Measurement of the Standard Model Higgs Boson Produced in Association with a W Or Z Boson and Decaying to Bottom Quarks
Total Page:16
File Type:pdf, Size:1020Kb
MEASUREMENT OF THE STANDARD MODEL HIGGS BOSON PRODUCED IN ASSOCIATION WITH A W OR Z BOSON AND DECAYING TO BOTTOM QUARKS By DAVID CURRY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 ⃝c 2017 David Curry Dedicated to my Mother for always supporting me ACKNOWLEDGMENTS First and foremost, thank you to the Univeristy of Florida for the oppurtunity to study physics and for providing a thriving research environment. Thank you to my advisor, Ivan Furi´c,for continued support through the ups and downs of graduate research. Thank you to all my colleagues at CERN and at UF for whose help was necsessary to get this far: Pierluigi Bortignon, Michele de Gruttola, Jaco Konigsberg, Darin Acosta, Gael Perrin, Luca Perozzi, Stephane Cooperstein, Chris Palmer, and Sean-Jian Wang. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................... 4 LIST OF TABLES ...................................... 7 LIST OF FIGURES ..................................... 8 ABSTRACT ......................................... 10 CHAPTER 1 INTRODUCTION AND OPENING REMARKS .................... 11 2 THEORETICAL FOUNDATIONS ........................... 13 2.1 Historical Development ............................. 13 2.2 The Standard Model ............................... 14 2.3 Quantum Electrodynamics ............................ 15 2.4 Quantum Chromodynamics ........................... 16 2.5 Weak Interactions ................................ 19 2.6 The Higgs Mechanism .............................. 21 2.7 The Higgs Boson ................................. 24 3 THE CMS EXPERIMENT ............................... 27 3.1 LHC ....................................... 27 3.2 CMS Detector .................................. 30 3.3 Tracker ...................................... 31 3.4 Calorimeters ................................... 32 3.5 Muon Systems .................................. 34 3.6 Trigger ...................................... 35 4 PARTICLE IDENTIFICATION ............................. 38 4.1 Energy Losses by Particles in Matter ...................... 38 4.2 Electrons ..................................... 39 4.3 Muons ...................................... 42 4.4 Jets ........................................ 45 4.5 Lepton Isolation ................................. 47 4.6 b-Jet Identification ................................ 47 4.7 Neutrinos ..................................... 48 4.8 Jet Energy Regression .............................. 49 5 THE VHBB ANALYSIS ................................ 52 5.1 Backgrounds ................................... 53 5.1.1 Drell-Yan ................................. 55 5 5.1.2 t¯t ..................................... 56 5.1.3 Diboson .................................. 57 5.1.4 Single Top ................................ 57 5.2 Data and Simulation ............................... 57 5.2.1 Data ................................... 57 5.2.2 Simulation ................................ 58 5.2.3 Simulated Event Reweighting ...................... 59 5.3 Triggers ..................................... 60 5.4 Analysis Object Selections ............................ 64 5.4.1 Pile-Up and Primary Vertex Selection .................. 64 5.4.2 Electrons ................................. 68 5.4.3 Muons .................................. 69 5.4.4 Jets .................................... 70 5.4.5 Missing Energy .............................. 71 5.5 Multivariate Strategy .............................. 71 5.6 Control Regions ................................. 72 5.7 Systematics ................................... 76 6 RESULTS ....................................... 87 6.1 Signal and Control Regions fits ......................... 87 6.2 Signal Strength Calculation ........................... 87 6.3 Blinding ..................................... 90 6.4 Results VH .................................... 90 6.5 Next Steps .................................... 91 6.6 Conclusions .................................... 93 REFERENCES ........................................ 94 BIOGRAPHICAL SKETCH ................................. 97 6 LIST OF TABLES Table page 2-1 Higgs Boson Branching Ratios ............................ 25 3-1 LHC luminosity terms and definitions ......................... 29 p 5-1 Signal cross sections and branching ratios for Mhiggs = 125 at s = 13. ...... 53 5-2 List of 2016 data samples used for the SingleMuon dataset. ............. 58 5-3 Signal Monte Carlo samples with Mhiggs = 125 ................... 59 5-4 List of Monte Carlo diboson samples ......................... 59 5-5 List of Monte Carlo V + jets leading order samples .................. 60 5-6 List of Monte Carlo V + jets leading order samples .................. 61 5-7 List of Monte Carlo V + jets next-to-leading order samples ............. 61 5-8 Top and QCD Monte Carlo samples .......................... 62 5-9 List of L1 and HLT triggers used for the 2016 data set ................ 63 5-10 Variables used in the BDT training. .......................... 73 5-11 Preselection cuts for each channel to define the signal region. ............ 75 5-12 Definition of control regions for the Z(``)H channel. ................. 76 5-13 Control Region Scale Factors ............................. 83 6-1 Signal Region Event Yields .............................. 87 6-2 Expected and Observed Event Yields ......................... 91 7 LIST OF FIGURES Figure page 2-1 Visual representation of the fundamental particles of the Standard Model ...... 14 2-2 Feynman diagram for Compton Scattering ...................... 15 2-3 Fundamental QCD Feynman diagram ......................... 17 2-4 Gluon-Gluon Coupling ................................. 18 2-5 Z boson neutral current decay. ............................ 19 2-6 W boson decay ..................................... 19 2-7 Higgs Potential Energy ................................ 22 2-8 Higgs production at the LHC ............................. 25 2-9 SM Higgs boson production cross sections ...................... 25 3-1 An overview of the LHC ................................ 28 3-2 One quarter view of the CMS detector ........................ 35 3-3 Overview of the Run 2 Upgraded Level 1 Trigger ................... 36 4-1 Output of the electron-identification BDT ...................... 42 4-2 Electron Reconstruction Efficiency ........................... 43 4-3 Tag-and-probe Results for Muon Efficiency ...................... 45 4-4 Distributions of dijet invariant mass .......................... 51 5-1 Feynman diagrams for VHbb production ....................... 53 5-2 Feynman diagram for the Drell-Yan background process ............... 56 5-3 Feynman diagram for the t¯t background process. ................... 56 5-4 Feynman diagram for the ZZ diboson background process. .............. 57 5-5 Single Electron Trigger Efficiencies (WP80) ...................... 64 5-6 Double Electron Trigger Efficiencies (WP90) ..................... 65 5-7 Double Muon Trigger Efficiencies (Runs BCDEFG) .................. 66 5-8 Double Muon Trigger Efficiencies (Run H) ...................... 66 5-9 MET Trigger Efficiency ................................ 67 8 5-10 BDT Output for Signal and Background ....................... 74 5-11 Efficiency and background reduction in the Signal Region .............. 75 5-12 Z + udscg control region plots (low V pT) ...................... 77 5-13 Z + udscg control region plots (high V pT) ...................... 78 5-14 t¯t control region plots (low V pT) .......................... 79 5-15 t¯t control region plots (high V pT) .......................... 80 5-16 Z + bb control region plots (low V pT ........................ 81 5-17 Z + bb control region plots (high V pT ........................ 82 5-18 Systematic Impact and Pulls .............................. 86 6-1 Post-fit BDT Output ................................. 88 6-2 Post-fit Control Region Distributions ......................... 89 6-3 Best-fit Signal Strength Parameter .......................... 92 6-4 Signal over Background Log Distribution ....................... 93 9 Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy MEASUREMENT OF THE STANDARD MODEL HIGGS BOSON PRODUCED IN ASSOCIATION WITH A W OR Z BOSON AND DECAYING TO BOTTOM QUARKS By David Curry December 2017 Chair: Ivan K. Furic Cochair: Jaco Konigsberg Major: Physics A search for the standard model Higgs boson decaying to bottom quark pairs when produced in association with a W or Z vector boson is presented. Data samples corresponding p to an integrated luminosity of 35.9 fb−1 at s = 13 TeV recorded by the CMS experiment at the LHC during Run 2 in 2016 have been analyzed in 5 channels: Z(µµ)H, Z(ee)H, Z(νν)H, W(µν)H, W(eν)H. An excess of events is observed in data when compared to the background only hypothesis (absence of a H ! b¯b signal process). For a Higgs boson of 125 GeV the measured signal significance is 3.3 standard deviations, which crosses the 3.0 standard deviation evidence threshold, while the expected signal significance is 2.8. The measured signal strength is found to be µ = σ/σSM = 1.19 0.35. 10 CHAPTER 1 INTRODUCTION AND OPENING REMARKS The Standard Model (SM) has long predicted the existence of a Higgs Field that is responsible for breaking the electroweak symmetry and giving mass to the W and Z vector bosons, as well as the other massive particles of the Standard Model(1)(2)(3).