Requerimiento De Proteína, Lípidos Y Carotenoides Para Crecimiento Y Reproducción Del Camarón Pimienta Lysmata Wurdemanni Y Del Pez Payaso Amphiprion Ocellaris

Total Page:16

File Type:pdf, Size:1020Kb

Requerimiento De Proteína, Lípidos Y Carotenoides Para Crecimiento Y Reproducción Del Camarón Pimienta Lysmata Wurdemanni Y Del Pez Payaso Amphiprion Ocellaris Instituto Tecnológico de Boca del Rio SECRETARÍA DE EDUCACIÓN PÚBLICA TECNOLÓGICO NACIONAL DE MEXICO INSTITUTO TECNOLÓGICO DE BOCA DEL RÍO DIVISIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN REQUERIMIENTOS DE PROTEÍNA, LÍPIDOS Y CAROTENOIDES PARA CRECIMIENTO Y REPRODUCCIÓN DEL PEZ PAYASO Amphiprion ocellaris Y DEL CAMARÓN PIMIENTA Lysmata wurdemanni. TESIS QUE COMO REQUISITO PARA OBTENER EL GRADO DE: DOCTOR EN CIENCIAS EN ACUACULTURA PRESENTA M.C. LORENZO DÍAZ JIMÉNEZ DIRECTOR DE TESIS DRA. MARTHA PATRICIA HERNÁNDEZ VERGARA BOCA DEL RÍO, VER., SEPTIEMBRE DE 2018 Km. 12 Carr. Veracruz-Córdoba, Boca del Río, Ver. C.P. 94290 Tel. y Fax, (01 229) 9860189, 9862818, 9861894 e-mail: [email protected] www.itboca.edu.mx RESUMEN Se realizó una serie de experimentos para determinar el requerimiento de proteína, lípidos y carotenoides necesarios para el crecimiento y reproducción del pez payaso Amphiprion ocellaris y del camaron pimienta Lysmata wurdemanni. Además de lo anterior, se evaluaron condiciones ambientales para el cultivo, como: iluminación y color del fondo de peceras, para determinar su efecto sobre el creciminiento y pigmentación corporal de ambas especies. Durante la evaluacion de requerimientos nutrimentales en los peces, se usaron 11 dietas con contenidos de proteína de 370 a 430 g kg–1 y lípidos de 80 a 120 g kg–1, mientras que para los camarones se utilizaron nueve dietas con proteína de 330 a 390 g kg–1 y lípidos de 70 a 90 g kg–1. Como fuentes de carotenoides en las dietas de los peces, se utilizó astaxantina y luteina, mientras que en las dietas de los camarones se uso astaxantina y β-caroteno. Los pigmentos se usaron en concentraciones de 0.5, 1 y 1.5 %. En la evaluacion de color de fondo e iluminación se utilizaron peceras negras y blancas, y espectros de luz rojo y blanco, además de un grupo control (peceras sin iluminaciónn y color de fondo negro). Los resultados demostraron que el requerimiento de proteína/lípidos (P/L) adecuado para juveniles de pez payaso es de 430/100 g kg–1 de P/L, con lo que se tienen alta supervivencia y ganancias en peso similares a las dietas comerciales, además, se recomienda incluir un alto porcentaje de proteína vegetal (≥ 18 %) en la dieta. En los camarones se determinó que una relación 340/70 g kg–1 de P/L, es suficiente para promover un crecimiento eficiente, sin embargo durante la fase reproductiva es necesario incrementar el contenido nutrimental en la dieta (410/90 g kg–1) para mejorar la calidad y viabilidad de los huevos. Los peces alimentados con las dietas con 0.5 y 1 % de astaxantina tuvieron una pigmentación rojiza y contenido de carotenoides totales en piel y músculo significativamente superior (P<0.05) en comparación a los peces de los demás tratamientos. En los camarones, ambas fuentes de carotenoides promovieron su crecimiento, reproducción y pigmentación, sin embargo, la variación de los niveles de inclusión en la dieta afectaron su aprovechamiento. En ambas especies, el color de fondo negro de las peceras mejoró su pigmentación corporal, mientras que el espectro de luz no tuvo un efecto significativo. Lo anterior, es necesario que se considere durante la producción en cautiverio con la finalidad de mejorar la calidad de los peces y camarones. Palabras clave: Especies marinas ornamentales, requerimientos nutrimentales, crecimiento, reproducción y pigmentación corporal. I ABSTRACT A series of experiments was carried out to determine the protein, lipids and carotenoids required for the growth and reproduction of the clownfish Amphiprion ocellaris and the peppermint shrimp Lysmata wurdemanni. In addition to the above, environmental conditions were evaluated for the culture, such as: illumination and background color of fish tanks, to determine its effect on the growth and corporal pigmentation of both species. During the evaluation of nutritional requirements in the fish, 11 diets with protein contents of 370 to 430 g kg-1 and lipids of 80 to 120 g kg-1 were used, while for shrimp, nine diets with protein of 330 to 390 g kg-1 and lipids of 70 to 90 g kg-1 were used. As sources of carotenoids in fish diets, astaxanthin and lutein were used, while astaxanthin and β-carotene were used in the diets for shrimp. The pigments were used in concentrations of 0.5, 1 and 1.5 %. In the evaluation of background color and lighting, black and white fish tanks and red and white light spectra were used. In addition a control group of fish tanks without illumination and black background color. The results showed that the protein/lipids (P/L) requirement for juvenile clownfish is 430/100 g kg-1 of P/L, which has high survival and weight gains, similar to those of commercial diets. In addition, it is recommended to include a high percentage of vegetable protein (≥ 18%) in the diet. In the shrimp, it was determined that a ratio of 340/70 g kg-1 of P/L is sufficient to promote efficient growth, however during the reproductive phase it is necessary to increase the nutritional content in the diet (410/90 g kg-1) to improve the quality and viability of the eggs. Fish fed diets with 0.5 and 1% astaxanthin had a reddish pigmentation and total carotenoid content in skin and muscle significantly higher (P <0.05) compared to the fish of the other treatments. In the shrimp, both sources of carotenoids promoted their growth, reproduction and pigmentation, however, the variation of the levels of inclusion in the diet affected their assimilation. In both species, the black background color of the fish tanks improved their body pigmentation, while the light spectrum did not have a significant effect. The previous, it is necessary to be considered during the production in captivity with the purpose of improving the quality of the fish and shrimp. Keywords: Marine ornamental species, nutritional requirement, grown, reproduction and corporal pigmentation. II DEDICATORIA A mis padres, por el amor y fuerza que transmiten a la familia. A mis hermanas, por su tenacidad y perseverancia. A mi familia, por su apoyo incondicional. A las personas que se dedican a la actividad acuícola y a aquellas que procuran que México sea un mejor país. III AGRADECIMIENTOS Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca núm. 387491. A la Dra. Martha Patricia Hernández Vergara y al Dr. Carlos Ivan Perez Rostro por su confianza y apoyo. A la Dra. Maria Isabel Jimenez Gracia, al Dr. Alejandro Pérez Legaspi y al Dr. Miguel Angel Olvera Novoa por sus recomendaciones y sugerencias para la mejora de este documento. Al Dr. Luis Alfredo Ortega Clemente y a la IQ. Erendira Rocha Miler por sus sugerencias y espacio otorgado durante los análisis químicos y proximales. A mis compañeros y amigos: Magdiel, Alfredo, Andres, Veronica, Carlos, Daniel, Yadira y Julieta por su apoyo durante la construcción de los sistemas de cultivo y mantenimiento de animales. IV ÍNDICE RESUMEN ....................................................................................................................... I ABSTRACT .................................................................................................................... II DEDICATORIA ........................................................................................................... III AGRADECIMIENTOS ................................................................................................ IV INDICE DE TABLAS ................................................................................................ VII INDICE DE FIGURAS ............................................................................................. VIII INTRODUCCIÓN .......................................................................................................... 1 2. ANTECEDENTES .................................................................................................... 10 2.1 Generalidades de Amphiprion ocellaris ................................................................ 10 2.1.1 Distribución .................................................................................................... 12 2.1.2 Grupos sociales y reproducción del genero Amphiprion ................................ 12 2.1.3 Crianza en cautiverio ...................................................................................... 13 2.1.4 Estudios nutricionales ..................................................................................... 14 2.2 Generalidades de los camarones Lysmata ............................................................. 15 2.2.1 Distribución de Lysmata wurdemanni ............................................................ 17 2.2.2 Sistema de reproducción ................................................................................. 17 2.2.3 Avances en protocolos de producción de camarones carídeos ornamentales 20 2.2.4 Estudios nutricionales de Lysmata spp. .......................................................... 21 2.3 Los carotenoides y su aplicación en la acuacultura. ............................................. 22 3. JUSTIFICACIÓN ..................................................................................................... 25 4. HIPÓTESIS ............................................................................................................... 26 5. OBJETIVOS .............................................................................................................. 27 5.1 Objetivo general .................................................................................................... 27 5. 2 Objetivos particulares ..........................................................................................
Recommended publications
  • Pomacentridae): Structural and Expression Variation in Opsin Genes
    Molecular Ecology (2017) 26, 1323–1342 doi: 10.1111/mec.13968 Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes SARA M. STIEB,*† FABIO CORTESI,*† LORENZ SUEESS,* KAREN L. CARLETON,‡ WALTER SALZBURGER† and N. J. MARSHALL* *Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia, †Zoological Institute, University of Basel, Basel 4051, Switzerland, ‡Department of Biology, The University of Maryland, College Park, MD 20742, USA Abstract Coral reefs belong to the most diverse ecosystems on our planet. The diversity in col- oration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and exam- ined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, conver- gent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long- wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Inter- estingly, not only did all species express SWS1 – a UV-sensitive opsin – and possess UV-transmitting lenses, most species also feature UV-reflective body parts.
    [Show full text]
  • The Global Trade in Marine Ornamental Species
    From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization.
    [Show full text]
  • A Reappraisal of Stegastes Species Occurring in the South Atlantic Using
    de Souza et al. Helgol Mar Res (2016) 70:20 DOI 10.1186/s10152-016-0471-x Helgoland Marine Research ORIGINAL ARTICLE Open Access A reappraisal of Stegastes species occurring in the South Atlantic using morphological and molecular data Allyson Santos de Souza1*, Ricardo de Souza Rosa2, Rodrigo Xavier Soares1, Paulo Augusto de Lima‑Filho3, Claudio de Oliveira4, Oscar Akio Shibatta5 and Wagner Franco Molina1 Abstract The taxonomic status of Pomacentridae species can be difficult to determine, due to the high diversity, and in some cases, poorly understood characters, such as color patterns. Although Stegastes rocasensis, endemic to the Rocas atoll and Fernando de Noronha archipelago, and S. sanctipauli, endemic to the São Pedro and São Paulo archipelago, differ in color pattern, they exhibit similar morphological characters and largely overlapping counts of fin rays and lateral-line scales. Another nominal insular species, S. trindadensis, has recently been synonymized with S. fuscus but retained as a valid subspecies by some authors. Counts and morphometric analyses and mitochondrial DNA (COI, 16SrRNA, CytB) and nuclear DNA (rag1 and rhodopsin) comparisons of three insular species (S. rocasensis, S. sanctipauli and S. trindadensis) and three other South Atlantic species (S. fuscus, S. variabilis and S. pictus) were carried out in the present study. Analyses of the principal components obtained by traditional multivariate morphometry indicate that the species in general have similar body morphology. Molecular analyses revealed conspicuous similarity between S. rocasensis and S. sanctipauli and between S. trindadensis and S. fuscus and a clear divergence between S. variabilis from Northeast Brazil and S. variabilis from the Caribbean region.
    [Show full text]
  • Stichodactyla Gigantea and Heteractis Magnifica) at Two Small Islands in Kimbe Bay
    Fine-scale population structure of two anemones (Stichodactyla gigantea and Heteractis magnifica) in Kimbe Bay, Papua New Guinea Thesis by Remy Gatins Aubert In Partial Fulfillment of the Requirements For the Degree of Master of Science in Marine Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia December 2014 2 The thesis of Remy Gatins Aubert is approved by the examination committee. Committee Chairperson: Dr. Michael Berumen Committee Member: Dr. Xabier Irigoien Committee Member: Dr. Pablo Saenz-Agudelo Committee Member: Dr. Anna Scott EXAMINATION COMMITTEE APPROVALS FORM 3 COPYRIGHT PAGE © 2014 Remy Gatins Aubert All Rights Reserved 4 ABSTRACT Fine-scale population structure of two anemones (Stichodactyla gigantea and Heteractis magnifica) in Kimbe Bay, Papua New Guinea. Anemonefish are one of the main groups that have been used over the last decade to empirically measure larval dispersal and connectivity in coral reef populations. A few species of anemones are integral to the life history of these fish, as well as other obligate symbionts, yet the biology and population structure of these anemones remains poorly understood. The aim of this study was to measure the genetic structure of these anemones within and between two reefs in order to assess their reproductive mode and dispersal potential. To do this, we sampled almost exhaustively two anemones species (Stichodactyla gigantea and Heteractis magnifica) at two small islands in Kimbe Bay (Papua New Guinea) separated by approximately 25 km. Both the host anemones and the anemonefish are heavily targeted for the aquarium trade, in addition to the populations being affected by bleaching pressures (Hill and Scott 2012; Hobbs et al.
    [Show full text]
  • Report Re Report Title
    ASSESSMENT OF CORAL REEF BIODIVERSITY IN THE CORAL SEA Edgar GJ, Ceccarelli DM, Stuart-Smith RD March 2015 Report for the Department of Environment Citation Edgar GJ, Ceccarelli DM, Stuart-Smith RD, (2015) Reef Life Survey Assessment of Coral Reef Biodiversity in the Coral Sea. Report for the Department of the Environment. The Reef Life Survey Foundation Inc. and Institute of Marine and Antarctic Studies. Copyright and disclaimer © 2015 RLSF To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of RLSF. Important disclaimer RLSF advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, RLSF (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Cover Image: Wreck Reef, Rick Stuart-Smith Back image: Cato Reef, Rick Stuart-Smith Catalogue in publishing details ISBN ……. printed version ISBN ……. web version Chilcott Island Contents Acknowledgments ........................................................................................................................................ iv Executive summary........................................................................................................................................ v 1 Introduction ...................................................................................................................................
    [Show full text]
  • Historic Hybridization and Introgression Between Two Iconic Australian Anemonefish and Contemporary Patterns of Population Connectivity M
    Historic hybridization and introgression between two iconic Australian anemonefish and contemporary patterns of population connectivity M. H. van der Meer12,G.P.Jones23, J.-P. A. Hobbs4 & L. van Herwerden1,2 1Molecular Ecology and Evolution Laboratory, Australian Tropical Sciences and Innovation Precinct, James Cook University, Townsville 4811, Australia 2School of Marine and Tropical Biology, James Cook University, Townsville 4811, Australia 3ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia 4The Oceans Institute and School of Plant Biology, The University of Western Australia, Crawley 6009, Australia Keywords Abstract Amphiprion, coral reef fish, endemism, extinction risk, Great Barrier Reef, isolated Endemic species on islands are considered at risk of extinction for several reasons, islands, Lord Howe Island. including limited dispersal abilities, small population sizes, and low genetic diver- sity. We used mitochondrial DNA (D-Loop) and 17 microsatellite loci to explore Correspondence the evolutionary relationship between an endemic anemonefish, Amphiprion mccul- M. H. van der Meer, Molecular Ecology and lochi (restricted to isolated locations in subtropical eastern Australia) and its more Evolution Laboratory, Australian Tropical widespread sister species, A. akindynos.AmitochondrialDNA(mtDNA)phylogram Sciences and Innovation Precinct, James Cook University, Townsville 4811, Australia. showed reciprocal monophyly was lacking for the two species, with two supported Tel: +61 (07)4871 5423; groups, each containing representatives of both species, but no shared haplotypes E-mail: [email protected] and up to 12 species, but not location-specific management units (MUs). Population genetic analyses suggested evolutionary connectivity among samples of each species Funded by Australian Department of the (mtDNA), while ecological connectivity was only evident among populations of the Environment and Water Resources, and endemic, A.
    [Show full text]
  • Mechanisms Underlying Spectral Sensitivity in Teleost Fishes Karen L
    © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb193334. doi:10.1242/jeb.193334 REVIEW Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes Karen L. Carleton1,*, Daniel Escobar-Camacho1, Sara M. Stieb2,3,4, Fabio Cortesi4 and N. Justin Marshall4 ABSTRACT thespectrumandoftenworkinanopponentmannertoprovidecolor Among vertebrates, teleost eye diversity exceeds that found in all vision (although in some instances rods may contribute to chromatic other groups. Their spectral sensitivities range from ultraviolet to red, tasks; Joesch and Meister, 2016). and the number of visual pigments varies from 1 to over 40. This Vision helps animals navigate through the environment, find food, variation is correlated with the different ecologies and life histories of avoid predators and find mates (Cronin et al., 2014). In an organism fish species, including their variable aquatic habitats: murky lakes, with a fixed number of visual channels, each visual task may be clear oceans, deep seas and turbulent rivers. These ecotopes often optimized by a different set of visual sensitivities. For a single change with the season, but fish may also migrate between ecotopes species, natural selection may average over all visual tasks to select diurnally, seasonally or ontogenetically. To survive in these variable the best set of visual pigments for that species. For example, honey light habitats, fish visual systems have evolved a suite of mechanisms bee vision is good for detecting most
    [Show full text]
  • Abundance and Behavioural Ecology of the Blenny Ophioblennius Trinitatis (Teleostei: Blenniidae) at an Oceanic Archipelago of Brazil (Atlantic)
    Scientia Marina 78(2) June 2014, 203-212, Barcelona (Spain) ISSN-L: 0214-8358 doi: http://dx.doi.org/10.3989/scimar.03979.30G Abundance and behavioural ecology of the blenny Ophioblennius trinitatis (Teleostei: Blenniidae) at an oceanic archipelago of Brazil (Atlantic) Paulo R. Medeiros 1,2, Danilo P. Rada 2, Ricardo S. Rosa 2 1 Unidade Acadêmica de Ciências Exatas e da Natureza, Universidade Federal de Campina Grande, 58900-000, Cajazeiras, PB, Brazil. E-mail: [email protected] 2 Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Cidade Universitária, 58059-900 João Pessoa, PB, Brazil. Summary: Local patterns of fish density, microhabitat use, feeding behaviour, bite rate, territory area and agonistic inter- actions were recorded for Ophioblennius trinitatis at an oceanic archipelago (southwestern Atlantic). Rugosity, number of crevices and benthic diversity positively predicted the distribution of O. trinitatis. Turf algae was the preferred food item at all sites, but given its high availability inside and outside territory boundaries, it did not seem to be a limiting factor on the density of this blenny, as opposed to substrate heterogeneity. Bite rate was higher in the afternoon and for smaller individu- als (juveniles). Territory size showed local variation and, although larger territories may be an effect of density-dependent conditions (more available space in low-density areas), we propose that individuals expand territories to compensate for re- siding in areas of lower quality (i.e. of low structural complexity). Larger individuals defended larger territories and residents responded differently to intruders, with higher rates of agonistic interactions towards potential competitors.
    [Show full text]
  • Pan-Corais-Sumario.Pdf
    OS AMBIENTES CORALÍNEOS ESPÉCIES PRIORIZADAS Os ambientes coralíneos incluem diferentes formações, A elaboração do Plano de Ação Nacional para a especialmente recifes biogênicos (consolidados de algas Conservação dos Ambientes Coralíneos – PAN Corais, e/ ou corais), recifes de arenito e costões rochosos levou em consideração espécies incluídas nas listas com presença de corais, encontrados desde áreas oficiais de espécies ameaçadas de extinção do Brasil costeiras rasas até grandes profundidades. São vigentes atualmente ou quando da elaboração do ecossistemas frágeis e complexos, que abrigam plano (Instrução Normativa MMA n° 5/2004, Instrução a maior diversidade biológica marinha, incluindo Normativa MMA n° 52/2005 e Portaria MMA n° 445/2014). muitas espécies endêmicas, que possuem diferentes Avaliou-se que um grande número dessas espécies graus de associação entre si, mas que dependem pode ocorrer em ambientes coralíneos, ao longo de do equilíbrio ecológico destes ambientes. No Brasil, todo o seu ciclo de vida ou pelo menos em parte dele, ambientes coralíneos de águas rasas distribuem- neles obtendo proteção, alimentação, e/ou locais se do Maranhão até Santa Catarina e incluem os para reprodução. Por exemplo, a maioria das espécies únicos recifes de coral (estrutura biogênica) do bentônicas (aquelas que vivem associadas ao substrato) oceano Atlântico Sul Ocidental. Existem ainda dos ambientes coralíneos permanece em sua fase os ambientes coralíneos de águas profundas, adulta nesses ambientes, mas dispersam passivamente relativamente pouco estudados no Brasil, mas que são pela corrente em sua fase larval, como o coral-vela altamente sensíveis, com mais de 40 espécies de corais (Mussismilia harttii). Em outros casos existe uma preferência pétreos, que abrigam uma infinidade de espécies de pelos ambientes coralíneos, como o tubarão-das- peixes e invertebrados dependentes da integridade galápagos (Carcharhinus galapagensis), que geralmente destas áreas.
    [Show full text]
  • Cleaner Shrimp As Biocontrols in Aquaculture
    ResearchOnline@JCU This file is part of the following work: Vaughan, David Brendan (2018) Cleaner shrimp as biocontrols in aquaculture. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5c3d4447d7836 Copyright © 2018 David Brendan Vaughan The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] Cleaner shrimp as biocontrols in aquaculture Thesis submitted by David Brendan Vaughan BSc (Hons.), MSc, Pr.Sci.Nat In fulfilment of the requirements for Doctorate of Philosophy (Science) College of Science and Engineering James Cook University, Australia [31 August, 2018] Original illustration of Pseudanthias squamipinnis being cleaned by Lysmata amboinensis by D. B. Vaughan, pen-and-ink Scholarship during candidature Peer reviewed publications during candidature: 1. Vaughan, D.B., Grutter, A.S., and Hutson, K.S. (2018, in press). Cleaner shrimp are a sustainable option to treat parasitic disease in farmed fish. Scientific Reports [IF = 4.122]. 2. Vaughan, D.B., Grutter, A.S., and Hutson, K.S. (2018, in press). Cleaner shrimp remove parasite eggs on fish cages. Aquaculture Environment Interactions, DOI:10.3354/aei00280 [IF = 2.900]. 3. Vaughan, D.B., Grutter, A.S., Ferguson, H.W., Jones, R., and Hutson, K.S. (2018). Cleaner shrimp are true cleaners of injured fish. Marine Biology 164: 118, DOI:10.1007/s00227-018-3379-y [IF = 2.391]. 4. Trujillo-González, A., Becker, J., Vaughan, D.B., and Hutson, K.S.
    [Show full text]
  • Universidade Federal Da Paraíba Centro De Ciências Exatas E Da Natureza Programa De Pós-Graduação Em Ciências Biológicas Área De Concentração Em Zoologia
    UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS ÁREA DE CONCENTRAÇÃO EM ZOOLOGIA USO DE HABITAT, COMPORTAMENTO ALIMENTAR E TERRITORIAL DE STEGASTES ROCASENSIS (EMERY, 1972) (POMACENTRIDAE: TELEOSTEI) EM FERNANDO DE NORONHA – PE ALLAN TAINÁ DE SOUZA JOÃO PESSOA – PB JULHO 2007 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS ÁREA DE CONCENTRAÇÃO EM ZOOLOGIA USO DE HABITAT, COMPORTAMENTO ALIMENTAR E TERRITORIAL DE STEGASTES ROCASENSIS (EMERY, 1972) (POMACENTRIDAE: TELEOSTEI) EM FERNANDO DE NORONHA – PE ALLAN TAINÁ DE SOUZA JOÃO PESSOA – PB JULHO 2007 2 UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS ÁREA DE CONCENTRAÇÃO EM ZOOLOGIA USO DE HABITAT, COMPORTAMENTO ALIMENTAR E TERRITORIAL DE STEGASTES ROCASENSIS (EMERY, 1972) (POMACENTRIDAE: TELEOSTEI) EM FERNANDO DE NORONHA – PE Allan Tainá de Souza Dissertação apresentada ao Curso de pós-graduação em Ciências Biológicas, área de concentração em Zoologia, como parte dos requisitos para obtenção do grau de Mestre em Ciências Biológicas. Dra. Ierecê Maria de Lucena Rosa JOÃO PESSOA – PB JULHO 2007 3 Allan Tainá de Souza COMPORTAMENTO ALIMENTAR E TERRITORIAL DE STEGASTES ROCASENSIS (TELEOSTEI: POMACENTRIDAE) Banca Examinadora ______________________________________________________ Prof. Dra. Ierecê Maria de Lucena Rosa Universidade Federal da Paraíba/Dept. Sistemática e Ecologia ______________________________________________________ Prof. Dr. Ricardo de Souza Rosa Universidade Federal da Paraíba/Dept. Sistemática e Ecologia ______________________________________________________ Prof. Dr. Cassiano Monteiro-Neto Universidade Federal Fluminense/Dept. Biologia Marinha ______________________________________________________ Prof.
    [Show full text]
  • Kirra Reef Biota Monitoring Report 2016
    Tweed River Entrance Sand Bypassing Project Kirra Reef Biota Monitoring 2016 Final Report New South Wales Department of Industry ecology / vegetation / wildlife / aquatic ecology / GIS Executive summary New South Wales Department of Industry has commissioned Ecosure Pty Ltd to undertake the 2016 Kirra Reef biota monitoring program, where the project will provide assessment to adequately identify and describe the residing flora and fauna communities of Kirra Reef and three control sites to both compare and build on the existing monitoring program. Benthic assemblages Differences in the composition (percent coverage and type of taxon) of benthic assemblages, algal assemblages and faunal assemblages were each compared between horizontal and vertical surfaces among Kirra, Palm Beach, Cook Island and Kingscliff Reefs. Generally, the composition of the entire benthic assemblages differed at a range of spatial scales, with clear differences evident between surface orientations and among most reefs, except for between vertical surfaces on Kingscliff and Cook Island. The differences were primarily due to differences in the higher coverage of turf algae on horizontal surfaces, which dominated the assemblages. Similar patterns were found for faunal assemblages alone, with assemblages generally having greater diversity on vertical than horizontal surfaces. The least diverse assemblages of benthic fauna were found on Kirra Reef. Changes made to the monitoring program, particularly the increased number of control locations and identification of benthic taxa to a finer taxonomic scale, have allowed for improved understanding knowledge of the natural variation in coverage of benthic assemblages across a broader spatial scale. Taking this into account, the assemblages on Kirra Reef remain dissimilar to the comparative reefs than would be expected naturally (i.e.
    [Show full text]