125* 6 to 12 mo 500* 50* 10 5* 2.5* 0.3* 0.4* 4* 0.3* 80* 0.5* 1.8* 6* 150* Children 1–3 y 300 15 15 6 30* 0.5 0.5 6 0.5 150 0.9 2* 8* 200* 4–8 y 400 25 15 7 55* 0.6 0.6 8 0.6 200 1.2 3* 12* 250* Males 9–13 y 600 45 15 11 60* 0.9 0.9 12 1.0 300 1.8 4* 20* 375* 14–18 y 900 75 15 15 75* 1.2 1.3 16 1.3 400 2.4 5* 25* 550* 19–30 y 900 90 15 15 120* 1.2 1.3 16 1.3 400 2.4 5* 30* 550* 31–50 y 900 90 15 15 120* 1.2 1.3 16 1.3 400 2.4 5* 30* 550* 51–70 y 900 90 15 15 120* 1.2 1.3 16 1.7 400 2.4h 5* 30* 550* > 70 y 900 90 20 15 120* 1.2 1.3 16 1.7 400 2.4h 5* 30* 550* Females 9–13 y 600 45 15 11 60* 0.9 0.9 12 1.0 300 1.8 4* 20* 375* 14–18 y 700 65 15 15 75* 1.0 1.0 14 1.2 400i 2.4 5* 25* 400* 19–30 y 700 75 15 15 90* 1.1 1.1 14 1.3 400i 2.4 5* 30* 425* 31–50 y 700 75 15 15 90* 1.1 1.1 14 1.3 400i 2.4 5* 30* 425* 51–70 y 700 75 15 15 90* 1.1 1.1 14 1.5 400 2.4h 5* 30* 425* > 70 y 700 75 20 15 90* 1.1 1.1 14 1.5 400 2.4h 5* 30* 425* Pregnancy 14–18 y 750 80 15 15 75* 1.4 1.4 18 1.9 600j 2.6 6* 30* 450* 19–30 y 770 85 15 15 90* 1.4 1.4 18 1.9 600j 2.6 6* 30* 450* 31–50 y 770 85 15 15 90* 1.4 1.4 18 1.9 600j 2.6 6* 30* 450* Lactation 14–18 y 1,200 115 15 19 75* 1.4 1.6 17 2.0 500 2.8 7* 35* 550* 19–30 y 1,300 120 15 19 90* 1.4 1.6 17 2.0 500 2.8 7* 35* 550* 31–50 y 1,300 120 15 19 90* 1.4 1.6 17 2.0 500 2.8 7* 35* 550* NOTE: This table (taken from the DRI reports, see www.nap.edu) presents Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*).
    [Show full text]
  • Transcytosis of Listeria Monocytogenes Across The
    Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin Georgios Nikitas, Chantal Deschamps, Olivier Disson, Théodora Niault, Pascale Cossart, Marc Lecuit To cite this version: Georgios Nikitas, Chantal Deschamps, Olivier Disson, Théodora Niault, Pascale Cossart, et al.. Tran- scytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. Journal of Experimental Medicine, Rockefeller University Press, 2011, 208 (11), pp.2263-2277. 10.1084/jem.20110560. pasteur-02040395 HAL Id: pasteur-02040395 https://hal-pasteur.archives-ouvertes.fr/pasteur-02040395 Submitted on 20 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Published Online: 3 October, 2011 | Supp Info: http://doi.org/10.1084/jem.20110560 Downloaded from jem.rupress.org on February 19, 2019 Article Transcytosis of Listeria monocytogenes across
    [Show full text]
  • Methylcobalamin Ultra (Vitamin B12) and Vitamin C Supplementation for the General Population: Clinical Evidence
    TITLE: Methylcobalamin Ultra (Vitamin B12) and Vitamin C Supplementation for the General Population: Clinical Evidence DATE: 28 September 2012 RESEARCH QUESTIONS 1. What is the clinical evidence regarding the clinical benefit of Methylcobalamin Ultra (B12) supplementation in the general population? 2. What is the clinical evidence regarding the clinical benefit of Vitamin C supplementation in the general population? KEY MESSAGE Ten relevant systematic reviews and meta-analyses were identified regarding the clinical evidence of vitamins B12 and C supplementation in the general population. METHODS A limited literature search was conducted on key resources including PubMed, The Cochrane Library (2012, Issue 9), University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused Internet search. A methodological filter was applied to limit retrieval to health technology assessments, systematic reviews and meta-analyses. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between January 1, 2009 and September 25, 2012. Internet links were provided, where available. The summary of findings was prepared from the abstracts of the relevant information. Please note that data contained in abstracts may not always be an accurate reflection of the data contained within the full article. Disclaimer: The Rapid Response Service is an information service for those involved in planning and providing health care in Canada. Rapid responses are based on a limited literature search and are not comprehensive, systematic reviews. The intent is to provide a list of sources of the best evidence on the topic that CADTH could identify using all reasonable efforts within the time allowed.
    [Show full text]
  • DRIDIETARY REFERENCE INTAKES Thiamin, Riboflavin, Niacin, Vitamin
    Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline http://www.nap.edu/catalog/6015.html DIETARY REFERENCE INTAKES DRI FOR Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline A Report of the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients Food and Nutrition Board Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. Copyright © National Academy of Sciences. All rights reserved. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline http://www.nap.edu/catalog/6015.html NATIONAL ACADEMY PRESS • 2101 Constitution Avenue, N.W. • Washington, DC 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This project was funded by the U.S. Department of Health and Human Services Office of Disease Prevention and Health Promotion, Contract No. 282-96-0033, T01; the National Institutes of Health Office of Nutrition Supplements, Contract No. N01-OD-4-2139, T024, the Centers for Disease Control and Prevention, National Center for Chronic Disease Preven- tion and Health Promotion, Division of Nutrition and Physical Activity; Health Canada; the Institute of Medicine; and the Dietary Reference Intakes Corporate Donors’ Fund.
    [Show full text]
  • Page 1 1 Vitamin Deficiencies Vitamin Deficiencies
    Nutrition: Process of acquiring / processing nutrients into Chapter 34: usable form Nutrition and Digestion Function of Nutrients: 1) Fuel cellular metabolism Measured in calories (energy required to raise 1 g of water 1°C) Calorie = 1000 calories (kilocalorie) Human at rest = 1550 calories burned/day 2) Building blocks to construct complex molecules 3) Molecules to assist in metabolic reactions Nutrient Classifications: Nutrient Classifications: 1) Carbohydrates: 3) Proteins: • Energy source (~ 46% for humans) • Energy source (~ 16% for humans) Body cells burn glucose (some exclusively) Urea: Byproduct of protein breakdown • Energy storage (short-term) : Glycogen (liver / muscles) • Provide building materials (amino acids) • Obtained via animal products (e.g. muscle) and plants (starch) Essential amino acids: Can not be synthesized by 2) Lipids: body (9 / 20 amino acids) • Energy source (~ 38% for humans) 4) Minerals (Elements / Inorganic molecules - Table 34.3): • Energy storage (long-term) : Fats • Structural material (e.g. calcium, iron, iodine) 1 pound = 3600 Calories (Carbs = 1600 Calories / pound) Hydrophobic; no excess water storage • Assist in physiological functions (e.g. sodium, potassium, calcium) •Sodium, potassium, calcium, magnesium, etc are also called electrolytes • Provide building materials (e.g. phospholipids, cholesterol) Electrolytes Nutrient Classifications: • Required to maintain 5) Vitamins (Organic compounds - diverse group) : • Water-soluble: Cleared from body (urine) certain functions Vitamin C = Maintenance
    [Show full text]
  • Regulation of Intestinal Blood Flow
    Journal of Surgical Research 93, 182–196 (2000) doi:10.1006/jsre.2000.5862, available online at http://www.idealibrary.com on RESEARCH REVIEW Regulation of Intestinal Blood Flow Paul J. Matheson, Ph.D.,*,†,1 Mark A. Wilson, M.D., Ph.D.,*,†,‡ and R. Neal Garrison, M.D.*,†,‡ *Center for Excellence in Applied Microcirculatory Research and ‡Department of Surgery, University of Louisville, Louisville, Kentucky 40292; and †Louisville Veterans Affairs Medical Center, Louisville, Kentucky 40206 Submitted for publication July 29, 1999 arteries is typically 20–25% of cardiac output in the The gastrointestinal system anatomically is posi- unfed state [2]. There is extensive overlap or collateral tioned to perform two distinct functions: to digest and circulation in the distal vascular distributions of these absorb ingested nutrients and to sustain barrier func- arteries. During nutrient absorption, blood flow in each tion to prevent transepithelial migration of bacteria of these arteries is increased sequentially as the diges- and antigens. Alterations in these basic functions con- tive chyme passes over the mucosal surface supplied by tribute to a variety of clinical scenarios. These pri- mary functions intrinsically require splanchnic blood the particular arteries [3]. Following nutrient absorp- flow at both the macrovascular and microvascular lev- tion, the blood flow to each segment returns to baseline els of perfusion. Therefore, a greater understanding of levels as the chyme moves past that region of the the mechanisms that regulate intestinal vascular per- digestive tract [4, 5]. This postprandial increase in fusion in the normal state and during pathophysiolog- blood flow is independent of organ distention and is ical conditions would be beneficial.
    [Show full text]
  • Topic 6.1 Answers
    6.1 Digestion & Absorption Digestion Label the following diagram of the human digestive system 1. ………………………………………………………………………...Salivary gland 2. ………………………………………………………………………...Oesophagus 3. ………………………………………………………………………...Liver 4. ………………………………………………………………………...Stomach 5. ………………………………………………………………………...Gall bladder 6. ……Pancreas…………………………………………………………………... 7. ………………………………………………………………………...Small intestine 8. ………………………………………………………………………...Large intestine Outline the function of the following digestive organs Stomach: ………………………………………………………………………………………A temporary storage tank where food is mixed by churning and………………………………………………… protein digestion begins …………………………………………………………………………………………………………………………………………………..........It is lined by gastric pits that release digestive juices, which create an acidic environment Pancreas: …………..……………………………………………………………………………………………………………………………Produces a broad spectrum of enzymes that are released into the small intestine via the duodenum …………………………………………………………………………………………………………………………………………………..........Also secretes certain hormones (insulin, glucagon), which regulate blood sugar concentrations Small Intestine: …………….……………………………………………………………………………………………A long, highly folded tube where usable food substances (nutrients) are absorbed…………………… …………………………………………………………………………………………………………………………………………………..........Consists of three sections – the duodenum, jejunum and ileum Large Intestine: …………….…………………………………………………………………………………………………………………Final section of alimentary canal, where water and dissolved minerals are absorbed …………………………………………………………………………………………………………………………………………………..........Consists
    [Show full text]
  • Aandp2ch25lecture.Pdf
    Chapter 25 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Introduction • Most nutrients we eat cannot be used in existing form – Must be broken down into smaller components before body can make use of them • Digestive system—acts as a disassembly line – To break down nutrients into forms that can be used by the body – To absorb them so they can be distributed to the tissues • Gastroenterology—the study of the digestive tract and the diagnosis and treatment of its disorders 25-2 General Anatomy and Digestive Processes • Expected Learning Outcomes – List the functions and major physiological processes of the digestive system. – Distinguish between mechanical and chemical digestion. – Describe the basic chemical process underlying all chemical digestion, and name the major substrates and products of this process. 25-3 General Anatomy and Digestive Processes (Continued) – List the regions of the digestive tract and the accessory organs of the digestive system. – Identify the layers of the digestive tract and describe its relationship to the peritoneum. – Describe the general neural and chemical controls over digestive function. 25-4 Digestive Function • Digestive system—organ system that processes food, extracts nutrients, and eliminates residue • Five stages of digestion – Ingestion: selective intake of food – Digestion: mechanical and chemical breakdown of food into a form usable by
    [Show full text]
  • The Number of Villi in Rat's Jejunum and Ileum: Effect of Normal Growth, Partial Enterectomy, and Tube Feeding
    J. Anat. (1972). 111, 2, pp. 283-291 283 With 6 figures Printed in Great Britain The number of villi in rat's jejunum and ileum: effect of normal growth, partial enterectomy, and tube feeding J. M. FORRESTER Department of Physiology, Edinburgh University (Accepted 8 January 1972) INTRODUCTION The villi of the rat small intestine are covered by enterocytes which have a life-span, from their time of origin in the crypts until shedding at the villus tip, of only about one and a half days (Leblond & Stevens, 1948; Bertalanffy, 1960). Their shape varies from one part of the small intestine to another, and even adjacent villi may differ strikingly. In view of these features suggesting a rapidly changing scene, this paper describes a procedure for enumerating the villi in rat jejunum and ileum, and ex- amines the stability of the total number during normal growth, after partial enter- ectomy, and after tube feeding. METHODS Locally bred Wistar male rats were used. They were fed on a standard pelleted rat food manufactured in Edinburgh. They always had tap water ad libitum. Enumeration procedure. Rats were killed by inhalation of chloroform in the morn- ing. The position of the suspensory ligament was marked on the small intestine where a band of connective tissue is attached to the intestine at the duodenojejunal junction. Then the small intestine was removed from pylorus to ileocolic valve by gentle traction, and washed through with cold saline (NaCl 0-9 %, w/v). It was weighed, and after removal of the duodenum, was laid in a trough and perfused with Bouin's solution at an outlet pressure of 20 cm of solution for at least 20 minutes (Hromadkova & Skala, 1969).
    [Show full text]