JHEP01(2017)099 −1 and + 0 ` Springer 0 − ` + ` January 9, 2017 bosons in the October 25, 2016 January 24, 2017 − : ` : : Z decay 10.1007/JHEP01(2017)099 Accepted Received Published ¯ ν doi: = 8 TeV at the Large Hadron ν s + TeV using the √ ` − ` Published for SISSA by = 8 s are measured in selected phase-space re- → ¯ ν √ ν events produced with both production cross section in + production cross section in the ` ZZ − ` ZZ ZZ ZZ → and (lumi) pb, which is consistent with the ZZ + −0.2 −0.1 0 ` ) in -proton collisions at and . + 0 − e, µ 3 0 pb. The differential cross sections in bins of various kinematic vari- ` ` = 3 (syst) .7 0 − + ` 0. 1610.07585 ` boson is used to set limits on anomalous neutral triple cou- +0 −0.6 ` +  6 ` . Z − Hadron-Hadron scattering (experiments) production. − A measurement of the ` ` , Copyright CERN, atlas.publications@.ch ZZ → channels ( 4 (stat) → ¯ ν 0. ν ZZ  + ` 3 E-mail: − Keywords: ArXiv ePrint: Open Access for the benefit ofArticle the funded ATLAS Collaboration. by SCOAP plings in prediction of 6 ables are presented. The differentialof event the yield leading as a function of the transverse momentum mass range 66 to7. 116 GeV is measured from the combination of the two channels to be ZZ Collider at CERN,collected using by data the correspondingfor ATLAS to experiment an in 2012 integrated is luminosity presented. of 20.3 fb The fiducial cross sections proton-proton collisions at ` gions. The total cross section for Measurement of the The ATLAS collaboration Abstract: channels with the ATLAS detector JHEP01(2017)099 7 9 7 9 8 4 4 8 2 4 9 7 1 6 3 13 11 13 13 12 21 23 12 26 23 26 20 20 23 35 18 13 15 29 decays + τ + 0 − ` τ 0 − ` → + ` Z and event − ` and → miss T E ZZ ττνν → ¯ ν ν + ZZ ` − ` decays and W t, miss T → , E + WZ – i – ZZ W − W ¯ t, selection channel t + + 0 0 selection channel ` ` ¯ ¯ ν ν 0 − 0 − ν ` ν ` channel backgrounds + + + + + + ` ` ` ` 0 0 − − − − backgrounds channel ` ` ` ` ` ` ¯ ¯ ν ν 0 − 0 − ` ν ` ν → → → → + + + + +jets and multijet background ` ` ` ` +jets background − − − − ZZ ZZ Z W ZZ ZZ ` ` ` ` → → → → ZZ ZZ 6.3.2 6.3.1 ZZ 7.2.5 Background summary for 7.2.4 7.2.3 ZZ 11.2.2 11.2.1 7.2.1 Backgrounds from leptonic 7.2.2 Backgrounds from 3.1 3.2 12.1 Parameterization of signal12.2 yield Confidence intervals for aTGCs 7.1 6.3 Event selection selections 6.1 Data6.2 samples Reconstruction of leptons, jets, and 7.2 11.1 Cross-section extraction 11.2 Differential cross sections 12 Anomalous neutral triple gauge couplings 13 Conclusion The ATLAS collaboration 8 Event yields 9 Correction factors and10 detector Systematic acceptance uncertainties 11 Cross-section measurements 7 Background estimation Contents 1 Introduction 2 The ATLAS detector 3 Phase-space definitions 4 Standard Model predictions 5 Simulated event samples 6 Data samples, reconstruction of leptons, jets, and JHEP01(2017)099 14] 14] 15] 1c). bosons are not Z ZZγ diboson mea- = 13 TeV [ . These repre- ] and CMS [ = 8 TeV using s 1f s 13 √ and ZZ 13] and CMS [ √ to bosons may be pro- 6–8], extended gauge 1d Z ZZZ 1]. A pair of dibosons is a background and ZZ 1b pp) collisions, approximately 6% aTGCs within the context of an 1a, -channel diagram zero (figure s ZZγ and ) annihilation, as well as through gluon-gluon 1 – ¯ q 11]. Furthermore, extensions to the SM such q 17]. – ZZZ diboson production at the 16]. The CMS Collaboration has recently measured 12]. Any significant deviation in the observed pro- [ ZZ −3 = 8 TeV proton-proton ( 18]. The limits obtained by both ATLAS [ collisions at a centre-of-mass energy of production at a centre-of-mass energy of s 20]. More recently, limits on aTGCs have been set by the = 8 TeV [ √ pp s ZZ dibosons are given in figures √ ZZ 2–5], models with warped extra dimensions [ production is important not only for precision tests of the electroweak ZZ production in ], and grand unified theories [ 10 of data. These have been measured by both the ATLAS [ ZZ 9, production cross section at 8 TeV [ 19] and the [ −1 This paper also presents limits on This paper presents measurements of the fiducial, total and differential cross sec- Many extensions to the SM predict new scalar, vector, or tensor particles, which can In addition to precision tests of the electroweak sector of the SM, ZZ dels [ Collaborations at 7 TeV.and Recently, total the cross ATLAS section Collaboration for has measured the fiducial mo duced at lowest order via quark-antiquark ( may also be producedfor by SM the production of decay of a . Lowest-order Feynman diagrams fusion via a quark loop. In 20.3 fb 1 Introduction The production of electroweak gaugecision boson studies pairs of provides the anand electroweak opportunity differential sector to production by perform cross looking pre- sections,or for which couplings deviations could from not be the included an predicted in indication total of the new Standard resonances Model (SM). Pairs of the effective Lagrangian framework [ of the predicted total cross section is due to gluon-gluon fusion [ and the cross sectioncentre-of-mass as energy of a function of the invariant mass of the four-lepton system at a as supersymmetry orboson extra dimensions pairs predict directly, incontributions new involving cascade particles, new decays, which particles can orcouplings can lead (aTGCs) indirectly either to as via produce effective large loops. anomalous as neutral 10 triple At gauge higher orders, loop duction cross section relative tophysics. the Thus, SM predictions can indicate a potential source of new tions for sector and pQCD, but also for searches for new physics processes. using the full 7 TeVLEP2 data [ sets are approximately 10 to 20 times stricter than limits set at to the SM Higgs boson processknowledge and of to the many cross searches for section physics is beyond necessary the to SM, observe and deviations precise relativedecay to SM to predictions. pairs oftechnicolour electroweak models bosons. [ For example, diboson resonances are predicted in surements motivate higher-order calculations(pQCD) and in allow for perturbative in-depth quantum tests of chromodynamics pQCD. Production of present in the SM, making the contribution from the (LHC). The self-couplings of theLagrangian. electroweak gauge Consequently, bosons neutral are triple fixed gauge by the couplings form such of as the SM sent the dominant mechanisms for JHEP01(2017)099 1 + 0 13 − ZZ ` 0 − ` 7. The + u-channel ` − ` (b) presents the describes the describes the → 9 (f) 11 10 channels, using a ZZ ¯ ν 6. The estimation of ν -channel (not in SM) + s ` -channel and − t ` (c) in the (a) 1 → -channel diagram is not present , while section s − production cross section using 8 ZZ (c) ZZ and . ]. + 0 ` (f) 21 production. The 0 − ` and vertex. Examples of one-loop contributions to + (e) ` ZZ – 2 – u-channel − (e) ` , ZZγ (b) . Data samples, reconstruction of leptons, jets and → 5 (d) or ZZ ZZZ of data at 8 TeV [ 1 − production cross section, while the 22] is a multi-purpose particle physics detector with a forward- 17]. CMS has also measured the ZZ defines the phase space in which the cross sections are measured, while in the context of an effective Lagrangian framework. Finally, section decay mode and set limits on aTGCs using the combination of 5 fb )[ 3 ¯ ν 12 ν + ` e, µ, τ (d) − -channel t ` = Lowest-order Feynman diagrams for gives the SM predictions. The simulated signal and background samples used ` → (a) 4 2. Section , and event selection for each final state are presented in section The paper is organized as follows. An overview of the ATLAS detector is given in ZZ miss T for this analysis are given in section section of data at 7 TeV and 19.6 fb experimental and theoretical systematic uncertainties considered. Section correction factors and detector acceptance for this measurement. Section presents the conclusions. 2 The ATLAS detector The ATLAS detectorbackward [ symmetric cylindrical geometry. It consists of inner tracking devices surrounded background contributions to the E combination of simulation-based and data-driven techniques,observed and is discussed expected in event yields section are presented in section section the production via gluon pairs are shown in in the SM, as it contains a neutral Figure 1. diagrams contribute to results of the total andcussed in differential section cross-section measurements. Limits on aTGCs are dis- channel ( CMS Collaboration using the full 8 TeV data set of 19.6 fb JHEP01(2017)099 1 2. → 3. < ZZ | η 1 around | ) plane using = 0. η, φ 7. The endcap R 1. final states in the < 9, are instrumented . + | µ η | − ) are used in the transverse = 4 µ φ , | final states in the + r η ) plane of ∆ µ | ¯ ν is the invariant mass of each − ν + µ + ` η, φ -axis points from the IP to the centre µ − x ` − m and µ + µ and − µ ¯ ν diboson production in a region of kinematic 7, respectively. decays are not included as signal in any of + ν e + 2. τ − e e ZZ < – 3 – − e , | η + | e 116 GeV, where − is used. < e 2 + + e ` 23] consists of a hardware-based Level-1 trigger followed 4 and − − ` 2. e 6.3.1 -axis along the beam pipe. The z < | < m η θ/2)]. | -axis points upward. Cylindrical coordinates ( y . channel and for the 2 ) −ln [tan ( η + 0 ` = 5. It consists of three layers of silicon pixel detectors and eight layers of 0, which contributes to electron identification. η 0 − + (∆ 2. ` 2. 2 as ) + production cross section in a kinematic phase space, referred to as the total ` φ θ < < − | | channel. Final states with leptonic ` (∆ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the η η | | ¯ ν q φ ZZ ν → The MS consists of three large superconducting toroids, each comprising eight coils, and The ATLAS trigger system [ The inner detector (ID) provides tracking of charged particles in the pseudorapidity The high-granularity electromagnetic (EM) calorimeter utilizes liquid argon (LAr) as The information from each final state in both channels is combined to measure the The kinematic properties of final-state electrons and muons include the contributions = Angular separations between particles or reconstructed objects are measured in the ( ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in + 2 1 ` R y a software-based High-Level Trigger (HLT). It selects events to be recorded for offline − b and forward regions of the calorimeter system, extending to polar angle with copper/LAr and tungsten/LAr modules for both the EM and hadronica measurements. system of triggercapabilities chambers in and the tracking ranges chambers that provide triggering and tracking plane, ∆ A steel/scintillator-tile calorimeter provides hadronic coverage for the centre of the detector and the of the LHC ring and the by a superconductingnetic solenoid, and which hadronic sampling providesmagnetic calorimeters a field. and 2 a T muon axial spectrometer (MS) magnetic with field, a electromag- toroidal range silicon microstrip detectors surrounded byregion a straw-tube transition radiation tracker in the the sampling medium and lead as an absorber, covering the pseudorapidity range 3 Phase-space definitions This analysis measures the cross section of analysis, reducing their rate to about 400 Hz. phase space very closesections to are measured the for geometric the acceptance of the full detector. Fiducial cross the final states considered. total ` ZZ phase space, defined by 66 charged lepton pair.procedure Where described there in is section ambiguity in the choice of lepton pairs, the pairing the direction of the charged lepton. from final-state radiated within a distance in the ( JHEP01(2017)099 ) + + + ¯ ν 0 e µ ν ` T − − ~p e 0 − µ boson ` + 25 GeV + e + Z µ 116 GeV. ` − > pair. The − channel of e − < boson pairs ` µ T + 3. The axial boson ( + p . 4. µ + 0 , must be less Z ` ` → production via 5 and each jet − Z Z T 106 GeV. Each − ` µ 4. 0 − = 0 = 0. /p ` final states under < | ZZ ZZ or + R < Z T 7. In the R ` + < m | p ` + 2. − η ZZ e − ` | − ` − < ¯ ν e | T ν → decay mode, both muons η p | | 2. < m 28]. The contribution of the + production reported in this , where the invariant mass of 30 ps, excluding muons and is required to be greater than µ 0. ZZ + − 25 GeV, µ µ ZZ − miss T τ > + ), which expresses the projection > boson decaying to charged leptons µ R > e E 5 and the fourth electron is required + 28] to account for T − Z 9. The minimum angular separation 2. µ p miss e T 4. − E < 27, µ [ | < η | channel. All computations are performed | channel is defined by requiring one η , or | ¯ ν 26] at next-to-leading order (NLO) in QCD ¯ ν + bosons, defined as ν ν boson to decay to an gg2VV µ 3 from any prompt electron. Particle-level jets + 9. In the . – 4 – + − Z ` )). The axial- 25, ` Z [ 4. µ − Z − T ` + 24] with a radius parameter of = 0 ` < e , ~p | R − ¯ ν → → η e ν | T 7, while for the electrons, one electron must be central , ~p + 2. ( ZZ candidates must have transverse momentum ZZ e 1. φ , of each lepton must be at least 7 GeV. In the − < T Z e | p algorithm [ channel + η e t | PowhegBox + k cos(∆ − 0 · e channel ` ¯ ν T ν ¯ ν p 0 − ν ` − + + ` ` -balance between the two − − T ` ` p 5. The charged leptons must be separated by more than ∆ → → 2. 5), while the second must fall within < 2. | ZZ ZZ η | The definitions of the fiducial phase space for each of the five ), is defined as < Z | T η ~p | and are supplemented with predictions from The transverse momentum, paper are evaluated with gluon-gluon fusion at leading orderwith (LO) SM in the Higgs gluon-induced bosonproduction process. effects production Interference are via effects considered, based gluon-gluon ongluon-gluon fusion recent initial calculations state as [ to well the fiducial as cross off-shell sections is Higgs about boson 6% for the than 0.4. There must be no particle-level jets with decay mode, the muons must fall within a pseudorapidity range channel and about 3% for the study are summarized in table 4 Standard Model predictions The fiducial and total cross-section predictions for SM must have a minimum distance of ∆ 3.2 The fiducial phase space for the the analysis, one for each decayusing mode, the and forward selected regions to of increase the the detector geometric while acceptance controlling by backgrounds. The 90 GeV. The each opposite-sign, same-flavour lepton pair is required to be within 66 Three different fiducial phase-space regions are used for the charged lepton used to form and are constructed from stable particles with a lifetime of ( invariant mass of the charged lepton pair must lie within 76 3.1 neutrinos, using the anti- to decay to neutrinos (invisible) and one are required to be within ( between any two of the four charged leptons must be ∆ missing transverse momentum in the event (axial- are required to decay to to lie in the pseudorapidity range onto the direction of the transverse momentum of the decay mode, three electrons are required to have of the transverse momentum of the neutrino pair of the invisibly decaying JHEP01(2017)099 R 2. → µ 32] 5, [ 5 ¯ ν 4. ν 2. is set 3 + < ZZ 0. < µ .2% µ − > jet | gg2VV. In | +4 −3.3% µ Powheg- η 106 GeV η | | 3 4 gg2VV jet) < 0. 0. + e, ` ( 90 GeV 25 GeV > < − R ` production cross 5 > > ¯ ν 25 GeV, 2. ν Z + > < m < e Z and ∆ e − | jet 76 e η ) equal to the invariant T | p F final states under study. µ 9 4. ZZ generators. For the and < pb fb fb fb R 2 + 7 e µ | µ 2. η − production cross sections in the re- | 0.3 fb 0.3 fb .7 .1 .6 .5 gg2VV µ < + 5, µ +0 −0.6  +1 −1.0 +0 −0.5  +0 −0.4 e | 2. η ZZ − | and e < 1 32] is included. For the gluon-gluon fusion e [ | η | = 6.6 = 3.5 = 10.8 = 6.2 = 3.7 = 4.9 .1% – 5 – + + + µ +3 −2.3% µ e production cross sections. The considered systematic 116 GeV ¯ − ν ¯ − ν − + 2 µ ν 7 µ ν e < µ + + 0. – – – 2. + + + are corrected for virtual NLO electroweak (EW) ef- − + µ µ ZZ 7 GeV Fiducial Phase Space e e e ` µ > < PowhegBox − − − − − − + ` 33–35] suggest an increase of the > e µ e µ e µ µ | → → → → → η − | channels are reduced by 4% and 9% respectively. →ZZ µ < m ¯ fid fid fid fid total fid ZZ ZZ ZZ ZZ pp ZZ ν ) as the baseline, and the CT10 parton distribution function 66 σ σ σ σ σ σ ν + and including the EW corrections are summarized in table ZZ ` 3 m 5 − ` 2. + 9 PowhegBox e 4. < − → e 3 < ,e + 31]. As a result, the fiducial cross-section predictions for the 2 4 e e ,e | ZZ − system ( 1 η e e | | η | Fiducial phase-space definitions for each of the five ZZ and 29]. Predicted fiducial and total + results from 0 | T ` η scales. As this correction is not available differentially for all distributions and all ) miss T p | 0 E 30], applied as reweighting factors on an event-by-event basis, following the method F 0 − contribution, a scale uncertainty of + ` systematic uncertainties shown in the table include a PDF uncertainty of `, ` µ ` The The SM predictions for the fiducial and total ( Table 1. + − -balance ` ` T Axial- p Jet veto Lepton Lepton ∆R m Selection − Table 2. uncertainties and the accuracy in pertubation theory are detailed in theusing text. dynamic renormalization and factorization scales ( (PDF) set [ mass of the final states analysed in this paper, no reweighting is applied to the prediction of order to account for these higher-order QCD effects, the scale uncertainty for and section by up to ain factor QCD. of about This two, calculation when is the sensitive calculation to is the performed at choice higher of orders PDF set and even more to the fects [ described in ref. [ ` gions defined in section The applied to the results from both the contribution, recent publications [ Box JHEP01(2017)099 , ] ¯ q ∗ Z q pp 37 41] ZZ 43] is 8 [ [ and Z 48] us- 8 using ZZ Jimmy Pythia diagrams. The Pythia collision (double ∗ γ at NLO in the ] and interfaced to is known to increase pp 46 42] and and [ Z 39]. This enhancement is 38, 52]. Additional inelastic production, is modelled with [ interfaced to predictions as explained in the Herwig PowhegBox process. The diboson production W t PowhegBox 44] with the CT10 PDF set is used [ 50] using the CTEQ6L1 PDFs. The W γ boson decaying to leptons are simulated ¯ t) is simulated with MC@NLO [ GEANT4 t +jets background samples. The same gen- Z Sherpa PowhegBox W PowhegBox – 6 – , and AcerMC [ final state. This method uses samples for aTGCs. ¯ ν ν 45] using the CTEQ6L1 PDFs [ 40] based on +jets and wig generator interfaced to [ + Z ` pairs are simulated using ZZγ − is used to model the ` Her 51] using the CTEQ6L1 PDFs is used to model the [ → ZZ and are generated with Alpgen ZZ Herwig WZ ZZZ 40] are used to correct the measured distributions for detector effects at LO in the gluon-induced process, both interfaced to PowhegBox and is added in quadrature to the systematic uncertainty of the fiducial processes. Events with two hard interactions in a 8 and 8 with the CTEQ6L1 PDF set. MadGraph ¯ tZ t gg2VV 49], interfaced to WW 47] is used to simulate [ and ∗ Pythia 36]. The jet veto uncertainty obtained using the Stewart and Tackmann method [ acceptance and to determine or validate some background contributions. Production 60%. PDF and scale uncertainties are added linearly following the recommendation of The contribution to the cross section predicted with The signal and background generated Monte Carlo (MC) samples are passed through Moreover, the The LO generator  cross sections for each is shown in table production when varying the QCD scaleing to events with estimate zero the jets uncertainty by associatedjets. examining with the select- This uncertainty for approach selectingQCD events is with effects. conservative one and or more it covers further uncertainties from higher-order by approximately 5% when considering NNLO QCD effects [ and not considered in the theoretical prediction used in this paper.5 Simulated event samples Simulated samples [ to ref. [ ing the CT10 PDFs. Single-top production, including MC@NLO [ using the ATLAS detector simulation [ proton interactions, DPI) that each produce a processes the CT10 PDFs. Top quark pair production ( interactions (pile-up) are includedreproduce the in distribution the of simulation. thein mean data. number The of interactions MC per events bunch are crossing observed reweighted to ZWW erator interfaced to and subsequent decays of Pythia used to estimate systematic uncertainties due toevent the modelling. choice of The parton shower LO and multi-leg underlying- generator process, and NLO EW corrections are applied to the previous section. to assign systematic uncertainties due tosignal the samples choice of with event generator as well as to generate for parton showering andcase, underlying-event the modelling, simulation includes with the the interference CT10 terms PDF between the set. In each LO generator JHEP01(2017)099 55] of the 54, T p 0 and the . and event 5 are referred to 2. 2 around the muon . collisions at a centre- miss < T , with respect to the , with an uncertainty channel, for “central” 0 | = 0 E d pp η −1 + | 0 R ` 5 mm. Isolated muons are channel all three types of . 0 − + ` 0 ` + channel, only “central” muons ` 0 − 10 GeV and “calorimeter-tagged” ¯ ν − ` ` ν 2 around the muon candidate to be + > channel, both track and calorimeter + ` ` T ¯ → ν − 7, where there is no ID coverage and − p ` ν = 0. ` miss 2. T + ` R ZZ E → → − < ` | 56]. Muons within η collisions take place, which results in multiple | ZZ → ZZ – 7 – , must be less than 0 θ pp < significance), must be smaller than 3 coverage in the MS is reduced due to mechanical ZZ 5 0 . sin φ d . Similarly, calorimeter isolation requires the sum of the | × 0 T z p | collision, and to reduce contamination from cosmic rays, the . For the 1 where 7 GeV, “forward” with T p 0. pp > < T | p = 8 TeV collected with the ATLAS detector at the LHC in 2012. η | s √ 20 GeV are used, while in the scans performed in November 2012. All events were required to satisfy basic 25 GeV are used. For muons with a track in the ID (“central” and “calorimeter- 53]. The absolute luminosity scale and its uncertainty are derived from beam- > > T T p p During each bunch crossing, several selections they are reconstructed onlyrecover in efficiency the at MS, are referred to as “forward muons”. In order to as “central muons”. Muons within 2 supports and services,energy “calorimeter-tagged” deposits muons to are tag reconstructed ID using tracks. calorimeter In the primary vertex is chosenmomenta to of be the the associated vertex ID with tracks. the highest6.2 sum of the Reconstruction squared of transverse leptons, jets, and quality criteria indicating stable beamsduring and data good taking. operating The characteristics of data the analysed detector were selected using single-lepton triggers [ vertices being reconstructed. To ensureucts that of the the objects hard-scattered analysed originate from the prod- isolation are imposed on muons, while for the Muon candidates are identified bymatched tracks, to or tracks track segments, reconstructed reconstructed in in the the ID MS and [ with isolation requirements and thresholds ofof 24 GeV for muons the (electrons). transverse momentum (energy) muons, “central” with tracks originating from the primary vertex inside a cone of size ∆ with muons, calorimeter isolation isrejection, and not for required, “forward” muons,isolation as where is it track required. isolation does is not not offer possible, only any calorimeter extra background less than 15% of the muon then selected based on“central” track and or “calorimeter-tagged” calorimeter muons, requirements. by requiring Track isolation the is scalar imposed sum on of the calorimeter transverse energy in a cone of size ∆ longitudinal impact parameter, to be less than 15% of the muon with tagged” muons), the ratio of the transverse impact parameter, primary vertex, to its uncertainty ( of-mass energy of of 1.9% [ separation 6.1 Data samples The measurement presented in this paper uses the full data set of 6 Data samples, reconstruction of leptons, jets, and The data corresponds to a total integrated luminosity of 20.3 fb JHEP01(2017)099 . + 4, + e µ − of all − e 0 and = 0. . µ + 16 and T 60–62]. e + p R 3. − µ e , corrected − < 50 GeV and T µ | 25 GeV. Jets threshold. At E η channel, “for- < | > T T + p and < 0 p T ` p + 50 channel and greater 0 − µ . 5 mm. The electron ` . − + + 0 µ ` ` + 5 and − e ` 0 − GeV, without any track or 4. , is defined as the negative − ` e + 20 → < , ` miss T | + − > η ` e E | of tracks associated with both the T ZZ − e T → E 24] with a radius parameter + p 2 to be less than 15% of the electron . e 5 there is no ID coverage for tracking, − ZZ e = 0 = 2. , must be less than 0 R channel. | θ ¯ η ν | ν algorithm [ sin – 8 – + t 47. To ensure that electron candidates originate ` k 2. − 2 around the electron must be less than 15% of the | × . ` 0 < 57]. The lateral and transverse shapes of the cluster z | | → = 0 η channel, while the pseudorapidity of the electromagnetic | ¯ significance of the electron must be smaller than 6 ν R ν ZZ 0 + selection d ` − + 25 GeV must be matched to a trigger object. In the ` 0 ` 3 to an electron or muon that passes the selection requirements > events are characterized by two pairs of oppositely charged, same- → T 0 − p ` + 0 = 0. + ` ZZ ` R 58]. These “forward” electrons have 0 − − ` 59]. ` + 90 [ ` − 4. → , must be greater than 7 GeV for the ` T < E | are reconstructed using the anti- → ZZ η 4. Jets used in this analysis are required to have | 2. < ZZ The missing transverse momentum, with magnitude To further increase the detector acceptance in the Electron candidates in the central region are reconstructed from energy clusters in the Jets and is required only for the < of the electron. Calorimeter isolation requires the total transverse energy, | 35 T T η so these electrons areisolation reconstructed is used from for calorimeter electrons information in alone. this region No as the calorimeter calorimeter segmentation is too coarse. calorimeter isolation requirements. Beyond vector sum of theas transverse momenta calorimeter of cells reconstructed not muons,energy associated electrons, scale to and (JES) jets objects.scale as if otherwise well Calorimeter they [ cells are are associated calibrated with to a the jet jet and to the electromagnetic energy 3. p ward” electrons are used, extending the pseudorapidity coverage to 2 for pile-up effects in an isolation cone of size ∆ p candidates must be isolated;the therefore, tracks the inside scalar a sum cone of of size the ∆ transverse momentum of all the longitudinal impact parameter, than 25 GeV for the cluster for both channels must be from the primary vertex, the calorimeter matched to anmust ID be track consistent [ with thoseelectron, of an electromagnetic shower. The transverse energy of the | jet and the primary vertex is required to be greater than 50% of the summed scalar flavour leptons. Events fall into three categories: Selected events are required to have exactly four isolated leptons above the are not considered in the analysis. 6.3 Event selection 6.3.1 The tracks associated with the jet. This criterion is only applied to jets with that are within ∆ using topological clusters of energy depositionnoise in or the non-collision calorimeter. events are Jets rejected.and arising The from pile-up jet detector effects energy and is is corrected calibratedto to to electrons account account and for for hadrons, detector the using different aIn response combination order of of to the simulations reject and calorimeters jets in from situ pile-up, techniques the [ summed scalar least one lepton with JHEP01(2017)099 T > ~p are 63]. T can- p chan- mass. Z miss T + Z 0 would in 106 GeV. -balance, E ` mass [ T and single- < p 0 − ¯ t Z ` t miss T + + ` E ` − ` − ` channel in order to is the 3. The selection of → + 116 GeV. All leptons < m Z 0. 0 ` < m bosons, or top quarks or ZZ 0 − + ` `  7 GeV (6 GeV) is applied. R > + − are the invariant masses of is the transverse momentum ` ` candidate. The W > − + Z ` Z 0 T T ` ~p p < m → 0 − ` be highly anti-collinear with the m bosons, ZZ of the miss Z T T ~ ~p E )), where , and Z + jets. In order to suppress the T + ` Z , ~p − ` – 9 – 2. Each event is allowed to have a maximum of m channel are events in which four objects identi- miss 0. T +jets background, as mismeasured + is required to be above 90 GeV. This requirement ~ E 0 ( ` Z φ R > 0 − miss T ` , where + E | ` Z cos(∆ − · anti-parallel to the ` m backgrounds , is required to be less than 0.4 in order to distinguish the signal − → selection + miss T Z T miss 0 + T ` 0 E ¯ ν /p ` ~ | channel, final states with electron or muon pairs and large E ν − ZZ 0 − Z T 0 − ¯ ν + ` ` p 5. This requirement is referred to as the “jet veto”. Finally, to suppress ` ν + m 4. − 25 GeV. At least one of the two leptons must be matched to a trigger + | − decay modes, there is an ambiguity when pairing leptons to form ` ` ` < − candidate events requires that the from the background, such as − + 116 GeV. The leptons of background events in the + > ` | ` miss | ¯ ¯ T ν ν µ → η < T | Z ν ν − candidates must have masses in the range 66 E p | → → + + µ + m candidate. The axial- ` ` ` Z candidate decaying to charged leptons. The quantity used is referred to as axial- + − ZZ − − − µ ` ` ` Z ZZ Z ZZ and is given by − + background, a veto on a third electron (muon) with ` µ → → − < m ` miss T m top-quark backgrounds, events are required not to have any reconstructed jet with WZ 25 GeV and 7 Background estimation 7.1 didates. A pairing procedure to| form the candidates is used, which minimizes the quantity ZZ Backgrounds to the defined by fied as isolated, prompt66 leptons have paired-lepton invariant masses in the signal region the two lepton pairs of a given pairing from the quadruplet, and general not have the and is particularly effective in removing of the of the E are required to be separated by ∆ nel can either be “true” leptons from the decays of they can be “fake” leptons thattons are that defined come as from jets hadronic whichleptons decays. are are Background misidentified called events as the in leptons “irreducible which or all background” lep- four as leptons these are events true have the same signature as In the one extension lepton permuon) category (forward and electron, each forward lepton muon,must pair contain or at calorimeter-tagged may least two only centraltypes, leptons have and as one may long contain extension as two they extension lepton.have are leptons each the of paired In different additional with this requirement aelectron that way, central lepton. an must the have Events event central a with electron a transverse that forward momentum electron is of paired at6.3.2 least with 20 the GeV instead forward of 7 GeV. The two ZZ The mass-window requirement is stricter than in the Leptons are also required to have an angular separation of ∆ object. The invariant mass of the leptons must be in the range 76 considered. Candidate events mustleptons have of exactly two opposite-sign, same-flavour isolated suppress backgrounds, which could produce real or fake lepton pairs close to the JHEP01(2017)099 ) + Z 0 13] ` + (7.1) ```j 0 0 − ( ` ` 0.07 0.02 0.08 0.02 produc- + 0 − ZZ ` `     + N − + , 0 and can be ` ` ` 2 +jets events − f 0 − ` −1 → ` (BG), is calcu- × + WZ N ` )] + ZZ − µ ` 0.02 0.58 0.05 0.66 0.05 1.82 0.01 0.57 − ``jj µ ( →     47, the relaxed criteria + events, 2. e ZZ − ZZ N + e < 0 ` | − η ) | 0 − + ` µ + 0.03 0.35 0.01 0.28 0.04 0.93 0.01 0.29 − ` ``jj ( µ −     ` + and single-top quark) events in which µ data ¯ t − t N [ µ − f + e – 10 – events is accounted for, and the terms × 0.03 0.16 0.01 0.19 0.04 0.50 0.01 0.15 − e )]     + e ``jj − ```j ( e 0.15 0.12 0.13 and ZZ N . The full event selection is applied along with all corrections and production and events with DPI that separately produce ```j 1 − ∗ − ) + jets, and top quark ( ```j ( /ZW W WW ∗ data ∗ N 3. The systematic uncertainty for the irreducible background is neglected. ) are MC estimates correcting for contributions from signal ZZZ 5, the relaxed criteria give electromagnetic clusters that are reconstructed as + jets, 2. Number of events from the irreducible background SM sources that can produce four ``jj ( Z /ZW W > and ∗ (BG) = [ | ZZ η N | ¯ tZ Background events containing one or more fake leptons, constitute the “reducible back- The expected number of reducible background The data-driven background estimate requires identifying events with two or three N t ¯ t Z ZZZ DPI t Total irreducible background 0.40 Source true leptons scaled to 20.3 fb Table 3. and scale factors. The errors shown are statistical only. the signal events in this channel.sections that In can the produce SM, four thereare true are leptons. few final The states largest with sources significant of cross irreducible backgrounds found in table The cross sections for these processescontribution are to much the smaller than total for background the is signal, small. and their overall ground”. The dominant reducible background contributions to where double counting from bosons that each decaysources to are two estimated leptons. from The MC contributions simulations from that have each been of scaled these to background 20.3 fb two prompt leptons are pairedare with misidentified two as jets isolated or leptons. leptons Additional from background a arises heavy-flavour from decay which tion are lated as: electrons but fail the identification requirement.the All full events event are selection. otherwise required to satisfy give clusters in thestrict electromagnetic identification calorimeter requirement matched or towith the ID isolation tracks requirement that but fail not either both. the For electrons containing three true leptonsfake and leptons, the one data-driven fake methodis lepton. used employed in and To only the estimate a ATLAS measurement summary backgrounds at of containing 7 the TeV [ relevantselected parameters leptons, is with the given remaining here. leptonsset satisfying of a relaxed criteria set is ofselected criteria. defined muons The for except relaxed each thatparameter lepton they requirement type. but either not For fail muons, both. the the isolation For relaxed requirement electrons criteria or with give fail fully the impact JHEP01(2017)099 ) + 0 ` 0 − + jets, 40 GeV ` + channel. ` Z > events, as − 0.03 4.3 0.8 0.02 + 4. ` T 0 is measured 4.4 (stat) 7.1 (syst) `     p f   0 − . Additionally, WZ ` 5.36 8.8 0.04 + 3.9 events (43%) + ) that satisfy the 29.3 τ `  − 0 − 11) for ` τ ` Combined ( 0. 0 ` 2.8 events (63%) in the →  ) to recalculate the back- −  ` Z + 72 + event selection criteria and events that have one lepton 7.1 . µ ` of the fake lepton and is the ¯ − ν 3.5 0.02 0.6 0.02 final state, µ ν η and 3.6 (stat) 15.2 3.9 (syst) ZZ boson and is found to vary from     + + + e `   µ 001 (0 − Z − e − and ) can be found in table ` 0. channel are processes with two true µ boson candidate consisting of a pair ττνν T  + ¯ 7.1 ν → p Z µ ν → − + boson in association with jets ( 027 ` + µ . ZZ µ − ZZ W ` − of data. The uncertainties quoted are statistical 2.4 16.0 0.02 2.82 0.4 4.1 0.08 0.02 µ and uses equation ( 2.4 (stat) 9.0 1 0.9 (syst) +     → µ − – 11 – η   W t, or a − µ , ZZ Z + and 10 GeV to 0 T W 7.1 events (46%) in the combined p − <  + in T W e p f − 0.7 4.8 0.01 1.96 0.1 1.0 0.01 0.02 ¯ t, e background events from sources with fake leptons estimated using t 0.7 (stat) 1.8 2.8 (syst) + in the event. Such processes can be diboson     e ,   − + e ZZ 0 0.9 events (48%) in the 8.6 0.58 3.6 0.00 backgrounds miss 01) for ` T  0. E ¯ ν 0 − ` ν )  + final state and + is calculated as a function of the ` 7.1 2 ` 33 2 − + . f f f f ` f − µ ` × × × × − ) ) ) → ) µ final state, → + The number of ). 001 (0 ```j ``jj e systematic uncertainty in the reducible background is estimated using two addi- j + ```j ``jj ( ( ( ( 0. ZZ − e e − ZZ  ZZ data data ZZ e The factor The N N N N + ) ) ( BG) e + jets), as well as multijets, may satisfy the − − 082 (+) ( Ingredients in eq. ( N ( (+) Background estimate, 4.4 − ground estimate. The systematic uncertainty is estimated to be e W in the 7.2 isolated leptons and The main background sources for the processes such as the production of a well as with misidentified charge from MCparameterization simulation. of The the second factor additional method removes the tional and independent methods.mate and The the maximum nominal difference estimatemethod is between is taken each to as count additional the the number esti- systematicleptons of uncertainty. events and in The data another first with additional pair one pair of of same-sign, opposite-sign, same-flavour same-flavour leptons ( complete selection criteria while subtracting the number of Table 4. the data-driven fake-factor method in 20.3 fb only, unless otherwise indicated, andevents combine of the statistical each uncertainty type inuncertainty and is the number shown the of for statistical observed the uncertainty background in estimate the in each associated final fake state. events factor. having The one systematic criteria or ( two real leptons that instead satisfy the relaxed lepton selection 0. ratio of the probabilityprobability for of a fake the lepton fakein to lepton a satisfy only control the sample satisfying full of the lepton data selection relaxed events criteria lepton that to criteria. contains the a It is measured of isolated same-flavour opposite-sign electrons or muons. In these events, for electrons (muons). Thedata quoted events for uncertainties each are of statistical. the ingredients The in weighted equation number ( of using the leptons and relaxed leptons not assigned to the JHEP01(2017)099 ¯ ν + ), 0 ν µµ ` + WZ µµ ` 0 − or region : ` − ` + ee ` decays ee eµ + : − → τ ` + 0 − eµ ` → final state and τ final state and ZZ 13]. This back- ¯ 0 − ν ¯ ν , in which a third ` ν → ν ZZ + + + ` e e Z eeµ events in which both is small, contributing selections to the effi- − − − and e e ` + 0 and final states, respectively. µµ ` selection. This and WZ → ¯ ν ¯ 0 − ν WZ or ` ν ν µµe + + + , control region to the ZZ ` ee ` µ 5. The dominant uncertainties τ τ νν − − − ` ` eµ µ µµµ → , → → final state, and accounts for the 41% and eee ¯ ZZ ν ZZ , for the ¯ ZZ ν ν final state, and constitutes more than 50% ν µµ + ¯ ν 2(syst) events in the  + 7(syst) events in the decays and µ ν e 0. W t, 1. − + − or , µ e µ  – 12 –  + − ee WZ µ  W − 2(stat) 1(stat) W 3. 1. ¯ t,   t 3 7 . . events in which two of the four leptons are not reconstructed. After events constitute the dominant background for the selection. These efficiency ratios are not equal to unity because of + 3(syst) events in the 0 ` 0. 5(syst) events in the eµ WZ 0 − 1.  `  + ` − ` for the 6(stat) → 0(stat) eµ 3.  1.  ZZ  contribution in data and the systematic uncertainty in the efficiency correction factors. 4 5 contribute to the background. The backgrounds from diboson The dominant uncertainty for theselimited background number contributions of is events statisticalsystematic in because uncertainties the of in the control the normalization region,eµ of while the additional simulated uncertainties samples used are to due correct to the Background events with multiple true isolated leptons may be 7.2.2 Backgrounds from less than 2% toof the this total background source backgroundcorrection are as factors theoretical, shown applied followed in to byis table the uncertainties in simulated in the events. the choice of reconstruction The QCD dominant scale theoretical (about uncertainty 7%), while the PDF uncertainties are less than 1%. bosons decay leptonically and oneand of the three leptons is not reconstructed in the detector, The background contribution fromcontrol these region formed processes by is eventsor with measured two one by muons), electron extrapolating which and otherwise from one satisfy muon a (instead the of full two electrons 15. is free from signal events. The extrapolation from the all selections, the 7.2.1 Backgrounds from leptonic production are estimated frommentioned above, MC a simulations, combination while, oftheir data-driven estimation. for techniques all and other MC simulation background is sources used for and 46% of the total background in the channel. Although this background is estimatedvalidated only using from events in MC simulation, dedicated the control simulation regions, is of the total background. The background due to 18. lepton is required in addition todata the and full MC selection criteria. simulationscaling is No is significant observed difference applied in between to theevents the three-lepton is MC estimated control prediction to regions in be and the 16 therefore signal no region. The background due to ciency the difference in electron and muon reconstruction and trigger efficiencies [ ground is estimated to be 13 signal regions takes into account the relative branching fractions (2 : 1 : 1 for as well as the ratio of the efficiencies JHEP01(2017)099 ) ¯ ν T γ → p ν + e ) + − ¯ ν ZZ e ν → ( Z boson and jets is +jets and multijet Z due to the mismea- 5, this background is W miss T in order to obtain the E 64]. The fraction of events spectra and reconstruction Z T p T p control region. To remove con- + jet) events (e.g. +jet) events, which are subtracted γ . Several of the techniques used to number of candidates in the data, γ miss + T ¯ ν ¯ ν τ E and jets, and reweighting these ν ν 6. The kinematic distributions of the − + + τ T ` ` p − − → ` ` Z final states. The dominant uncertainty for this → → – 13 – ¯ ν boson and photon final state. The dominant systematic uncertainty ν Z ZZ ¯ , and + ν ZZ ν µ backgrounds. As shown in table + − 5. The largest background contributions come from γ µ µ and ττνν − + boson produced in association with jets or with a photon + µ 0 → Z ` and Z ¯ ν 0 − ` ν ZZ + + ` e − − ` W t, e , +jets and + → Z ) may mimic signal events if they have large γ W − + ZZ W Z , +jets and multijet background + jets sample. ¯ t control region. The procedure is repeated in bins of in both the +jets background t γ channel is given in table Z W ¯ ν miss T and ν E + +jets, or ` − Z distribution of the is performed. The fullthe signal background selection is is estimated by applied reweightinglow- to these the events using single-photon weights plus determined from jets the events, and tamination to single-photon events, subtraction of non-( events to account for differences in the estimated by selecting events in data with a high- efficiencies. These weights are determined in a low- ( surement of the jets or the photon. This background of events with a Occasionally, events with one for this background isnumber due of to events the in uncertainty the in control the regions. extrapolation7.2.4 factors and the limited final state and negligible in the 7.2.3 Leptons originating from semileptonic decays ofin heavy-flavour the hadrons may electron also or contribute cause muon of final the states. dilepton mass However, requirement this in background the is signal highly selection. suppressed The be- background is estimated using thein “matrix the method” technique signal [ regionfrom a that background-dominated contain control atin region data. least to The one the contribution fake signal of this lepton region background using is to factors the estimated total measured by background extrapolating is 8% in the the total background estimatesas and well the as expected theirleading signal combinations, lepton for are pair the mass shown individual (the in decay pair table with modes, the larger transverse momentum of the two pairs determine the data-driven backgroundsso require that negative subtraction background of estimatesBackground may non-background estimates result processes when are extrapolating required tofluctuate to the positively signal within have region. their a uncertainty minimum bounds value during of the zero cross-section8 extraction. but are allowed Event to yields The observed from the A summary of both the simulation-based and data-driven backgrounds in the 7.2.5 Background summary for background is due to the statistical uncertainty of non-( WZ ` negligible JHEP01(2017)099 , 2 Z ) 1 1 8. 7. + miss T 0   ` E 0 1 5 3 9 4 8 4 , as well 1. 0. 1. 0. 2. 3. 0 − + 0. 4. + ` 0 T 321 candidates ¯ ` 7 ν       + boson that 9   p ` ( ν 4. 7 1 0 6 8 0 3. 0 1 + 0 − − candidates in 0 Z ` + − ` 0. 0. 1. 3. 3. 6. `   + µ ¯ ¯ 2 ν ν ` , the transverse 1 3  − ν       ν 0 − − Z T ` 2 Z 8. ` 1. + + 9 5 p ` ` 208 + m m 0 287. 9 17.   0. 0. − ` − ` 6 + 4. 3. 2 ` − − − ` +   65. µ → , the 6 6 106. 1876 GeV, the mass of the boson (the − candidates in the data, total 5 1 0.6 7 18.5 2 15.4 7 3 33.2 → . + miss 2 T ` µ 0. 3. ¯ ν 0. 0. 1. 0. 2. 3. E Z 171 − + ν ZZ `   e shows the mass of the leading       ZZ p + ¯ ν µ = 91 6 0 − ` m ν 1 1 1 2 5 5 3 e + − Z + ` 1. 0. 1. 3. 3. 5. 2 Z e m m −       → e + 6 6 7 3 7 4 2 141. 0 10. 9 4 ¯ ν . . , for the ), for the 2 T ν 0. 0. 2 3. 1. 2. 3. ZZ + p − 16. 13. 32 + − µ     ZZ T 2. Figure µ p , ` − p 4 4 0 0 −  and µ + 0. 2. 1. 6. ` 86 + r + 106 ( + 4. τ µ 0     φ = ). The first uncertainty is statistical and the sec- ` − − 7 3 1 2 ¯ ν – 14 – µ τ 0 − ν ZZ T ` , the mass of the four leptons, system, + m + → µ ` lead − − 6 83. 8 2. 6 55. 3 33. ¯ ν µ Z T Z µ ` ZZ ν , 3. 2. 2. 2. p boson, ∆ + + → e channel. e     Z and − − 5 3 7 9 + e e , and the azimuthal angle between the two leptons (electrons ττνν 0 5. 0. 0. 0. ¯ ν 64 ZZ + 102 ` ν e     ZZ T → + − 0 − , is defined as: 4 2 8 1 e e ` . . . . m − + ZZ T e ` ZZ + m 0 − ` ` , the transverse momentum of the leading 0 − W t, → ` + system, , + ` + 0 + ` − ` channel ( lead ` − ZZ ¯ ν 0 − ¯ ZZ ν W ` m ν ` ν − + + Number of background events for simulation-based and data-driven estimates in the + ` ` → ` Summary of observed is the transverse momentum of the dilepton pair and W + jets − − ]. − + jets ` ` ` T of the ¯ t, 63 p Z Total background WZ ZZ t W Source → → 3 The kinematic distributions of the lepton pair mass, → The transverse mass, 3 Expected background 32 Expected backgroundZZ 4 Observed data Expected signal 51 ZZ Observed data Expected signal 62 both lepton final states, are shown in figure mass or muons) originating from the boson [ Table 6. Table 5. ZZ ond systematic. Thediscussed exact in treatment the of text. background estimates for the cross-section extraction is where lepton pair versus the massevents of in the the subleading lepton pair for the data and predicted signal of leptons), background estimates and expected signal(last for the column). individual decay modes Theuncertainty and in for first the their uncertainty combination integrated luminosity quoted (1.9%) is is not statistical, included. while the second is systematic. The decays to the leading lepton pair), in all four-lepton final states, are shown in figure as the transverse momentum of the JHEP01(2017)099 → (9.1) -1 -1 ZZ Zt Zt [GeV] [GeV] + + zz T lead l l - - Z T p l l p + + llll llll l l - - → → l l = 8 TeV = 8 TeV = 8 TeV = 8 TeV → → ZZ ZZ Data ZZZ/ZWW/t lll+X, ll+XX Total Uncertainty Data ZZZ/ZWW/t lll+X, ll+XX Total Uncertainty s s s s L dt = 20.3 fb L dt = 20.3 fb ATLAS ATLAS ∫ ∫ ZZ ZZ , while the full selection (d) (b) (a) , 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 candidates in all four-lepton final states:

80 60 40 20 80 70 60 50 40 30 20 10

200 180 160 140 120 100 Events / 20 GeV 20 / Events Events / 20 GeV 20 / Events bkg + 0 ` N ZZ are either an electron or a muon, may be 0 − . The points represent the observed data and C − ` 0 + ` ZZ T ` L· p data − ` – 15 – N and (d) → ` = -1 Zt [GeV] -1 fid and ZZ Zt llll + [GeV] σ l m + - + l l - lead ll 0 + llll l ` l + m llll - l → - l → , where 0 − l ` = 8 TeV = 8 TeV → ZZ Data ZZZ/ZWW/t lll+X, ll+XX Total Uncertainty ¯ ν s s = 8 TeV = 8 TeV → + ZZ Data ZZZ/ZWW/t lll+X, ll+XX Total Uncertainty s s ` L dt = 20.3 fb ν L dt = 20.3 fb − ATLAS ∫ ZZ + ` ATLAS ∫ ZZ ` m − ` (c) (c) (a) → , lead Z T ZZ p or (b) Kinematic distributions for + , 0 ` + ` 0 100 200 300 400 500 600 700 800 900 1000 0 20 40 60 80 100 120 140 160 180 200 − 0 − lead `

70 60 50 40 30 20 10 ` 80 60 40 20

160 140 120 100 Events / 20 GeV 20 / Events Events / 5 GeV 5 / Events m + ` − the histograms show theshaded expected band number shows of the ZZ combinedbackground. statistical signal No and events selection systematic and on uncertainties the the in leading background the lepton estimate. prediction pair mass and The is the required for Figure 2. (a) is applied for the other distributions. 9 Correction factors and detectorThe fiducial acceptance cross section as measured in a given phase space for a given final state, ` expressed as: JHEP01(2017)099 ¯ ν + e ν for − + (9.2) (9.3) ` e found − ZZ + ` e C − fid ZZ e N because the fid ZZ signal prediction and N events. + 0 ` events in the signal reco ZZ ZZ 0 − ` N , is the generated yield ZZ + ` fid ZZ − , ` N -1 → BF · + fid l - l σ llll ZZ + is the integrated luminosity, and l ZZ - → l A L final state and 2.69% for the = 8 TeV = 8 TeV → ZZ Data s s + = L dt = 20.3 fb , µ ZZ ∫ ATLAS − , as those decays have the same final state fid µ ZZ BF reco ZZ · + N N e bkg reco ZZ − ZZ N = e N to a particular final state (0.113% for – 16 – A decays directly to electrons, muons or neutrinos, − Subleading lepton pair mass [GeV] · ZZ C ZZ ZZ ZZ data gg2VV) are weighted by the relative cross sections of C N L· and = 0 50 100 150 200 250 0

50 are included in , is the expected yield of reconstructed

250 200 150 100 tot Leading lepton pair mass [GeV] mass pair lepton Leading ¯ ν σ reco ZZ ¯ νν N ν production samples. The numbers of events − final states, pairs of oppositely charged leptons produced from decays ` + + PowhegBox ` ZZ 0 final states, 0.226% for the ` + → 0 − µ is the number of observed candidate events in data passing the full selection, ` − − + τ The mass of the leading lepton pair versus the mass of the subleading lepton pair. The µ ` + + data − τ ` µ events in the fiducial phase space defined for a given final state. It is determined N is the estimated number of background events, − is the correction factor applied to the measured cross section to account for detector → The total cross section as measured in a particular final state may be expressed as: µ → ZZ Z bkg ZZ where the numerator, the two samples in order to combine them in the ratio. In the calculation of depending on the channel. as the signal and are not subtracted as background but are excluded from ZZ of using simulated of in each sample ( region after the full selection is applied, and the denominator, fiducial regions are defined only with where N C effects. This factor corrects for detector inefficiencies and resolution and is defined as: where BF is the branching fraction of from simulation, normalized toproportional the to luminosity the of number of thethe events data, signal in as each region bin. pink defined boxes. The by region the The enclosed requirements in size on the of the solid lepton each red pair box box masses indicates is for Figure 3. events observed in the data are shown as solid circles and the and JHEP01(2017)099 (9.4) -1 ) [rad] - [GeV] )+X )+X ττ Z T ν ττ , l + ν p → + → l (l - /Z( φ /Z( ννττ l ννττ ∆ → = 8 TeV → → s L dt = 20.3 fb ZZ νν ∫ ATLAS νν /Wt/ZZ t /Wt/ZZ ll 4l t ll)+X ll 4l ll)+X → → → → → → ZZ Z( ZZ Data W+X/t/Multijet WW/t WZ Total Uncertainty ZZ Z( ZZ Data W+X/t/Multijet WW/t WZ Total Uncertainty (d) (b) -1 ν ν + l events predicted in the total - l → = 8 TeV events predicted in the fiducial s ZZ L dt = 20.3 fb ZZ ∫ ATLAS 0 0.8 1.2 1.6 3.14 candidates in both lepton final states: ZZ 0 60 80 100 120 140 160 180 200 220 240 260 280 80 60 40 20

180 160 140 120 100 60 50 40 30 20 10 ¯ ν

Events , Events / 15 GeV 15 / Events ν + fid tot ` ZZ ZZ − N N ` ). The points represent the observed data and − = → , ` – 17 – + ZZ , is the number of ` ( ZZ A -1 tot distributions, contains the overflow events. ZZ [GeV] -1 ν [GeV] ∆φ ZZ T ll ν ν N + ν m )+X m l (c) + - ττ l - l → l (d) → /Z( = 8 TeV → ννττ s = 8 TeV and s L dt = 20.3 fb ZZ L dt = 20.3 fb ZZ ∫ ATLAS → and , is again the number of ∫ ATLAS (b) νν fid /Wt/ZZ ZZ t 4l ll ZZ T ll)+X )+X → → ττ → N m Z( ZZ Data W+X/t/Multijet WW/t WZ Total Uncertainty ZZ → /Z( (c) ννττ (a) is the detector acceptance as measured in a particular decay mode and (c) → , Z T νν ZZ p /Wt/ZZ t ll 4l ll)+X A → → → Kinematic distributions for ZZ Data W+X/t/Multijet WW/t WZ Total Uncertainty ZZ Z( (b) 80 85 90 95 100 105 , 250 300 350 400 450 500 + ` −

5 `

40 35 30 25 20 15 10 90 80 70 60 50 40 30 20 10

Events / 10 GeV 10 / Events Events / 2 GeV 2 / Events m phase space, and the denominator, phase space. where the numerator, the histograms show theshaded expected band number shows of the ZZ combinedbackground. statistical signal The and events last systematic and bin uncertainties the in in background the estimate. prediction and The the Figure 4. (a) channel) and is determined at particle level. The acceptance factor is defined as: JHEP01(2017)099 ¯ ]. ν + → ν ZZ µ miss 65 T + − C ` decay E µ ZZ − ¯ ν 57, + ` ν µ + − → ` 56, µ final states, − ` ¯ ν → ZZ ν → ) from the term + e ZZ ZZ ZZ − e A and → + 0 90 GeV selection. The JES ` ZZ > 0 − 0.020 0.0019 0.017 0.017 0.0022 ` ZZ      + ` A and miss T − ` are significant in the E + for all decay modes considered here. µ , the number of expected background → − BF. The purpose of this factorization 7 miss T µ and jet veto requirements, which reduce · ZZ E + ZZ A processes as described in refs. [ e ). ZZ − miss T `ν e A 10. 0.034 0.645 0.048 0.0400 0.021 0.725 0.023 0.817 0.039 0.0413 ZZ E · ZZ C      → channel, the lepton reconstruction uncertainty – 18 – → C ZZ + 8. W 0 C channel is much smaller than the one in the ` ZZ 0.846 0.752 0.643 0.495 0.678 ) to obtain the differential distributions. A summary ¯ ν 0 − , ν ` and + + + + e 11.2 + − ` ` + µ ), the acceptance for the total phase-space events in the ` − µ − e − e ¯ − ν + ` ` ¯ − ν − ` µ ν + 9.3 ν e µ e factors for each of the + + → + + + → − → µ µ e e e e − − ZZ − − − factors are shown in table Z µ e µ Channel e e ZZ A , the detector acceptance, → ZZ channel, the modelling of the jets and the measurement of the ZZ final states, respectively. ¯ ν ZZ A and ¯ ν ν C ZZ ν + ` + ZZ to equation ( − µ and C ` − channel mainly due to the axial- µ ZZ → + The C 0 → ` ZZ 0 − ` ZZ According The The dominant experimental uncertainties depend on both the channel and final state Uncertainties in the modelling of the jets and + ` − modes. The totalsystematic uncertainties uncertainties can (statistical be and found in systematic) section are shown and a description of the Table 7. representing primarily detector efficiency ( signal region is given by the quantity The acceptance in the is to separate the term that is sensitive to theoretical uncertainties ( are the dominant uncertainties. Theare systematic estimated uncertainties using due the to lepton reconstruction ` 10 Systematic uncertainties Systematic uncertainties arise from theoreticalcorrection and factor, experimental sources, which affect the the number of selected events by about 86% and 40% respectively. under study. In the along with the isolationin and the impact parameter uncertainties have the largest effect, while of these uncertainties is shown in table events, and the extractedthe aTGC unfolding limits. procedure (section These uncertainties are also propagated through For final states with electrons,and the electron 1.7% reconstruction in uncertainty is the about 4.0%, 2.0% channel due to the jet veto requirement and the axial- for final states with muons, having contributions of 3.4% and 3.2% in the respectively. Modelling ofparameter the relative isolation to of the muons reconstructed along collision with vertex their are reconstructed the dominant impact effects on and JHEP01(2017)099 + 0 → ¯ ν ` ν + 0 − of the µ ` ZZ − + T ` p interfaced − ` ¯ ν µ ν → determination. + e − e ZZ miss component. These T E + 67] and is provided in µ ZZ − PowhegBox µ 66, for the + → e is affected by uncertainties − 53]. This affects the overall e miss gg T E ZZ miss ZZ T + C A E µ − µ for the + scales, as they are missing higher terms µ − F µ µ gg2VV + e and − is shown. For rows with multiple sources, the uncer- e – 19 – R – 0.03% 0.04% – 0.3 % – 1.8 % 0.9 % – 0.7 % – 3.4 % 1.7 % – 3.2 % + NA NA NA 1.8 % 1.6 % NA NA NA 4.7 % 5.3 % µ e 0.7 % 0.9 % 0.8 % 3.1 % 2.1 % 0.1 % 0.2 % 0.1 % 0.1 % 0.5 % 0.2 % 0.1 % 0.1 % 0.9 % 2.2 % 0.03% 0.03% 0.02% 0.9 % 1.0 % 0.4 % 0.01% 0.2 % 2.0 % 0.1 % 4.0 % – 2.0 % 1.7 % – ZZ − e A final states are calculated using ¯ ν ν + ` +jets and multijet balance. − γ ` component, and using production for the total cross-section measurement and the unfolded → . The jet energy resolution (JER) and its uncertainty are determined ¯ q | q +jets, η | Z ZZ ZZ and corresponding to the local cluster weighting calibration scheme is obtained and T for the 4 and the detector acceptance p modelling A summary of the systematic uncertainties, as relative percentages of the correction + 0 ` ZZ miss T C 0 − E ` The uncertainty in the integrated luminosity is 1.9% [ In addition to experimental uncertainties, the measurements are subject to sources The JES uncertainty is fully parameterized by 56 nuisance parameters resulting from various estimation + Pythia 4 ` Jet veto Electroweak Corrections PDF and scale Generator modelling and parton shower 2.0 % 3.0 % 2.3 % 4.3 % 4.1 % Muon energy/momentum Muon isolation/impact parameter Jet+ Trigger efficiency PDF and parton shower Electron energy/momentum Electron isolation/impact parameterMuon rec. and ID efficiency 1.4 % – 0.7 % 0.3 % – Electron rec. and ID efficiency Source − techniques including factor Table 8. tainties are added inuncertainites quadrature. with Dashes NA indicate are uncertainties not which applicable are for smaller that than specific 0.01% final and state. uncertainty using data from test-beams, LHC collision data and simulations [ bins of jet using in situ techniquesimpact based due on the to transverse the momentum uncertainty balance on in the dijet resolution events. is The evaluated by smearing the jets within its uncertainty. The reconstruction of the associated with the leptons, JES and JER that are propagated to the As there are no requirements on either jet reconstruction or channel, the impact of these uncertainties is negligible for these final states. normalization of of theoretical uncertainty.` The correction factor and detector acceptance for differential distributions. from the perturbative expansion. The uncertainty associated with this choice is estimated calculations are sensitive to the choice of to JHEP01(2017)099 ). 1σ 37] ZZ and  9.3 5. + 0 ` and the Pythia 68]. The scales. 9 0 − ` ) and ( F + is formally a µ ` 9.1 − 116 GeV) using final states are ` and < → + R ZZ ` µ − Sherpa ` ZZ . scales are increased and F ZZ < m µ A samples. and and R µ to a given four-lepton or dilepton + ZZ channels are given in table C Sherpa ¯ ν ZZ ν + for the parton showering instead of is recalculated from MC samples generated ` − ` , when the ZZ – 20 – A → ZZ showered samples. The second method uses A Herwig process, and does not include the gluon diagrams. ZZ ¯ q q to calculate both and Pythia + 0 4, the predicted cross sections for the ` 0 − and ` Sherpa + ` final state is determined via the Stewart and Tackmann method [ − ` ¯ ν but interfaced with uses its own matrix-element generation and parton shower algorithms, ν calculated using the nominal and → + Herwig total cross section in the total phase space (66 ` channels. The information from these final states is combined to measure a − ZZ ` ¯ ZZ ν A ZZ ν → + Sherpa ` → for the − and ` ZZ pp PowhegBox ZZ ZZ As described in section The choice of PDF represents an additional source of uncertainty. To estimate this The choice of the underlying-event modelling and parton shower, which includes initial → event rate according to a Poisson probability distribution, as described in ref. [ final state. For each measurement, a likelihood method is used to extract the expected A C ν single ZZ the detector acceptance and branching fraction of ν A fiducial cross section is extracted for every final state in both the uncertainties. The same proceduretion is followed where for the the CT10 backgrounds PDF estimated set from is simula- used. 11 Cross-section measurements 11.1 Cross-section extraction Two types of cross sections, fiducial and total, are extracted using equations ( corrected for virtual NLO EWuncertainty in effects this by reweighting applying procedure atheoretical is reweighting predictions estimated factor used by to to combining estimate each the thefrom event. uncertainty NLO in its The EW the prediction. effects and These the uncertainties statistical are uncertainty added intheoretical quadrature. uncertainty, the eigenvectors of the CT10 PDF set are varied within their LO generator with respect to the and can be usedof to parton provide shower. an As estimate inin of the the first effects method, of the the uncertainty uncertainty is due estimated to using the the choice difference However, samples generated using ZZ by comparing the detector acceptance, ratios of these measurements with respect to the SM predictions are shown in figure with likelihood is maximized with respectmeasurements, to sources the of cross section.struction systematic and For identification uncertainties fiducial efficiencies, (total) affecting detector cross-section nuisance acceptance backgrounds, parameters and and luminosity object the are affected included recon- probability as terms distributions are with allowed to widths fluctuatetions equal according for to to the the Gaussian uncertainties. The measured cross sec- as is donein for the nominal samples. The uncertainty is estimated from the difference and final state radiation effects,its is effect one is of estimated the smaller in sources two of ways. theoretical First, uncertainty and decreased by a factor of two,in with the the nominal. The uncertainty associated with the jet veto using the jet veto efficiency for each sample generated with different JHEP01(2017)099 fb fb fb pb 3 fb 3 fb .6 .5 .1 .7 0. 0. +0 −0.5 +0 −0.4 +1 −1.0   +0 −0.6 uncertainties, -1 5 2 9 7 8 6 σ theory ...... ν Prediction σ / 2l2 4l and 2 data → → σ σ ZZ ZZ → → = 8 TeV, 20.3 fb s pp pp ATLAS (lumi) fb 10 (lumi) pb 6 .3 .2 0.1 (lumi) fb 3 0.1 (lumi) fb 6 0.1 (lumi) fb 4 0.1 (lumi) fb 3 +0 −0.2 +0 −0.1 σ σ     2 1 ± ± Measurement Tot. uncertainty Stat. uncertainty PowhegBox + gg2VV (syst) (syst) (syst) (syst) .5 .6 .3 .5 0.4 (syst) 0.3 (syst) +0 −0.4 +0 −0.5 +0 −0.2 +0 −0.4 – 21 – cross sections in the fiducial phase space to the SM Measurement Total Combined Cross Section   in each of the five decay modes considered. The ratio ZZ (stat) (stat) gg2VV .6 .8 0.7 (stat) 1.0 (stat) 0.8 (stat) 0.4 (stat) +0 −0.5 +0 −0.7 and     = 4.7 = 12.4 = 5.9 = 4.9 = 5.0 = 7.3 + + + µ µ e ¯ − ν ν ¯ − ν µ PowhegBox ν − µ ν 2 e µ ν µ µ + + + + + fid 2e2 fid 2e2 fid 2 total fid 4 fid 4e µ µ e e e σ σ σ σ σ σ The ratio of the measured − − − − − The measured fiducial cross sections and the combined total cross section compared to the ZZ →µ →e →e →µ →e 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 → fid total fid fid fid fid ZZ pp ZZ ZZ ZZ ZZ σ σ σ σ σ σ respectively, associated with the SM prediction. 11.2 Differential crossThe sections differential cross sectionsof presented the in measurement this to current sectiondistributions and allow future are a theoretical unfolded predictions. more back detailed Theof to measured comparison detector kinematic the resolution, underlying efficiency distributions, and accounting acceptance. for The the unfolding effect as a function of different prediction from Figure 5. Table 9. SM predictions. For experimentalare results, shown. the For statistical, the systematic,shown. theoretical and predictions, luminosity the uncertainties combined statistical and systematic uncertainty is between the total combinederror bars cross on section the data andrepresent points the the represent total the uncertainties. SM statistical The prediction uncertainties, green while is and the yellow also bands outer represent black shown. the error 1 bars The inner grey JHEP01(2017)099 -th j 3. This 69]. In the unfold- 70], where the MC differ- measurement and within ¯ ν ν + ` − ` → generators is used as the initial prior , where each element corresponds to ij channel. ZZ A measurement, defined in section scales, which access the impact of higher- + samples. gg2VV 0 + 0 ` F ` µ 0 − ZZ 0 − and ` – 22 – ` + + ` and ` − − ` R ` channel, as the unfolding is performed within the total µ -th generator-level bin being reconstructed in the → i Sherpa + → 0 ` ZZ 0 − ZZ ` PowhegBox + ` − ` → ZZ t approach between the channels is chosen to benefit from the extended fiducial The bin limits and bin widths of the differential kinematic distributions are chosen to The statistical uncertainty of the unfolded distribution is tested via toy-MC tests. The systematic uncertainties are estimated as follows: for each scale, efficiency or Uncertainties on the unfolding due to imperfect description of the kinematic properties The unfolding procedure is based on a Bayesian iterative algorithm [ balance the need of finernumber bins, of in events order and to bin provideevents migration detailed generated effects. information, in More against the specifically, the the same limited fraction bin of (i.e. reconstructed purity) is higher than 75%. phase space, theoretical uncertainties dueuncertainties to include this the extrapolation choice are of also considered. These and three iterations areance performed. between too many The iterations, number causingunfolded of high spectra, statistical iterations and uncertainties too associated is few with optimized the iterations, to which increases find the a dependency bal- Each on measured the MC data-point prior. is Poissonis applied. fluctuated and This the is full repeatedvalues is nominal 2000 taken times unfolding as and procedure the the root unfolded mean distribution’s square statistical of uncertainty. theresolution resulting systematic unfolded uncertainty, ation new by response that systematic matrixall uncertainty. is instances The produced separately, measured reflecting leading datadifference to a distribution between is one varia- then distribution each unfolded for ofuncertainties for each and the the systematic distributions nominal uncertainty. distribution, thatas The where the correspond no systematic variation to has uncertainty been the in applied, each different is bin. systematic defined of the data by the MC are evaluated using a data-driven method [ ential distribution is correctedMC to distribution match at the reconstruction dataactual level distribution data is and unfolding. unfolded the with resultingdistribution The the weighted at new response generator unfolded matrix levelMoreover, used distribution in and in is the the the compared difference to is the taken weighted as MC the systematic uncertainty. order contributions from QCD, theis PDF estimated set, by and comparisons the with parton shower modelling. The latter ing of binned data, thein effects terms of the of experimental a acceptance and two-dimensional resolution response are matrix, expressed the probability of an event in the measurement bin. The unfoldingsponse algorithm matrix combines to the form measured aand spectrum likelihood, takes iterates with as the using input re- the adiction prior posterior calculated for distribution the using specific as the kinematic prior variable for the next iteration. The SM pre- phase space for leptons in the kinematic variables is performedperformed separately within for the the fiducial two phase channels. space of More the specifically, it is the total phase space of the differen JHEP01(2017)099 . ) + 0 −3 ` ZZ 12]. and lead [ ZZγ ) 0 − boson ` − )). The −3 + Z , ` ` and -violating 71–74], as + in most of − ` P ` Z,Z ( ). While the σ ( to 10 C φ 19, y → ZZZ ZZ T of the diboson system , the number of −4 m Z T . PowhegBox lead ZZ p σ ZZ Z T p , are in the order of a boson (∆ system (∆ Z 11.2 ZZ ), the azimuthal angle between jets ) and 3%–9% for 75] is used for the aTGCs studies, N − ( 7. The measured values are compared jets, and this is well modelled by MC )) and the transverse mass of the , ` + , more than 70% of − 0 T + ` ` p ( , ` 6b bosons of the production does not receive a contribution 0 − φ + ` ` Z ( + gg2VV). The theoretical modelling uncertain- 1c). At one-loop level, fermionic triangle loops φ ` ) couplings, which respect gauge and Lorentz ZZ ) parameters. The contribution of anomalous γ − – 23 – ` Z 5 and f or → , gauge symmetry, vertices of the form γ Z 5 f Y boson (∆ ZZ = Z V channel U(1) ( , 0.7%–1.5% for ∆ × + 6. The dominant uncertainty is the statistical uncertainty of 0 Z T L channel ` p PowhegBox ZZV ¯ ν 0 − ν ` -conserving ( + + production cross section grows with the partonic centre-of-mass energy ` ` CP − − ` ` ZZ → → ). 18] are considered. Such couplings can be parameterized by two ZZ T -channel resonance diagram (figure ZZ ZZ s m ) and two Z 4 f In this paper, an effective Lagrangian framework [ The differential cross sections are shown in figure , γ 4 f where the most general invariance [ well as the CDF and D0CMS Collaborations. Collaborations More using recent studies dataany performed collected contributions by from the during new ATLAS 2011 and physics at at the 7 TeV TeV scale, indicate they are that at if most there of the are order of 10 are not present at tree level. Consequently, from the A typical signature of aTGCsThus, is observables an which enhanced are cross proportional section to at the high invariant centre-of-mass mass energies. of the and the gauge boson transverseaTGCs. momentum are Studies particularly of sensitive aTGCs to have contributions been from performed by the LEP Collaborations [ central values of the unfoldedbins, data the differ measurement from is the consistent prediction with by the up SM to prediction12 50% within in 1–2 some of Anomalous the neutral tripleAccording gauge to couplings the SM SU(2) contribute to the generation of effective neutral aTGCs at the level of 10 few percent (0.7%–1% for with the SM predictions ( ties, evaluated by the data-driven method described in section system ( gg2VV) are shown inthe figure data, ranging fromare 7% of to the 17% order in of most 1%–3%. bins. According The to theoretical figure modelling uncertainties differential cross sections and their comparison with the SM predictions ( that decays to electrons oror muons, muons) the originating azimuthal from angle the between the two leptons (electrons events are produced without any associated high- the bins. 11.2.2 The kinematic distributions that are unfolded in this channel are the simulation. The measurement is consistent with the SM prediction within 1 and the difference in rapidity between the two The kinematic distributions that are unfolded in this channel are the jets in associated production with 11.2.1 the two leptons (electrons or muons) originating from the leading ( couplings to the JHEP01(2017)099 + 0 ` jets N 0 − (12.1) ` y(Z,Z) ∆ + ` − ` PowhegBox → Data Stat. Uncertainty Total Uncertainty PowhegBox + gg2VV Data Stat. Uncertainty Total Uncertainty PowhegBox + gg2VV ZZ (d) (b) -1 -1 ) in the + + l l - - l l + + l l - -

Z,Z l l ( y 0 1 2-10 → → =8 TeV =8 TeV L dt = 20.3 fb L dt = 20.3 fb ∆ s s , ZZ ZZ ATLAS ATLAS ∫ ∫ 0-0.4 0.4-0.8 0.8-1.2 1.2-4 −2 (d)  1 0 1 1 9 8 7 6 5 4 3 2 0 2 1.2 0.8 0.6 1.4

ˆ s

1.2 0.8 0.6

1.4

9000 8000 7000 6000 5000 4000 3000 2000 1000

Λ

y(Z,Z) [pb] y(Z,Z) /d d

jets ∆ σ 10000 Data/MC

Data/MC Data/MC

jets and ] [fb/N /dN d σ 1 + lead )  0 − V i, – 24 – , ` f + ` ( ) = φ [rad] s [GeV] ∆ (ˆ lead lead ) - Z T V i ,l p + f (l (c) φ , ∆ jets Data Stat. Uncertainty Total Uncertainty PowhegBox + gg2VV Data Stat. Uncertainty Total Uncertainty PowhegBox + gg2VV N (b) , (c) (a) -1 -1 lead Z T + + p l l - - l l + + l l - -

(a) l l → → The measured differential cross-section distributions (black points) normalized to the is the generic anomalous coupling value (i=4,5) at low energy and Λ is a cutoff (red line). The vertical error bars show the respective statistical uncertainties, while . To avoid violation of unitarity a form factor is introduced to the anomalous =8 TeV =8 TeV L dt = 20.3 fb L dt = 20.3 fb s s s 0 ZZ ZZ ATLAS ATLAS ∫ ∫ V i, 0-30 30-60 60-100 100-200 200-1500 0-1.3 1.3-1.9 1.9-2.3 2.3-2.7 2.7-3.14 f 1 0 1 1 gg2VV 8 7 6 5 4 3 2 0 80 60 40 20

1.5 0.5

140 120 100

1.2 0.8 T 1.4 lead

Data/MC Data/MC

/dp d [fb/GeV] Data/MC Data/MC φ ∆ σ [pb/rad] ) ,l (l /d d σ

lead + - Z channel, unfolded within the total phaseand space, compared to the theory predictions of the light blue error bandsadded express in the quadrature. statistical and systematic uncertainties of the measurements squared, ˆ couplings of the form: Figure 6. bin width for scale related to the energywould at be which the observed. effective field For theory the breaks results down presented, and new no physics form factor is used as the current sen- where JHEP01(2017)099 Z ) [rad] - , l produc- + (red line). (l φ ∆ Zγ couplings in gg2VV Data Stat. Uncertainty Total Uncertainty PowhegBox + gg2VV ZZV and (b) channel, unfolded within -1 ¯ ν ν ν ν + + ` l - − l [GeV] ` → ZZ T couplings probed in PowhegBox =8 TeV m L dt = 20.3 fb → s ZZ ATLAS ∫ 0-0.8 0.8-1.2 1.2-1.6 1.6-3.14 ZZ ZγV 1 8 6 4 2 0 2 0

22 20 18 16 14 12 10

1.5 0.5 Data Stat. Uncertainty Total Uncertainty PowhegBox + gg2VV

Data/MC

φ ∆ σ ) [fb/rad] ) l , (l /d d

+ - in the (c) ZZ T -1 – 25 – m ν ν (c) + l -

l [GeV] Z T → p =8 TeV L dt = 20.3 fb s ) and ZZ ATLAS ∫ − 220-280 280-330 330-400 400-1500 , ` + 1 0 2 ` 0.1 76], although these couplings are highly suppressed near the

1.5 0.5

( Data Stat. Uncertainty Total Uncertainty PowhegBox + gg2VV

0.16 0.14 0.12 0.08 0.06 0.04 0.02

T

Data/MC

/dm d [fb/GeV] σ φ ZZ ∆ (b) (a) , -1 Z T p ν ν + l - and hadronic collisions. Additional anomalous couplings can contribute when (a) l → The measured differential cross-section distributions (black points) normalized to the + =8 TeV e L dt = 20.3 fb s 60-100 100-150 150-1500 ZZ ATLAS ∫ − e bosons are off-shell [ 1 production considered here are distinct from the 0 2 Z

0.1

0.3 0.2 1.5 0.5

T 0.05 0.25 0.15 Data/MC

[fb/GeV] /dp d σ Z Figure 7. bin width for the fiducial phase space, compared to the theory predictions of ZZ sitivity is well withindependence the for unitarization the constraints anomalous and couplings Λ needs is to large be enough that considered. no The energy The vertical error bars showexpress the the respective statistical statistical uncertainties, and while systematic the uncertainties light of blue error the bands measurements added in quadrature. the tion in boson resonance. JHEP01(2017)099 ¯ ν → ν 78] + µ ZZ − channel. µ e for the 77] which shows the ¯ ν channel are ν channel and and + shap 10 ¯ ν PowhegBox ¯ ` ν ν ¯ ν ν − Z T + ν ` p + ` events along with final states in the ` + − e − → ` + ` − µ e ZZ → − → ) is then normalized to ZZ µ + ZZ ZZ µ ZZ shows the data distribution events, to scale the predicted − 80] is used to determine the µ → 8 ¯ q ZZ q in the and Z T + p µ (only − is set to be equal to 0.01, while all other µ γ 4 . The data are found to be consistent with + f e σ − channel. e + , – 26 – Sherpa 0 aTGCs, the signal yield must be parameterized backgrounds and from SM + ` e 0 − − bins: 280–430 GeV and 430–1500 GeV for the it is 1.9 ` e ZZ + Z T + channel and the ZZV ` p e gg2VV. (b) − + − ` ` e + − 79] is used to assess whether the predictions with aTGCs ` → + channel are combined. Figure ` − ZZ ¯ ν -violating parameter ` ν + → CP ` − ` ZZ PowhegBox while for bin 4 in σ . The difference ranges from 30% to 80% for the channel are combined. Likewise, all the events of the channel, and 270–350 GeV and 350–1500 GeV for the in the process is taken into account by comparing the predictions from + + 0 0 is 2.2 ` ` 10, an additional systematic uncertainty in the modelling of the lead ZZ Z T 0 − 0 − ` ` p (a) Sherpa The extraction of the aTGC limits is based on detector-level distributions. A profile- Limits on neutral aTGC parameters are determined using the expected and observed A normalization factor is applied to the expected SM fiducial cross section to the measurement. The uncertainty in this normalization factor compatible with the data. Then a frequentist method [ region, all the events of the + + → ` ` ¯ Z T q − − q and likelihood-ratio test statistic [ are from 30% to 40% for the ` anomalous couplings are set to2 in zero. The deficit in data versus the MC prediction for bin the SM predictions, and no indication of aTGCs isnumbers observed. of events in the following comparison with the SM predictions,eter as point, well as where the the prediction for a non-zero aTGC param- the observed number of events in each bin. The binning is optimized for maximum sensitivity in the aTGCs. Table ZZ is propagated to thesection limit-setting procedure. Apart from the uncertainties described in 12.2 Confidence intervals forThe aTGCs expected number of events from non- 12.1 Parameterization of signalIn yield order to look for the effects of final states in the the prediction of ` in terms ofwhich the contains matrix coupling elements with strength. aTGCsgenerated at at various strengths Simulated the with samples SM one referencenon-zero points are sample couplings of produced in zero various using for combinations.samples all a The are couplings, generator signal reweighted and yield at from is least one obtained two aTGC as other the point samples simulated with to another using a framework [ allows the kinematic propertieselements to used be for reweighted reweighting are ongenerator. extracted an from event-by-event the The basis. Baur, event The Hanwhich yields and matrix contains Ohnemus are terms (BHO) then both [ expected linearly expressed number and as of quadratically a events proportional function generated to of by the the couplings. aTGC The parameters, particularly sensitive to aTGCs andGiven therefore the these limited distributions number arep of used to events probe in them. the selected data sample, especially in the high- JHEP01(2017)099 and 01 is + )+X 0 ττ ` [GeV] → = 0. Z T 2 1 4 0 /Z( p 0 − ννττ γ 4 ` f channel. For + → ` − νν /Wt/ZZ t ` 4l ll ll)+X, W+X/t/Multijet ZZ → → → =0.01 Stat.+syst.unc. γ 4 σ f Data WZ WW/t Z( ZZ ZZ → ZZ 8 4 events Observed events 1. 0. 0.9 0.3 events, and the number of (b) -1   (a)   ZZ v ZZ 20 13 v + 0.1 0.1 l 0. 0. - l     = 8 TeV → s 3 0 L dt = 20.3 fb 2.7 0.7 ∫ ZZ ATLAS 2. 1. 100 200100 300 200 400 300 500 400 500 1 1 5 4 3 2 2 0 1 −

10 1.5 0.5

10 10 10 10

10 Data/MC events and SM Events bins for all final states in each distribution for the ZZ Z T Z T p p – 27 – 04 01 03 03 0. 0. 0. 0. background Expected SM     Zt and [GeV] lead 01 01 10 12 events, the first uncertainty is statistical and the second is ZZ Z T llll lead p 0. 0. 0. 0. → Z T =0.01 p     Stat.+syst.unc. γ 4 ZZ f Data lll+X, ll+XX ZZZ/ZWW/t σ ZZ 13 03 22 25 . . . . 0 0 Expected non- (a) -1 + channels. The expected contribution from the aTGC point with 79]. The expected limits calculated with ‘Asimov’ data sets are cross- l + - 0 l + ¯ ` ν ¯ ν l - ν ν l 0 − 430 GeV 0 + + = 8 TeV ` → ` s 350 GeV 0 ` + < L dt = 20.3 fb − Data and SM prediction of the ` − 430 GeV ` ZZ ∫ ATLAS The expected background from non- < ` − 350 GeV ` > Z T lead → > Z T → → 0 100 200 300 400 500 0 100 200 300 400 500 Z T lead < p 1 1 2 0 6 5 4 3 2 1 p − Z T ZZ

< p 10

1.5 0.5 Limits are set on each coupling, assuming all of the other couplings are zero (as in

10 10 10 10 10 p Events 10 ZZ Data/MC ZZ 270 280 hecked with limits obtained from 5000 pseudo-experiments generated using the expected Table 10. observed events in the two highest Figure 8. the expected background and SM c systematic. 95% confidence level (CL)data intervals events and for the the predictionsconstruct aTGC for the the parameters. aTGC Poissonian signal The probability andare number density background considered processes functions, of as are in observed nuisance used parameters whichintervals to constrained are systematic compared with uncertainties with Gaussian the functions. expectedare The intervals representative by observed event generating samples ‘Asimov’ dataimental that sets, provide result which both and the itsdescribed median expected in expectation statistical ref. for variation [ an in exper- the asymptotic approximation as also shown. (b) the SM), and on pairs of couplings assuming the remaining two couplings are zero. The number of events at each point in the aTGC parameter space. JHEP01(2017)099 ¯ ν → ν + 3 3 ` − − − 10 10 ZZ × × ` γ 4 γ 5 f f → σ σ σ σ ZZ 1 2 2 1 Observed 95% CL Expected 95% CL Observed 95% CL Expected 95% CL ± ± ± ± 0 5 10 0 10 20 v v and . v (f) (c) v + + l 9 -1 l - - -1 + /l 5 /l 11. Since the energy + 0 + − l l - - 10 ` l l + + − l ) l - - l l 0 − 10 = 8 TeV = 8 TeV → → 3 3 − ` s s −3 − − L dt = 20.3 fb L dt = 20.3 fb 20 ATLAS ATLAS ∫ ZZ ∫ ZZ + 10 10 2] 3] 8] 8] − × × ` . . . . 0 5 0 5

− ] and are comparable to the 20 15 10 −

10 30 20 10

5 5 −

` f f

Z Z 13 3, 3 3, 3 8, 3 8, 3 → 3 3 3. 3. 3. 3. − − 10 10 − − − − × × γ 4 Z 4 f f ZZ σ σ σ σ ) Observed (10 1 1 2 2 Observed 95% CL Expected 95% CL Observed 95% CL Expected 95% CL ± ± ± ± −3 channels combined. The limit for each coupling 0 5 10 0 5 10 15 v v 1]1] [ [ 8] [ 8] [ . . . . ¯ (e) ν (b) v v + + l l - - -1 -1 ν 5 21]. – 28 – /l /l 5 − + + l l + − - - l l 0, 4 1, 4 8, 4 6, 4 ` + + l l - - l l − 10 4. 4. 4. 4. = 8 TeV = 8 TeV − → → ` 3 3 s s 10 − − L dt = 20.3 fb L dt = 20.3 fb − − − − − ATLAS ATLAS ZZ ZZ ∫ ∫ 10 10 [ [ [ [ × × 15 → − 0 5 0 5

20 10 10 20 15 10 −

− 5 5

f f

Z γ channels combined are listed in table ZZ 17]. CMS has recently improved the limits on aTGCs by 3 3 ¯ ν − − ν 10 10 20] and previously by ATLAS [ × × γ 4 Z 4 and + f f γ γ ` Z Z 5 4 5 4 + f f f f − 0 ` ` Coupling Expected (10 σ σ σ σ 0 − 1 1 2 2 → Observed 95% CL Expected 95% CL Observed 95% CL Expected 95% CL ± ± ± ± ` + ` 0 5 10 0 10 20 v v ZZ − (a) (d) v v ` + + l l - - -1 -1 /l /l 5 + + − l l - - 10 l l → − + + and l l - - One-dimensional expected and observed 95% CL limits on the aTGC parameters for l l The observed and expected two-dimensional 95% CL contours for limits in the plane of = 8 TeV = 8 TeV → → 10 3 3 s s + − − − L dt = 20.3 fb L dt = 20.3 fb 0 one-dimensional limits are more stringent than those derived from measurements 19], the Tevatron [ ZZ 20 ATLAS ATLAS ZZ ZZ ∫ ∫ 10 10 − ` × × 0 0

20 10 30 20 10 10 10

0 −

− − 4 5

f

f `

Z γ The bining measurements at 7 and 8 TeV [ + ` − com at LEP [ Figure 9. two simultaneously non-zero parameters for the combined channels. Excepthorizontal for and the vertical lines two correspond aTGC to parameters the one-dimensional under limits study, for each all aTGCobserved others parameter. and are expected set 95% to CL zero. invervals for The the four aTGC parameters for the scale at which new physicsthe may limits. appear The is two-dimensional unknown, 95% no CL form intervals are factor shown is in used figure when deriving ` assumes that the other couplings are fixed at their SM value. both the Table 11. limits set by CMS at 8 TeV [ JHEP01(2017)099 ¯ ν + 0 ν ` + ` 0 − ` − ` channel + ` + = 8 TeV is → − 0 ` ` collected by s → √ 0 − ZZ boson and the ` −1 + production cross ` Z ZZ − ` ZZ → ˇ S, Slovenia; DST/NRF, collisions at ZZ (lumi) pb . pp system. In the .2 boson, the number of jets, the boson for the +0 −0.1 Z Z process corrected for virtual NLO ZZ ¯ q q ) decay channels and the results are pb , .7 e, µ +0 −0.6 system. 0.3 (syst) = `  ( ZZ of the leading = 6.6 ¯ ν – 29 – bosons of the T ν p + Z ZZ ` → − ` total pp 0.4 (stat) σ →  ZZ production cross section in LHC boson, the azimuthal angle between the two leptons originating = 7.3 Z and ZZ + 0 →ZZ ` event selections are used to derive 95% confidence intervals for anoma- total pp ¯ ν σ 0 − ` ν + + ` ` − − and the transverse mass of the ` ` Z → → ZZ The event yields as a function of the Differential cross sections in the total phase space in the We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Aus- ZZ channel, the differential cross sections areverse measured in momentum the of fiducial the phase spacefrom for the the trans- South Africa; MINECO, Spain;and SRC Cantons and of Wallenberg Bern Foundation, and Sweden; Geneva, SERI, Switzerland; SNSF MOST, Taiwan; TAEK, Turkey; STFC, difference in rapidity between the two are derived for the transverse momentum of the leading EW effects and predictions from LO gluon-gluon fusion. and lous neutral triple gauge boson couplings.ATLAS results These limits by are approximately more a stringent than factor the of previous four. Acknowledgments We thank CERN for thefrom very our successful institutions operation without of whom the ATLAS LHC, could as not well be astralia; the operated support efficiently. BMWFW staff andFAPESP, Brazil; FWF, NSERC, NRC and Austria; CFI,and Canada; ANAS, CERN; NSFC, CONICYT, Azerbaijan; Chile; China; CAS, SSTC,Czech MOST Republic; COLCIENCIAS, Belarus; DNRF Colombia; and CNPq DNSRC,GNSF, MSMT Denmark; and Georgia; IN2P3-CNRS, CR, CEA-DSM/IRFU, BMBF, MPO France; HGF,SAR, CR China; and ISF, and MPG, I-CORE Germany;Japan; VSC and CNRST, GSRT, Morocco; CR, Benoziyo Greece; FOM and Center, NWO, RGC,Poland; Israel; Netherlands; Hong RCN, FCT, INFN, Norway; Portugal; MNiSW Kong Italy; and MNE/IFA, NCN, Romania; MEXTeration; MES and JINR; of JSPS, MESTD, Russia Serbia; and MSSR, NRC Slovakia; KI, ARRS Russian and Fed- MIZ azimuthal angle between the two leptons originating from the leading 13 Conclusion A measurement of the compatible with the SM expected cross sections. The combined total section is measured to be: the ATLAS detector in 2012.the Fiducial cross sections are measured for every final state in The result is consistent with the SM prediction: which includes predictions from QCD at NLO for the presented, using data corresponding to an integrated luminosity of 20.3 fb JHEP01(2017)099 ¯ p JHEP p , B 669 (1999) Phys. Phys. , , 83 ]. ]. Rev. Mod. Phys. Phys. Lett. , ]. , (2011) 81 INSPIRE INSPIRE 126 Phys. Rev. Lett. INSPIRE , (1990) 676] [ 81]. ]. ]. ]. C 47 hep-ph/0210299][ Super Collider Physics [ SPIRE SPIRE IN Eur. Phys. J. Plus IN hep-ph/0006041][ INSPIRE , [ Experimental probes of localized gravity: On and Vector boson pair production at the LHC ]. Searching for New Heavy Vector Bosons in – 30 – ]. Erratum ibid. SPIRE [ (2003) 115011 IN SPIRE (1986) 1065] [ ]. IN Orientifold theory dynamics and symmetry breaking (2001) 075004 ), which permits any use, distribution and reproduction in D 67 58 An alternative to compactification A large mass hierarchy from a small extra dimension ]. hep-ph/9905221][ hep-ph/0405209][ [ [ (1989) 109 Low-scale technicolor at the Tevatron and LHC The collider phenomenology of technihadrons in the technicolor INSPIRE D 63 Discovering Technicolor INSPIRE C 45 Phys. Rev. CC-BY 4.0 , arXiv:1105.0020][ [Erratum ibid. [ This article is distributed under the terms of the Creative Commons (1999) 3370 Phys. Rev. arXiv:0706.2339][ (2005) 051901 [ , 83 Z. Phys. , hep-th/9906064][ [ D 71 (1984) 579 (2011) 018 arXiv:1104.1255][ Colliders [ Rev. (2008) 235 Rev. Lett. 56 off the wall 4690 07 straw man model The crucial computing support from all WLCG partners is acknowledged gratefully, [9] G. Altarelli, B. Mele and M. Ruiz-Altaba, [7] L. Randall and R. Sundrum, [4] F. Sannino and K. Tuominen, [5] J.R. Andersen et al., [6] L. Randall and R. Sundrum, [3] E. Eichten and K. Lane, [8] H. Davoudiasl, J.L. Hewett and T.G. Rizzo, [2] K. Lane and S. Mrenna, [1] J.M. Campbell, R.K. Ellis and C. Williams, [10] E. Eichten, I. Hinchliffe, K.D. Lane and C. Quigg, any medium, provided the original author(s) and source are credited. References United Kingdom; DOE and NSF,and United members States have of received America. support InCompute from addition, Canada, BCKDF, individual FQRNT, the groups and Canada the Council,FP7, Ontario CANARIE, Horizon Innovation CRC, 2020 Trust, Canada; andlodowska-Curie Marie EPLANET, Actions, Sk d’Avenir ERC, European Labex and Union; Idex, Investissements ANR, and R´egionAuvergne FondationDFG Partager le and Savoir, France; AvH Foundation,financed Germany; by Herakleitos, EU-ESF and Thales theGeneralitat and Greek de Aristeia NSRF; Catalunya, BSF, programmes GIF Generalitat co- hulme and Trust, Valenciana, United Minerva, Spain; Israel; Kingdom. BRF, the Norway; Royal Society andin Lever- particular from(Denmark, CERN, Norway, Sweden), the CC-IN2P3 (France), KIT/GridKA ATLAS(Italy), (Germany), Tier-1 INFN-CNAF NL-T1 facilities (Netherlands), at(U.S.A.), TRIUMF PIC the (Canada), Tier-2 (Spain),jor facilities NDGF ASGC contributors worldwide of and (Taiwan), computing resources large RAL are non-WLCG listed (U.K.) resource inOpen and ref. providers. [ Access. BNL Ma- Attribution License ( JHEP01(2017)099 C B 32 (2008) 2008 100 , channel (2013) (2013) 04 TeV and 2ν collisions at 03 01 Collisions at Phys. Lett. (2010) 043 ¯ p 2` = 7 , p Eur. Phys. J. pp JHEP s 06 , production in the , √ TeV JHEP JHEP ]. , , ZZ Phys. Rev. Lett. arXiv:1509.07844] collisions at , = 8 [ JHEP Phys. Rev. Lett. ]. s TeV , , pp [hep-ph/0003143] and √ INSPIRE = 7 production in (2016) 101801 SPIRE s collisions at ∗ WZ IN , √ Zγ pp − (2016) 552 ]. couplings 116 Probing the Weak Boson Sector in ∗ W + and (2000) 073013 W jet clustering algorithm ZZγ production cross section and constraints B 753 t INSPIRE ZZ [ k Production Cross section in collisions at ZZ and ]. production cross sections in the D 62 production cross section and search for New and standard physics contributions to ]. ]. production in pp → ZZ TeV and combined constraints on triple gauge ]. 8 [arXiv:1503.05467][ ZZ A general framework for implementing NLO pp ZZ ZZZ Phys. Rev. Lett. – 31 – ZZ arXiv:1107.5051][ The anti- [ , Phys. Lett. Search for INSPIRE (1987) 253 and [ , couplings with the ATLAS detector INSPIRE INSPIRE INSPIRE Phys. Rev. collaborations, the LEP Electroweak Working Group, = 7 ]. ]. ]. , s ZZγ (2015) 511 B 282 ]. √ final states in Unity of All Elementary Particle Forces ]. 0 (2011) 078 and ]. 2` INSPIRE INSPIRE INSPIRE 11 C 75 2` Performance of the ATLAS Trigger System in 2010 The ATLAS Experiment at the CERN Large Hadron Collider Measurement of the Measurement of Measurements of four-lepton production in INSPIRE ZZZ INSPIRE Measurements of the Measurement of the Measurement of the selfcouplings hep-ex/0612034 ]. , γ INSPIRE Nucl. Phys. JHEP [ A combination of preliminary electroweak measurements and constraints on , arXiv:1110.1530][ , [arXiv:1406.0113][ [ arXiv:0712.0599][ − [ and W INSPIRE Z [ + TeV and limits on anomalous Eur. Phys. J. S08003 , collaboration, collaboration, collaboration, collaboration, collaboration, ]. ]. W TeV with the ATLAS Detector 96 3 TeV with the ATLAS detector collaboration, collaboration, collaboration, → arXiv:0802.1189][ ][arXiv:1211.4890 ][arXiv:1211.6096 (2015) 250 [ [ [ collaboration, V.M. Abazov et al., − = 1. = 13 = 8 (2012) 1849 e s s s + INSPIRE INSPIRE arXiv:1512.05314][ arXiv:1002.2581][ √ ATLAS [ 063 72 in proton-proton collisions at calculations in shower Monte Carlo programs: the POWHEG BOX CMS (2008) 131801 JINST ATLAS 063 740 [ ATLAS [ CMS couplings ATLAS on anomalous triple gauge couplings in four-lepton final states at e limits on anomalous ATLAS anomalous D0 √ [ √ J. Alcaraz et al., DELPHI, OPAL, ALEPH, L3 the standard model POWHEG BOX (1974) 438 128 anomalous couplings in CMS [24] M. Cacciari, G.P. Salam and G. Soyez, [25] S. Alioli, P. Nason, C. Oleari and E. Re, [21] [23] [22] [18] K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, [17] [15] [13] [16] [11] H. Georgi and S.L. Glashow, [20] [19] [26] T. Melia, P. Nason, R. Rontsch and G. Zanderighi, [12] G.J. Gounaris, J. Layssac and F.M. Renard, [14] JHEP01(2017)099 ]. ]. ]. ]. ]. INSPIRE (2010) SPIRE INSPIRE ]. IN Comput. B 735 INSPIRE INSPIRE (2010) 074024 , C 70 hep-ph/0206293] SPIRE [ IN D 82 ]. ALPGEN, a generator Phys. Lett. ]. ]. , Handbook of LHC Higgs (2009) 007 (2001) 010 [arXiv:1507.06257] (2003) 001 02 01 Eur. Phys. J. INSPIRE arXiv:1504.02388][ ][arXiv:1401.3964 [ , Phys. Rev. [ ]. arXiv:1307.4331][ INSPIRE 07 , [ arXiv:1312.2397][ [ [ INSPIRE searches in gluon fusion at the arXiv:1509.06734][ [ ]. ` JHEP JHEP ]. , , ¯ `ν ` [hep-ph/9601371][ JHEP INSPIRE (2015) 407 Multiparton interactions in ¯ ν QCD corrections to ZZ production in ` , (2015) 065 INSPIRE → (2014) 2988 INSPIRE 08 (2014) 2866 B 750 (2013) 113005 Vector-boson pair production at the LHC to (2015) 094028 C 74 (1996) 637 A brief Introduction to PYTHIA 8.1 Soft gluon resummation in the signal-background [arXiv:1107.2117][ ZZ production at the LHC: fiducial cross sections arXiv:1101.0593 C 74 – 32 – Vector-boson pair production and electroweak JHEP ]. , Massive gauge boson pair production at the LHC: a W W/ZZ D 88 , ][[arXiv:1305.5402 D 92 → C 72 ZZ Theory Uncertainties for Higgs and Other Searches Using Phys. Lett. H ]. , [arXiv:0710.3820][ → INSPIRE ) Working Group, S. Dittmaier et al., ∗ h Eur. Phys. J. ]. ]. ][[arXiv:1206.4803 Inadequacy of zero-width approximation for a light Higgs boson ][[arXiv:1310.7011 Phys. Rev. ]. , (2012) 034011 Z. Phys. (2013) 071 Eur. Phys. J. , , → Phys. Rev. , ( INSPIRE , 12 The ATLAS Simulation Infrastructure gg (2008) 852 D 85 INSPIRE INSPIRE Event generation with SHERPA 1.1 INSPIRE HERWIG 6: An event generator for hadron emission reactions with ZZ production at hadron colliders in NNLO QCD (2012) 116 JHEP 178 (2013) 082 New parton distributions for collider physics , 08 Higgs CAT 12 [arXiv:1405.2219][ Interference effects for Phys. Rev. collaboration, ]. ]. , JHEP accuracy JHEP , ) arXiv:1005.4568][ , 3 [ α ( INSPIRE ][arXiv:1007.2241 hep-ph/0011363][ arXiv:0811.4622][ INSPIRE LHC gluon fusion at the LHC and distributions in NNLO QCD interference process of corrections in HERWIG++ [ next-to-leading order story O LHC Higgs Cross Section 823 (2014) 311 ATLAS [ Jet Bins Cross sections: 1. Inclusive Observables [ [ Phys. Commun. interfering gluons (including supersymmetric processes) photoproduction at HERA for hard multiparton processes in hadronic collisions [ signal [33] C.S. Li, H.T. Li, D.Y. Shao and J. Wang, [31] S. Gieseke, T. Kasprzik and J.H. K¨uhn, [32] J. Baglio, L.D. Ninh and M.M. Weber, [39] F. Cascioli et al., [36] [34] F. Caola, K. Melnikov, R. and R¨ontsch L. Tancredi, [38] M. Grazzini, S. Kallweit and D. Rathlev, [40] [37] I.W. Stewart and F.J. Tackmann, [35] G. Passarino, [41] T. Sj¨ostrand,S. Mrenna and P.Z. Skands, [44] T. Gleisberg et al., [43] J.M. Butterworth, J.R. Forshaw and M.H. Seymour, [42] G. Corcella et al., [45] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, [27] N. Kauer and G. Passarino, [28] N. Kauer, [29] H.-L. Lai et al., [30] A. Bierweiler, T. Kasprzik and J.H. K¨uhn, JHEP01(2017)099 , ]. C 07 (2015) (2014) 05 C 38 INSPIRE (2008) 119 Comput. , C 75 JHEP New C 74 Nucl. Instrum. , , JHEP , , TeV using the , Eur. Phys. J. B 659 , Comput. Phys. ]. , = 8 TeV Chin. Phys. s , √ = 8 s Eur. Phys. J. INSPIRE (2014). Eur. Phys. J. , √ Phys. Lett. , , ]. [arXiv:1608.03953][ (2012). ]. Single-top production in MC@NLO ]. INSPIRE SPIRE IN (2016) 653 ]. SPIRE GEANT4: A simulation toolkit IN [arXiv:1408.3179][ ]. Review of Particle Physics C 76 SPIRE PYTHIA 6.4 Physics and Manual IN – 33 – ATLAS-CONF-2014-032 ]. ]. , INSPIRE The Monte Carlo event generator AcerMC versions 2.0 hep-ph/0204244][ ATLAS-CONF-2012-048 TeV with the ATLAS detector [ ]. ]. (2015) 120 , ]. [hep-ph/9401258][ INSPIRE INSPIRE = 7 Matching NLO QCD computations and parton shower Eur. Phys. J. Pileup subtraction using jet areas s ]. , C 75 Automatic generation of tree level helicity amplitudes √ [hep-ph/0405247][ INSPIRE INSPIRE [ (2013). (2013). , K.A. Olive et al., INSPIRE ]. Luminosity determination in pp collisions at Jet energy measurement and its systematic uncertainty in Performance of the ATLAS muon trigger in pp collisions at Performance of the ATLAS Electron and Photon Trigger in p-p Pile-up subtraction and suppression for jets in ATLAS Electron reconstruction and identification efficiency measurements Performance of Missing Transverse Momentum Reconstruction in Electron efficiency measurements with the ATLAS detector using the Measurement of the muon reconstruction performance of the ATLAS (2002) 029 [hep-ph/0512250][ TeV in 2011 INSPIRE (1994) 357 06 = 7 81 arXiv:1404.2240][ [ INSPIRE s (2013) 919 [ (2003) 250 √ Eur. Phys. J. JHEP ][hep-ph/0201195 hep-ph/0603175][ , , [ [ collaboration, S. Agostinelli et al., 184 (2006) 092 collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, TeV 03 A 506 arXiv:1407.3935][ [ arXiv:1406.0076][ = 8 (2014) 2941 [ s arXiv:0707.1378][ (2014) 090001 Particle Data Group ATLAS-CONF-2013-083 ATLAS [ 17 (2002) 012 ATLAS (2006) 026 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1 Meth. proton-proton collisions at GEANT4 simulations ATLAS √ ATLAS detector at the LHC Collisions at ATLAS-CONF-2013-082 ATLAS JHEP Phys. Commun. Commun. ATLAS generation of parton distributions with uncertainties from global QCD analysis with the ATLAS detector using the 2011 LHC proton-proton collision data ATLAS studied in Proton-Proton Collisions recorded in 2012 at 2012 LHC proton-proton collision data detector using 2011 and 2012 LHC proton-proton collision data 74 ATLAS ATLAS 3130 ATLAS ATLAS [63] [47] T. Sj¨ostrand,S. Mrenna and P.Z. Skands, [51] T. Stelzer and W.F. Long, [53] [48] S. Frixione and B.R. Webber, [52] [60] [49] S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, [54] [50] B.P. Kersevan and E. Richter-Was, [55] [46] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, [62] [58] [61] M. Cacciari and G.P. Salam, [59] [57] [56] JHEP01(2017)099 ]. γ pp , ]. ]. ]. (1999) ]. and TeV production , Z Zγ collisions at INSPIRE = 8 INSPIRE − SPIRE ZZ B 469 INSPIRE INSPIRE e s (2003) 303 ]. IN + √ (2013) 2501] e production ]. ]. , arXiv:0803.3307 , C 32 ZZ arXiv:1509.07844] collisions at [ C 73 INSPIRE , interactions at → pp Phys. Lett. − INSPIRE − INSPIRE , e e + + e e [hep-ph/9710416][ GeV hep-ex/0307050][ [ [hep-ph/0011016][ (2016) 552 [hep-ex/9909043][ ][[arXiv:1407.5063 Eur. Phys. J. 189 , arXiv:1010.0632. [Erratum ibid. , GeV B 753 Asymptotic formulae for likelihood-based (1998) 2823 Boson Pair Production in production in (2003) 447 ][[arXiv:1205.2067 209 (2001) 315 hep-ph/0005269][ GeV and [ (1999) 363 Z Off-shell structure of the anomalous (2014) 3071 [physics/9711021][ ZZ 183 D 57 C 30 (2011) 1554 Study of Z pair production and anomalous couplings Measurement of the – 34 – Phys. Lett. C 74 B 465 (2012) 89 , GeV and Study of A 16S1A C 71 QCD corrections and anomalous couplings in 190 A unified approach to the classical statistical analysis of ]. (1998) 3873 (2000) 073012 Phys. Rev. B 717 Probing neutral gauge boson self-interactions in , ]. ]. Eur. Phys. J. ]. Phys. Lett. (2016). , D 57 , between (2015). (2015). D 62 Eur. Phys. J. INSPIRE ATLAS Computing Acknowledgements 2016-2017 Measurements of four-lepton production in Measurement of the top quark pair cross section with ATLAS in Electron and photon energy calibration with the ATLAS detector Data-driven determination of the energy scale and resolution of jets Monte Carlo Calibration and Combination of In-situ Measurements s , GeV √ SPIRE Eur. Phys. J. GeV INSPIRE TeV using final states with an electron or a muon and a hadronically , IN INSPIRE [ Phys. Lett. 209 , Int. J. Mod. Phys. = 7 , Improved iterative Bayesian unfolding s = 189 Phys. Rev. Phys. Rev. An Iterative, Dynamically Stabilized(IDS) Method of Data Unfolding , √ , /2) lepton collaboration, J. Abdallah et al., GeV to Weighting Di-Boson Monte Carlo Events in Hadron Colliders (1 collaboration, R. Barate et al., τ collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, ]. ]. collisions at S collaboration, G. Abbiendi et al., TeV with the ATLAS detector − e hep-ex/9911003][ [ + = 183 = 8 collaboration, M. Acciarri et al., e s s arXiv:1007.1727][ INSPIRE hep-ex/0310013][ INSPIRE small signals [ ATLAS tests of new physics ATL-GEN-PUB-2016-002 [ production at hadron colliders √ 287 selfcouplings DELPHI arXiv:1106.3107 at the Tevatron cross-section at center-of-mass energies of ALEPH in [ L3 OPAL [ ATLAS LEP at ATLAS-CONF-2015-017 decaying √ ATLAS collisions at using LHC Run 1 data reconstructed in the ATLAS calorimeters using dijet and multijet events at ATLAS ATLAS of Jet Energy Scale,ATLAS-CONF-2015-037 Jet Energy Resolution and Jet Mass in ATLAS ATLAS [80] G.J. Feldman and R.D. Cousins, [81] [79] G. Cowan, K. Cranmer, E. Gross and O. Vitells, [78] U. Baur, T. Han and J. Ohnemus, [77] G. Bella, [72] [71] [70] B. Malaescu, [73] [76] G.J. Gounaris, J. Layssac and F.M. Renard, [74] [75] U. Baur and D.L. Rainwater, [68] [69] G. D’Agostini, [64] [65] [67] [66] JHEP01(2017)099 , , , , , , , 32 , 51 , 146 , , 108 117 174 147a , , , 151 , , , 82 , , 138 93a , 87 158 , , 73 57 27 , 173 32 , 68 , 65 , , , , 89 99 , , , 59 75a,75b , , 137 101 118 149a,149b , , 16 , O. Arnaez , , D. Berge , , , 9 88 , R. Abreu 101 28b , , , T. Beau 118 , C.P. Bee 84 , S. Asai , T. Barklow 78 , R. Astalos 25 49 , 38 14 35a 32 74 155 85 , 32 27 13 108 , M. Aoki , , J. Albert 133a,133b , M. Alstaty 147a , G. Alimonti , M. Battaglia , A. Bethani , G. Anders , F.A. Arduh , J. Benitez 19 55 , M. Beckingham , F. Balli , D.L. Adams 30 50 47 133a 85 , O. Biebel , K. Bachas 60b 180 , G. Bertoli 151 40a , Y. Bai , K. Belotskiy , C. Alexa 32 22a,22b 75a,75b 85 , S. Artz 134a,134b , M.K. Ayoub 137 , M. Bender 88 67 , L. Barak , B. Abeloos , C. Bini , F. Barreiro , B.T. Amadio , H. Abreu , N. Anjos , M. Beretta , J. Bilbao De Mendizabal 16 , G.J. Besjes 121 , N.R. Bernard 12 , P. Bartos , S. Angelidakis ,c 179 20b 136a 171 , G. Amundsen , L.J. Armitage , 156 57 121 , M.D. Beattie 114 , M-S Barisits 74 135a 60a 110 32 , F. Anulli 91 133a,133b , K. Assamagan 146 , M. Bedognetti , P.P. Allport , M. Becker 112 102 ,∗ , J.R. Batley , Z. Barnovska-Blenessy , G. Aielli , A.A. Alshehri , C. Belanger-Champagne , M. Aliev 67 , T. Balestri 105a,105b , A.T.H. Arce 152 99 , M. Bianco , C.F. Anders 117 121 ,b 16 , C. Betancourt 162 , T. Agatonovic-Jovin , B. Axen 44 , C. Bertella , L. Adamczyk 25 11 139 129 176 67 76 , M. Bellomo 32 , G. Artoni 127a , H. Bachacou , G.L. Alberghi 137 130 , A. Bingul 158 31 98 , O. Abdinov 19 97 8 , V. Andrei , E. Benhar Noccioli , S. Berlendis , D. Bertsche 118 , D. Amidei , L. Beresford , I.N. Aleksandrov , M. Biglietti , A.E. Barton , P. Bagnaia , S. Amoroso , B. Ali 16 44 25 156 , T. Barillari 32 , H. Abramowicz 108 , D. Benchekroun 146 , L. Asquith , K. Becker , A.A.E. Bannoura , P. Balek , J.K. Behr 87 114 ,∗ , A. Antonov , J.B. Beacham , A.V. Anisenkov , B.W. Allen ,h ,e 93a,93b ,c , M.G. Alviggi , S.J. Batista 152 , P. Berta , G. Avolio , T. Andeen 27 ,g – 35 – 49 32 , A.J. Armbruster , N. Besson , R.M. Barnett 18 , C. Alpigiani , L. Bianchini 156 , L. Barranco Navarro 55 152 , S. Adachi 79 19 , F. Ahmadov 177 , J.P. Araque 110 , V.A. Bednyakov 171 125a,125b 129 , S. Binet 44 , M.J. Baca 133a,133b 127a,127b 146 ,a 73 , A.A. Affolder 20a , A. Bellerive 24 132 68 126 121 56 , J. Abdallah 20b 60a 149a,149b , A.V. Akimov 132 , A. Artamonov 22a , M. Aleksa , J. Beringer 83 , C. Bertsche 114 5 23 , C. Amelung 73 , M. Begel 74 , M. Barbero , M. Alhroob , R. Bartoldus , S. Bentvelsen , T. Berry 168a,168b 26a 32 , H.P. Beck ˚ Asman , Y. Benhammou , M. Arik , O. Benary , Y. Arai , N. Andari 10 25 , R.L. Bates 23 , A. Andreazza 35a , F. Alonso , M. Antonelli 23 10 , H.S. Bawa 65 , M. Bindi , F. Anghinolfi 99 , M. Bessner 92 51 ,f , A.J. Barr , K. Augsten , N.L. Abraham , A. Amorim , N.V. Biesuz , E.M. Baldin , T. Adye ˚ Akesson , S.P. Ahlen 33 38 , P. Bagiacchi , Sw. Banerjee , B. 49 37 , A.E. Baas 25 52a,52b 60a , A. Beddall 86 137 118 144 138 32 41 180 , B.M. Barnett ´ 101 , R.M. Bianchi Alvarez Piqueras 32 , N. Berger , O. Arslan , B. Abbott 156 20e 86 , B.M.M. Allbrooke 78 30 87 , L. Bellagamba 169 37 149a,149b , D. 127a,127c 127a,127f , I.A. Bertram , T.P.A. 156 32 , P. Bechtle , B.S. Acharya , L.S. Ancu , C. Antel , N. Benekos , A. Alonso , F. Bauer , G. Arabidze , R. Bielski 166 , E. Banas , G. Barone , H. Bilokon , T.A. Beermann , N.L. Belyaev , J.R. Bensinger 142 , T. Alexopoulos , D. Barberis , N.B. Atlay , G. Aad 19 17 , A. Bassalat 96 , A. Angerami 32 47 , S. Adomeit , M.A. Baak , O.K. Baker 123 , K.J. Anderson 108 , S. Argyropoulos 90 , F.U. Bernlochner 156 , M. Backhaus 135a 125a,125b ,d , M.J. Alconada Verzini 149a,149b , A.J. Bevan 170 , Y. Amaral Coutinho , S.L. Barnes , M. Arratia 76 124 108 , A.J. Beddall 96 109 , A. Ashkenazi , O.S. AbouZeid 132 136d 149a,149b , G. Bella , S.P. Alkire 96 57 111 125a,125b 121 149a,149b 68 30 50 105a,105b 102 133a,133b 44 80 33 111 108 J.K. Anders J.A. Aguilar-Saavedra I. Angelozzi C. Anastopoulos C. Becot H. Akerstedt J. Adelman M. Bauce S. Albrand S.P. Amor Dos Santos Y. Abulaiti A. Annovi R. Aben G. Alexander P.H. Beauchemin A. Aloisio The ATLAS collaboration M. Aaboud J. Alison K. Amako L. Aperio Bella L.J. Beemster A. Basalaev B. Alvarez Gonzalez A. Baroncelli N. Barlow A.S. Bell M. Atkinson N. Asbah J-F. Arguin H. Arnold G. Azuelos J. Barreiro Guimar˜aesda Costa E.L. Barberio J.T. Baines M. Backes W.K. Balunas O. Beltramello K. Bendtz T.R.V. Billoud D.P. Benjamin E. Bergeaas Kuutmann D. Biedermann F. Bertolucci C. Bernius S. Bethke O. Bessidskaia Bylund JHEP01(2017)099 , , , , , , , , , , , 33 , 63 32 19 , , 50 , , 107 14 152 , , , 57 , 131 , 58 , 159 , 13 55 24 148b 179 91 , , , 147b , 108 , , , , 8 , 120 , 19 , 168a,168c 49 , 32 , , 44 25 , 132 , , , K. Choi 4a , 32 144 34b 90 55 136a 105a,105b , A. Cerri 67 , , 39a,39b , S. Caron , P. Bokan , 22a , , F. Cardillo 16 69 168a,168c , 79 57 , , A. Borisov 26b , B.L. Clark 2 133a,133b , A. Buzatu 108 , U. Bratzler , D.G. Charlton , D. Boerner 51 , K.M. Black 131 134a , C. Camincher 137 27 , M. Cobal , D. Bullock , S.H. Connell , D. Bruncko 30 50 , S. Burke , R. Castelijn , A. Boveia , R. Camacho Toro , 60a , D. Casadei , O. Cakir 146 , C. Blocker 87 99 50 41 149a,149b 170 , D. Britzger 41 55 , V. Chiarella 87 , J.R. Catmore 44 , P. Bussey 108 , V. Canale , G. Callea , M. Cavalli-Sforza 55 148a , A. Chafaq , Y. Chen 32 , P. Buchholz 137 , M.A. Chelstowska 85 , J. Collot , K. Bos , A. Ciocio 63 , D. Chromek-Burckhart , W.K. Brooks , M. Bruschi 144 93a ,k , A.J. Brennan 20d 35c 39a,39b , A. Clark 80 145 , M.V. Chizhov , V. Boisvert 108 79 30 127a,127c 67 , J. Bouffard , G. Ciapetti , S. Cheatham 123 28b 28b , A.S. Cerqueira , O. Brandt 149a 126 , M. Boehler 22a,22b , K. Burka , I. Bloch 116 112 , J.E. Black , R. Cardarelli , Y. Coadou , W. Buttinger , O. Bulekov 56 171 37 , S.K. Boutle , M. Boonekamp , T.P. Calvet 101 62a,62b,62c 109 , J.D. Chapman , D. Britton , E. Coniavitis 153 147a 108 120 78 36 , X. Chen , Q. Buat , V. B¨uscher 48 118 , E. Cheremushkina , G.J. Bobbink , D. Cavalli , R.M.D. Carney 170 , M.D.M. Capeans Garrido , L. Chevalier , P. Calfayan , S.A. Cetin 15 7 50 , A. Catinaccio , T. Brooks , BH Brunt 67 13 158 , V.M. Cairo 42 , S. Che 82 18 , A.P. Colijn 34a ,j , J. Carvalho 149a,149b 37 , C. Bohm , A. Chitan 37 108 129 , C. Ciocca , A. Campoverde 152 30 , G.A. Chelkov , L. Chytka 127a,127b 32 , C. Bock 93a,93b 127a , R. Caminal Armadans 23 110 , J. Boudreau , G. Brandt 41 , K. Brendlinger , P. Butti , M. Ciubancan , V. Christodoulou 47 8 , M. Bona , T. Blazek , S. Calvet 29 , E. Castaneda-Miranda 164a 55 80 120 , C.W. Black , T. Cao , P. Chang , E. Cheu 82 93a , S. Chen 36 101 93a,93b , M.K. Bugge , V. Bortolotto , R.M. Carbone 137 ,∗ 167 47 – 36 – , T. Buanes , B. Burghgrave , P.A. Bruckman de Renstrom , B. Cole 115 62a , D. B¨uscher 50 , T.M. Bristow , S. Blunier 35b 27 , A. Cervelli , C. Bourdarios 83 121 50 19 , E. Cavallaro , L. Cerda Alberich 36 , G. Calderini , C. Clement 56 , L.S. Bruni 107 , A. Cheplakov 32 , D. Caforio 36 176 87 , J.R. Carter 16 , A. Bocci 170 39a,39b 33 22a , I.A. Cioara , G. Brooijmans 171 , A. Brandt , N.F. Castro 32 83 , L. Carminati 77 92 , A.S. Chisholm 19 , D. Calvet 171 , P. Conde Mui˜no , S. Chen , D. Cameron , M. Citterio , M. Bomben 84 135a,135b 105a 75a , J. Cantero , Y.L. Chan , A. Camplani , B.K.B. Chow , J.J. Chwastowski , F. Buehrer , S.V. Chekulaev , M. Cerv 102 151 176 , D.W. Casper , J.D. Bossio Sola 9 , E. Busato 6 , C.A. Chavez Barajas 58 , A.G. Bogdanchikov 80 89 67 16 141 , J.M. Butterworth 13 13 , S. Bressler , J.-B. Blanchard , D.M. Bjergaard , Y. Cheng , D. Bortoletto , G. Bruni 14 , C.D. Burgard , M. Capua , V. Chernyatin 121 6 162 , L. Colasurdo 55 , A. Calandri , L. Bryngemark , J.H Broughton , R.N. Clarke 56 32 , R. Brock 76 134a,134b 169 , V. Cavaliere 168a,168c 35a 22a 66 , V. Cindro 28b 16 33 48 , D. Boumediene 136e 23 23 , W.D. Breaden Madden , J. Bracinik 109 , U. Blumenschein 45 74 ,∗ , K. Chen , S.S. Bocchetta 67 , G. Carlino , F. Ceradini 117 ,c 85 , G. Chiodini 27 32 , S. Cabrera Urb´an , S.K. Chan , Z.H. Citron , F. Cerutti ,c 110 , S. Chekanov , S. Chouridou , M. Bosman , R.E. Blair , M. Casolino 109 , T. Bisanz , D. Bogavac , C.C. Chau , I.A. Budagov , A. Bruni , J.T.P. Burr , S. Burdin 92 110 , G. Compostella , I. Brock , S. Calvente Lopez ,i 36 , M. Cano Bret , A.J. Chuinard , M. Campanelli , G.D. Carrillo-Montoya , E. Brost , P. Bryant , P. Camarri , R. Brenner , H.J Cheng , C.M. Buttar 32 , V. Castillo Gimenez , J. Bortfeldt 51 22a 55 139 , P.J. Clark 50 45 32 , J. Cochran , D. Cinca , M. Caprini 125a,125b 30 13 32 16 167 23 32 26a , P. Calafiura 91 125a,125b 24 74 128 , J. Caudron 37 51 4a 34b 108 , A.S. Boldyrev 108 164a , H. Chen , T. Carli 105a,105b , J.E. Brau 134a,134b , I.R. Boyko 28b 51 , W. Blum 32 22a,22b 66 88 32 40a 55 130 D. Boscherini G. Borissov S. Biondi E.V. Bouhova-Thacker J.A. Bogaerts V.S. Bobrovnikov T. Bold J. Boyd D. Blackburn A. Blue D. Chakraborty L. Brenner A. Chatterjee F.M. Brochu J. Brosamer H.C. Cheng B. Brau A. Chegwidden L. Cerrito C. Chen R. Cherkaoui El Moursli R. Bruneliere G. Chiarelli J. Chudoba N. Bruscino S. Camarda V. Cavasinni A.G. Buckley A.R. Buzykaev J.M. Butler A. Cattai L.P. Caloba N. Calace A.R. Chomont H. Burckhart A. Castelli S. Campana I. Burmeister I. Carli I. Caprini M.P. Casado A. Canepa E. Carquin F. Cirotto A.K. Ciftci M.R. Clark T. Colombo A. Coccaro JHEP01(2017)099 , , , , , , 16 , , , , , , , , , 91 , , 82 54 , 52a 9 , 51 , , 50 16 76 13 , 131 73 , 176 27 170 , 169 , , 34a , , 28b 102 50 , 173 , ,o , , , 93a , 26c 35a 85 , , 25 42 130 , , 147a 39a,39b , , 124 , , 108 , , M. Cooke , 84 , 111 26d 144 , 169 ,l , M. D¨uren , G. Darbo 137 , C. Ferretti 22a,22b , A. Demilly 51 , P. Dita 133a , P. Dervan , N.P. Dang 107 , S. Errede , R. Debbe 4a 50 51 105a , M.T. Dova , A. Ferrari 67 23 82 33 27 105a 74 , M.A. Diaz , T. Farooque , , Y. Fang , A.B. Fenyuk , E. Duchovni , G. Costa , E.M. Duffield 149a,149b 44 , D. Fassouliotis , D. della Volpe , K.M. Ecker , A.A. Elliot 48 , A. Firan , T. Dado 32 105a,105b 91 ,l 105a 85 179 32 156 , A. Di Simone 44 102 , S. Dhaliwal , T. Davidek , H. Czirr 179 , O.L. Fedin 171 40a , A. Cueto , P. de Jong 32 , O.C. Endner , T. Ekelof 105a , V. Dao 85 , L. Fabbri 132 173 , M.A.B. do Vale 118 16 , K. Cranmer 122a,122b 107 , M. Del Gaudio 158 , M. Donadelli 137 , F. Derue , D. Ferrere , M. Ernst , F. Filthaut 86 , A.I. Etienvre , A. De Salvo 60a 2 108 39a,39b , H. Feng 44 130 , 49 , A. Doria , F. Conventi , F.A. Dias 171 , C.M. Delitzsch , J. Faltova , J. Dingfelder , J.R. Dandoy 32 136d , J. Ferrando , M. Demichev 22a,22b 133a 76 32 , W.A. Cribbs , H. Duran Yildiz 80 14 38 132 , J. C´uth 13 , L. Fiorini , C. Eckardt 162 , R. de Asmundis 137 , W.J. Dearnaley 180 82 , G. Cortiana 8 , P. Fassnacht , C. Di Donato 49 44 , C. David 60a , T. Cornelissen , Y. Enari , L. Fayard 32 , A.Chr. Dudder , F. Ellinghaus , R. Di Nardo 118 23 123 5 , J. Ernst , W. Dabrowski , B.E. Cox 136e 32 , A. Dewhurst 162 132 , E.M. Farina 121 , N. De Groot , K. Einsweiler 86 79 , M. Della Pietra , A. Ferrer 179 , Z. Dolezal 32 127a,127c , I. Deigaard , G. Crosetti , K. De 82 , E.J. Feng 15 126 , G. Conti , F. Fabbri 3 , M. Dam , B. Esposito , M. Filipuzzi , J. Dopke , J.I. Djuvsland 60b , R.J. Falla , F. Deliot 130 107 88 , J. Duarte-Campderros 142 140 77 135a,135b , D. De Pedis 36 28b , S. Demers 126 , J.E. Derkaoui 136e , S. Elles 53b , M. D’Onofrio , F. Crescioli 118 , M. Diamond , M. Dyndal 56 , F. Fassi , M. Dano Hoffmann 140 133a 41 162 , W. Davey , M. Curatolo 55 , M. Dunford 57 125a,125b 87 44 – 37 – 32 169 , A. Dimitrievska 172 , G. Ernis , G. Cowan , C. Da Via , A. Dudarev 117 180 176 44 , G. Eigen 18 , C. Farina 30 , S. Fernandez Perez , W.J. Fawcett , C. Feng 32 , V. Croft 108 , J. Dolejsi , S. De Cecco , D. Emeliyanov , Y. Du , M. Ezzi , K.J.R. Cormier , J. Donini 87 , I. Dawson 23 171 , A. Filipˇciˇc 83 135a , A. Cortes-Gonzalez 32 10 , W.K. Di Clemente , P.O. Deviveiros 90 , C. Escobar 124 5 , B. Di Micco , M.C.N. Fiolhais 85 121 , N. Dehghanian , T. Djobava , D. Delgove ,m , B. Dutta 45 127a,127b , M. Ellert , S. Falciano 45 52a,52b 32 , S. D’Auria 67 , C. Dallapiccola , A. De Maria 87 89 , J.B. De Vivie De Regie 22a,22b 46 153 , C. Diaconu 87 , D. Derendarz 96 131 66 , M. Dell’Orso , P. Farthouat 31 , T. Eifert , G. Cottin 122a,122b , D.A. DeMarco , D. Duda , S. Constantinescu 152 24 , M. Danninger 137 , M. Dris 48 , J. Cummings ,n 174 57 50 , A. Ereditato , M. Dumancic , D.E. Ferreira de Lima 142 22a,22b , A. Dattagupta , A. Farilla 125a,125b , E. Dawe 86 , M. Elsing 56 96 , S. D´ıezCornell , L. Feligioni 45 3 32 8 , S. Cr´ep´e-Renaudin 142 , H. Esch , C. Doglioni 80 , F. Fiedler , K. Dette , A. Ezhilov 27 17 31 122a 120 44 63 , F. Djama 118 28b , M. Cristinziani , L. Di Ciaccio , A. Favareto 32 , K.D. Finelli , F. Dallaire 79 , F. Corriveau 121 , S. De Castro 52a,52b , D.V. Dedovich , P. Dondero , D. Duschinger 15 , B. Di Girolamo , V. Ellajosyula 173 , A. De Santo , F. De Lorenzi 114 , L. Dell’Asta , D. Denysiuk 32 , V. Consorti , N.S. Dann , G. D’amen , A. Farbin 138 , P.A. Delsart , A.M. Cooper-Sarkar , S. Feigl , G. Cree 53b , P. Fernandez Martinez 92 , O.A. Ducu 3 , D. Di Valentino 32 , D. Costanzo 5 152 136c 8 134a,134b , N.C. Edwards 79 19 , T. Del Prete , E. Drechsler , J. Erdmann , P. Davison 80 , J. Dassoulas 55 , R. Ferrari , J. Dietrich 131 , H. Evans , M. D¨uhrssen 172 8 101 , M. Dobre 91 84 , R.M. Fakhrutdinov , S.M. Farrington 162 133a,133b , C. Deterre 55 171 91 , F. Dittus 174 156 , M. Escalier 108 , J. Elmsheuser 125a,125b 156 32 33 16 118 23 93a,93b , O. Dale 85 32 28b 91 K. Desch M. Delmastro S. Dita A. Di Ciaccio A.T. Doyle E.B. Diehl A. Dell’Acqua D. Dobos L. Duflot A. Di Girolamo S. Donati S.P. Denisov M. Crispin Ortuzar S.J. Crawley G. Duckeck R. Di Sipio P. Czodrowski J. Del Peso B.D. Cooper A. Durglishvili I.A. Connelly M.J. Costa T. Cuhadar Donszelmann M.J. Da Cunha Sargedas De Sousa U. De Sanctis A. De Benedetti H. De la Torre C. Debenedetti T. Dai R.C. Edgar M. Corradi G. Facini M. Davies E. Etzion E. Ertel M. Fanti N. Ellis W. Fedorko S. Farrell S. Darmora M. El Kacimi J.S. Ennis A.C. Daniells M. Faucci Giannelli L. Feremenga M. Fincke-Keeler P. Ferrari A. Ferretto Parodi JHEP01(2017)099 , , , 2 , , , , 23 , , 63 , 16 32 101 , , , 9 158 , , 118 , , 38 120 , , 62a , 79 133a,133b , , , , , , 115 , 120 157 64 , 19 , 41 17 , 85 118 87 , 138 , 32 , , , 40a , C. Grefe , , , , , 101 , S. Guindon 58 ,r 92 38 67 172 5 121 90 , , , P. Gagnon 172 , 149a,149b , 81 171 160 , , 98 , 122a , A. Gabrielli 96 , K. Hanawa 50 , N. Giokaris , J.J. Heinrich 176 , G. Galster 144 , J. Haley , S. George , D. Fournier 136c 173 ,t , V. Garonne ,d 22a 16 44 , S.J. Head 3 19 , F. Hariri 68 129 , A. Hadef 157 , L. Franconi , J. Guenther 146 , G. Gustavino , E. Gornicki , C. Helsens , S. Gkaitatzis 22a,22b 132 , Z. Gecse , A.A. Grillo 32 179 8 , R. Hauser 136e 77 177 121 10 120 , P. Giromini , , C. Garc´ıa , M. Gignac 18 , S. Goldfarb , S. Grancagnolo , C. Gwenlan , J.D. Hansen , I. Fleck , A. Gongadze , E. Gross , T. Guillemin , L.R. Flores Castillo , G. Gaudio 48 79 41 , J. Glatzer 38 137 44 19 85 120 , D. Hayakawa , N.M. Hartmann 137 127a , K. Gellerstedt , S.M. Fressard-Batraneanu 84 179 , L.G. Gagnon , P. Gallus 149a,149b , I. Grabowska-Bold , K. Hamano 32 , M. Haleem 80 , Z.D. Greenwood 108 , D. Goujdami , B. Giacobbe , N. Garelli , E. Fullana Torregrosa 60a , C. Gentsos 56 , A.G. Foster , P.A. Gorbounov ,∗ 132 52a,52b 116 52a,52b , K. Hanagaki 23 , D. Francis , B. Heinemann 33 , S. Gupta 86 , W. Guan 32 118 , S. Haug , A. Gabrielli , D.M. Gingrich 159 , J. Griffiths 59 135a , A. Goriˇsek , N. Haddad 181 16 , E.N. Gazis 42 52a,52b 91 5 8 , S.J. Haywood , T. Harenberg , S. Groh 137 155 179 23 76 , T. Flick , C. Guyot , B.K. Gjelsten , L. Gonella 177 , N. Flaschel 22a,22b 118 133a,133b , P.F. Giraud , S.M. Gibson , J.B. Hansen 46 , R. Gon¸calo , J. Godlewski 123 75a,75b 50 92 , S. Hellman , E. Gramstad 60b , C. Glasman 17 27 , F. Hartjes , L. Graber , E. Guido , A. Forti 25 , L. Han , P. Hamal 137 32 51 , D. Freeborn , T. Heim 100 , M.P. Geisler , B.J. Gallop 44 174 , L. Guan , R.J. Hawkings , F.M. Garay Walls 155 112 137 179 , R. Gupta , A. Gaudiello , L. Goossens 85 , G. Gilles ,g 80 , E. Graziani 19 , M. Ghneimat , C.R. Goudet ,p 123 121 , C. Fukunaga – 38 – , S. Hassani 49 , R.W. Gardner 51 , K. Grevtsov 31 , H. Hakobyan , G. Gagliardi 32 , O. Gabizon 67 59 146 , G. Gaycken 144 , A.S. Hard 16 , S. Gentile 41 79 121 114 57 , E. Gorini 146 122a,122b ,p , H.K. Hadavand , J.-F. Grivaz 172 , H.S. Hayward 127a,127b,127d , G. Gonella , M. Giulini , B. Gui 165 , M. Franchini 32 , R. Hanna , L. Helary , C. Gutschow 59 , B. Gibbard 16 , W.C. Fisher 36 , F.M. Giorgi 78 82 137 102 80 156 , E. Gozani , J. Gramling , S. Heim 60a 128 179 8 , A. Formica , C. Gatti 22a ,q , M. Geisen , Y. Guo , R.R.M. Fletcher , Z.J. Grout , L.K. Gladilin , P.F. Harrison 86 , P.G. Hamnett 44 , E.J. Gallas 23 , K. Hamacher , Y.S. Gao 81 141 , A. Hasib , H.M. Gray , D. Gillberg , C. Gay 142 48 , C.M. Hawkes 148b 118 87 48 , M. Goblirsch-Kolb , J.A. Frost , Z. Hajduk , K. Hara 125a,125b , S. Ghasemi 142 22a,22b , P. Grenier 30 97 , M.I. Gostkin , C. Geng 28e 143 , A. Gomes , B. Gorini 44 32 , Ph. Gris 38 128 , S. Gadomski , C. Haber 44 , C. Gabaldon 165 45 57 156 ,s , J.M. Hays , M. Fraternali , O. Gueta 32 , P. Hanke 131 106 , J. Hejbal 111 13 127a,127c 171 , C. Giuliani , J. Fischer , S. Gonzalez-Sevilla , L. Heelan , J. Guo 54 121 167 167 123 , P. Francavilla , M. Garcia-Sciveres 13 , Y. Gao 83 , F.M. Giorgi 32 121 171 13 59 171 , G.C. Grossi , K. Gasnikova , G.T. Forcolin , A. Glazov 56 , N. Govender , G.T. Fletcher , P. Giannetti 44 , G.N. Hamity , A. Haas , P. Grafstr¨om 48 102 , G.D. Hallewell , P.M. Gravila , T.P.S. Gillam , C. G¨ossling , Y. Hasegawa 91 , N.G. Gutierrez Ortiz , I.M. Gregor , P.H. Hansen , J. Fuster , I. Gorelov , A. Gershon 139 , M. Havranek 76 , M. Hagihara 168a,168c , R.D. Harrington , Ch. Geich-Gimbel , C. Heinz 57 , M. Frate , D. Froidevaux , I.L. Gavrilenko , M.H. Genest 92 , D. Guest , S. Gadatsch 16 47 69 80 23 27 13 , F. Giuli , J. Gao , C.P. Hays , E.L. Gkougkousis , B. Haney 46 148a , S. Grinstein , D. Golubkov 124 23 94 114 103 58 , B. Galhardo 46 96 51 , C. Fischer 132 111 92 52a 40a 74 51 2 , V. Hedberg 93a 112 157 138 , C. Gumpert 107 , S. Fracchia 133a,133b 85 55 74 J. Goncalves Pinto Firmino Da Costa S. Giagu M.P. Giordani D. Giugni I. Gkialas G.P. Gach M. Gilchriese T. Golling P.C.F. Glaysher F. Friedrich M.J. Flowerdew T. Fusayasu L. Gauthier D. Gerbaudo S. Gonz´alezde la Hoz J.E. Garc´ıaNavarro P. Fleischmann C. Galea C.B. Gwilliam H. Fox P. Gutierrez C. Gemme A. Fischer S. Hageb¨ock C.N.P. Gee J. Grosse-Knetter H.A. Gordon K.K. Gan M. Franklin A. Gascon Bravo U. Gul A.G. Goussiou A.T. Goshaw F. Guescini K. Grimm P.O.J. Gradin K. Gregersen V. Gratchev M. Hance A. Hamilton M.C. Hansen G. Halladjian L. Heinrich D. Hayden S. Harkusha L. Hauswald M. Hasegawa T. Heck JHEP01(2017)099 , , , , , , , , , 32 51 46 , , 146 104 , 42 , 42 , 154 , 32 , 76 179 , , 41 , , , , 10 69 , 20a , 58 , 60a 37 , 28b , 64 , 102 43 , 118 148c 50 , 141 , , , N. Ilic 19 , 50 151 , , , 23 , S. Hou , , , , M. Kobel 68 , 151 , 111 , 157 16 , P. Iengo , , 57 , 146 , R. Kehoe 106 ,c , S. Istin , S. Kido 76 , K. Kawade 177 131 126 158 , G. Iacobucci , B.T. King , , K. Korcyl , S. Kersten 175 67 ,y 142 , S. Hu 176 44 173 136e 58 110 17 121 50 77 ,aa , A. Jinaru , J.W. Hetherly , 59 , F. Kiss , V. Ippolito , J.M. Izen 53b , , J. Jia , J. Hrivnac , K. Jakobs , O. Kortner 37 , J. Hobbs 68 111 35a 108 139 , E.W. Hughes , N. Karastathis 10 40a , J. Jongmanns , T. Koi , S.J. Hillier 17 , E. Kneringer 85 3 177 , J. Janssen , T. Kondo , D. Iliadis 142 , L. Jeanty 179 76 44 41 , B. Kaplan , U. Klein 121 , T. Kaji 108 64 ,w , L. Kashif , Q. Hu 158 , J. Huth 68 76 , A.M. Henriques Correia , J. Katzy 87 137 , Z. Idrissi 11 , T.M. Hong , R. Keeler , S. Jin 92 165 , C. Issever 51 , H. Ji 139 , J-Y. Hostachy ,c 68 172 , O.M. Kind , T. Kobayashi , J.A. Klinger 5 , A.K. Kopp 180 , M.K. K¨ohler 171 , J. Khubua , Z.M. Karpova 112 45 ,s 85 145 110 157 , Y. Hern´andezJim´enez , H. Iwasaki 160 , B.P. Kerˇsevan 67 , M.R. Hoeferkamp 67 , I. Hristova 13 , N.P. Hessey 64 , A. Kamenshchikov , A.G. Kharlamov 32 , J. Knapik , R. Konoplich , K.B. Jakobi , A. Koulouris , T.J. Jones 178 , K. Iordanidou , W.J. Johnson 128 80 , R. Jansky , K.H. Hiller , M. Klein 2 7 116 42 ,z 7 , D. Kisielewska 47 , S.J. Kahn , Y. Komori 115 102 81 30 , J. Kanzaki , A. Karamaoun 37 , A. Katre , E. Koffeman 68 , J. Huston , E. Ideal , T.B. Huffman ,∗ , Y. Ilchenko , S.-C. Hsu 135a , D. Hirschbuehl , E.V. Korolkova , F. Jeanneau , T. Honda 158 99 10 ,b 31 146 23 97 158 ,u 68 50 13 , K. Kasahara , S. J´ez´equel 50 45 118 , L. K¨opke 67 , N. Kimura 154 131 , V. Jain 174 , A.J. Horton 40a , S. Henkelmann , S. Jones 1 33 , E. Khramov , V. Herget , S. Kama , O. Kepka , S.N. Karpov , V.F. Kazanin , W. Iwanski , D. Kobayashi , A. Hoecker , S. Kluth , J.C. Hill 74 , R. Klingenberg 104 , J. Jimenez Pena 177 98 , T. Kono 25 85 85 56 , A. Kotwal , K.A. Johns , D.K. Jana 162 , A. Khanov , A. Juste Rozas 27 158 142 80 , M. Iodice – 39 – , C. Kato , G.G. Hesketh , M.H. Klein 108 173 23 , T. Koffas , R. Ishmukhametov 107 , M. Ikeno , M. Kagan 12 , M. Hrabovsky ,∗ 142 115 32 , M. Hirose 177 9 158 68 73 102 , T. Jav˚urek , P.J. Hsu , I. Korolkov 160 , C. Jeske , T. Kishimoto , F. Huegging 147b 112 16 , A.A. Komar , M. Homann 163a,163b ,b , K. Karakostas ,c 5 ,x , N. Huseynov 87 , V.A. Kantserov 16 , Y.K. Kim , Y. Horii 67 , S. Koperny 102 , P. Jackson , Y. Heng 148c 50 , E. Hill 110 , H. Herde 77 151 148c 63 , X. Ju 74 , A. Kaluza , P. Kluit 165 117 123 17 , S. Jiggins 171 , A.N. Karyukhin , R.W.L. Jones , P. Hodgson 121 , J. Hoya 60a , L. Hervas 164a , G. Kawamura , A.C. K¨onig 146 74 , V. Khovanskiy , M. Karnevskiy , A. Klimentov , A. Kobayashi 44 , P. Ioannou , L. Iconomidou-Fayard , D.O. Jamin , R. Iuppa , H. Kagan 174 142 , Y. Ikegami 50 , H. Keoshkerian , C. Hsu , Y. Kataoka 51 101 , P. Johansson 10 , E. Kladiva 158 55 , P. Huo , F. Khalil-zada , P. Jenni 109 86 , D. Kar , M. Ishitsuka 79 , I. Koletsou 95 144 128 , F. Hubaut 118 , N.M. Koehler 175 , V.V. Kostyukhin 150 , R.R. Hinman 32 , L. Kanjir 137 90 33 , N. Javadov 148c 170 , S.H. Kim 158 , A.A. Korol , T.R. Holmes 60b 129 30 130 130 8 83 123 , B. Jackson 80 , A.E. Kiryunin 23 , Z. Jiang 122a,122b 3 , G.H. Herbert 59 , G. Jones , E.-E. Kluge , W.H. Hopkins 132 , R. Kopeliansky , J. Jovicevic , A. Knue , J. Howarth , T.J. Khoo , K. K¨oneke 32 80 118 87 , M. Kado , P. Klimek 170 , C.W. Kalderon , T. Iizawa 44 , R.C.W. Henderson , H. Jivan 41 110 , E. Karentzos 85 , M. Kolb , A. Kapliy ,v 136a 47 , T. Kawamoto , M. Ishino , I. Ibragimov , V. Kartvelishvili , D. Jennens , T. Jakoubek , E. Hines , S. Kaneti , T. Kosek , P. Kodys , M. Khader , A. Korn , E. Hig´on-Rodriguez , A. Kastanas , A. Hrynevich 56 121 17 , D. Hohn , H.Y. Kim 160 , O. Kivernyk , M. Huhtinen , J.J. Kempster 72 5 , R. Hertenberger 27 177 108 149a,149b 32 , Z. Hubacek 16 , J. Kirk , M.C. Hodgkinson 89 78 , G. Jarlskog 119 , S. Jabbar 111 153 127a,127b 79 158 102 146 , Y. Jiang 74 44 157 , G. Introzzi 112 50 101 165 44 56 , J.M. Iturbe Ponce 66 171 164a 102 105a 165 O. Jinnouchi H. Jiang K. Jon-And G.-Y. Jeng V. Izzo M. Janus S. Jakobsen F. Ito N. Ishijima T. Ince F. Hoenig O. Igonkina N. Hod R. Hickling I. Hinchliffe G. Herten J. Henderson B.H. Hooberman G. Iakovidis A. Hoummada G. Hughes S. Henrot-Versille Y. Huang T. Hryn’ova M.J. Kareem R.D. Kass K. Kawagoe R.A. Keyes J.S. Keller L.S. Kaplan S. Kortner E.B.F.G. Knoops K. Kordas K. Karthik K. Kleinknecht N. Konstantinidis N. Kanaya H. Kolanoski T. Klioutchnikova M. Kocian C.R. Kilby P.M. Jorge T. Kharlamova E. Kajomovitz N. Kondrashova A. Kaczmarska K. Kiuchi M. King JHEP01(2017)099 , , , , , , , 27 , , , 30 41 , 7 , , 178 , , , , , 128 16 , 162 128 50 , , 31 , , 57 , 46 176 85 26d 59 , 101 128 102 87 , 170 33 , , , 140 77 , 34b , , 24 54 , , 101 , , F. Lanni 6 , , 56 , 150 23 , , , , R. Leone 131 27 7 , , F. Kuger , C. Malone 82 167 , J. Lacey , 93a 82 32 34b , V. Kus , 138 16 , C. Leggett , J.B. Liu , A. Lleres , A. Liblong , T.H. Lin , , H.L. Li 56 60c , C. Luedtke , A. Mann 146 , 94 50 , 87 , L.L. Ma 96 , M. Lokajicek , T.M. Liss ,ab , 57 101 77 151 , A. La Rosa , W.F. Mader , J. Love 27 134a , I. Mandi´c , M.A.L. Leite 44 101 82 , L.J. Levinson , M. Marcisovsky 164b , A.B. Kowalewska 60b 154 , J. Lorenz , J.A. L´opez 142 169 , P. Loch , M. Kruskal , E. Le Guirriec 133a,133b 91 82 118 , T. Lari 27 93a , C.A. Lee 180 82 122a,122b 44 47 , B. Lenzi 82 112 , J. Liu 57 , B. Laforge , H. Li , E. Magradze 137 , K. Kreutzfeldt , A.T. Law , A.S. Kozhin , J. Kroseberg 23 , A. Kugel 5 27 , H. Ma 59 76 , S. Kuleshov , C. Leroy , B. Malaescu 16 , Z. Marshall , C. Malone 50 100 , B. Lund-Jensen 137 123 , A.J. Lankford , F. Legger 67 6 , B. Maˇcek 94 86 , T. Maier , U. Landgraf , A. Lucotte , M. Mantoani , B. Liberti , S.C. Lin 152 118 13 173 , D. Levin 89 142 , M. Lisovyi 102 137 , F. Lacava 5 , A. Lounis 35a 153 , Y.A. Kurochkin , C. Li , M. Livan , H. Liu , K. Lohwasser 15 , M.W. Krasny , T. Lenz ,p , L. Mandelli 69 59 171 , A.G. Leister 91 35a , G. Marchiori 17 , M.C. Kruse 99 149a,149b 80 , R. Lafaye 59 , O. Le Dortz 49 , V. Kouskoura , J. Kroll , H.J. Maddocks , K.A. Looper 31 51 9 133a,133b , A. Lopez Solis 66 , S. Kuehn , J.F. Laporte 67 90 , D. Malon 36 , D. Kyriazopoulos 13 102 32 , G. Lerner , J. Manjarres Ramos 65 , W. Lavrijsen 179 , A. Maevskiy , J.C. Lange , Z. Liang , E.M. Lobodzinska 173 10 , N. Makovec , B. Li , Y. Liu , J. Kretzschmar 49 , W. Kozanecki , H. Liu 27 , F. Ledroit-Guillon , S.P. Marsden , E. Lan¸con , Y. Kulchitsky , X. Lou 75a,75b 26b , R. Mantifel , V. Lyubushkin , J. Levˆeque , M. Lefebvre 6 , A.A. Maier 7 68 43 59 60a , B. Le 144 154 , T. Lohse 60c 158 , A. Limosani 154 83 82 , C. Luci 26a 137 101 35a , C. Lacasta ,∗ 124 26a , A. Lipniacka , L. March 15 – 40 – , G. Mancini , H. Kurashige , C.M. Macdonald 139 29 , R. Madar 180 , O. Lundberg , H. Kroha , E. Ladygin , K.J.C. Leney 123 , W.A. Leight , U. Mallik , Y. Li 93a,93b 171 87 7 , C. Lapoire 128 102 45 , T. Kwan , N. Krumnack 56 , I. Lopez Paz 171 57 39a,39b 86 , D. Liu , L. Longo 133a 82 , T. Maeno , P. Laurelli 23 , Y.L. Liu , D. Krasnopevtsev 116 , C. Kourkoumelis , J.T. Kuechler 74 , W. Lampl , M. Kretz 15 , V.S. Lang ,ac 142 , S. Leontsinis , M. Leyton 32 , Y. Makida 59 , R. Kukla 77 , E. Lytken , P.J. L¨osel 4b 63 , C. Kozakai 27 51 48 23 , T. LeCompte , F. Lo Sterzo 67 , W. Liebig , G. Lefebvre 154 , X. Lei 117 21 , X. Li 128 78 23 40a 89 32 , J.D. Mansour , F. Marroquim 173 , E. Lipeles 47 , M. Levchenko , A. Loginov , G. Marceca , H.J. Lubatti , A. Kupco 91 , F. Malek 51 122a,122b , C. Maidantchik 30 25 137 32 , J. Mamuzic , M. Liu 91 , J. Kvita , B. Lemmer 70 , S. Laplace , D. Madaffari , H. Kr¨uger , M. Lazzaroni , A. Macchiolo 32 124 47 , B. Liu 118 , L. Luminari , R.E. Long , K. Kroeninger 160 67 176 58 , S. Li , S. Kuday 49 , S. Maeland , M. Lassnig , V.R. Lacuesta 64 , L. La Rotonda 122a 33 138 170 80 , R. Lysak 69 82 , J. Liebal , S. Lammers 35a , M. Losada , A.M. Leyko , V. Kukhtin , N. Lu , S.L. Lloyd 27 26d , S. Majewski 56 , G. Kramberger 63 123,127b 78 44 , B. Lefebvre 170 , A. Kravchenko , M. LeBlanc , L. Manhaes de Andrade Filho , M. Liu 1 , B. Lopez Paredes 62a 22a,22b 35a 32 , L. Mapelli 100 , T.Z. Kowalski , A.E. Lionti , T. Kunigo , K.M. Loew , C. Leonidopoulos 58 , C.G. Lester , M.C. Lanfermann , D.E. Marley 137 , M. Kuze , Q. Li 170 , C. Maiani 86 , B. Mansoulie 78 173 151 14 , A. Lanza 137 , W. Lukas , V.P. Maleev , S. Lai , S. Malyukov , D. Lellouch 173 141 , K. Krizka 32 , T. Lazovich , J. Maeda 108 , H. Kucuk , K. Lie , J.D. Long 23 , A.M. Litke , D. Lynn , H. Lu 63 , D. Lacour 41 10 , L. Lee , G. Lehmann Miotto 93a,93b , T. Kuhl 76 44 127a,127b , U. Kruchonak 180 90 , D. Lewis 32 24 130 162 82 74 17 , G. Maccarrone 76 133a,133b 172 14 , L. Liu 125a,125b 154 19 127a,127b,127d 138 , L. Li 87 140 47 A.A.J. Lesage S.C. Lee A. Lehan R. Leitner S. Leone E.P. Le Quilleuc A. Kourkoumeli-Charalampidi R. Kowalewski M. Levy K. Lantzsch A. Krasznahorkay P. Laycock V.A. Kramarenko F. Lasagni Manghi M.P.J. Landon K. Liu P. Lichard A. Lister L. Li B.E. Lindquist J. Krstic T. Lagouri P. Krieger T. Kubota J.L. La Rosa Navarro E.S. Kuwertz A. Kuhl H. Lacker M. Kuna S. Maltezos J. Llorente Merino A. Manousos F.K. Loebinger D. Lopez Mateos Pa. Malecki P.A. Love B.A. Long S. Manzoni N. Lorenzo Martinez J. Maneira J. Mahlstedt M. Marjanovic A. Maio A. Madsen F. Luehring Y. Ma J. Machado Miguens P.M. Luzi JHEP01(2017)099 , , , , , , , , , , 6 , 7 73 68 158 , 32 107 162 , , 38 ,af , , , 27 , , 19 32 , 52a,52b , , 56 86 148c , 101 96 , , 48 , 7 , 92 177 , , , , , 165 , , 44 , , , , 151 15 28b , , 137 18 64 , 46 , 104 158 27 101 86 31 , S. Odaka 17 , , , R.S. Orr , R. Nayyar 166 72 121 56 , , Y. Minami 136d 28b 21 , , D.H. Nguyen , A.M. Nairz , F. Monticelli , M. Nessi 62b , J. Masik 33 19 87 32 , R.E. Owen 102 131 , Y. Ming , 97 26a , S. Nektarijevic 93a,93b 55 , S.S. Mortensen 77 , F. O’grady , H. Okawa 158 , A. Milic , E. Mountricha , S. Miglioranzi , J. Maurer 78 22a , G. Mchedlidze 90 , A. Miucci , K. Mochizuki , K. Onogi , R.S.P. Mueller , S. Oda 90 , J-P. Meyer , P. Nilsson , 85 , I. Nomidis 146 80 132 , E. Meoni 5 , K. Nagai 171 , S. Mehlhase 126 34a , A. Nikiforov 123 , M. Morinaga 120 , M.C. Mondragon 52a,52b 51 119 , E. Nagy , R.L. McCarthy 102 , M. Ouchrif , S.A. Olivares Pino , G. Navarro 58 139 , B.R. Mellado Garcia , N. Orlando 70 50 91 138 , O. Novgorodova 72 , V.S. Martoiu 44 , M. Owen 127a,127e 149a,149b , F.S. Merritt , F. Nuti , H. Oberlack 127a 171 , R.F. Naranjo Garcia 121 132 , P.R. Newman , S.M. Mazza ,d , B. Martin dit Latour 80 35a , F.J. Munoz Sanchez 93a , M. Milesi , M. Moreno Ll´acer , M. Muˇskinja , M. Negrini , A.A. Minaenko 27 113 , J.D. Morris 31 48 , R. Mashinistov , Y. Minegishi , R. Mount 18 157 77 21 , H. Oide 56 , C. Meyer 32 67 , J. Mueller 135a,135b , S. Menke 158 , A.A. Nepomuceno 160 , J. Mattmann , M. Morii , J.K. Nilsen 85 , V.A. Mitsou 169 , T. Moa , M. Nagel , J. Montejo Berlingen , H. Otono , J.A. Mcfayden , S. Meehan 102 , J. Nielsen , M. Nomachi 19 , R.P. Middleton 111 , R. Monden 179 , P. Mastrandrea 158 , A. McCarn , A. Onofre 101 29 90 44 , D. Melini 130 165 122a,122b 149a,149b 151 , E. Nurse 137 23 158 91 , O. Nackenhorst , T. Naumann 152 41 22a,22b 43 , C. Meroni , P. Nevski , Q. Ouyang , J.P. Ochoa-Ricoux , I. Nakano 167 146 124 , I. Maznas , M. Mikuˇz 37 , D. Moreno , V.J. Martin 22a,22b 111 108 158 , M. Mineev , C. Meyer , G.A. Mullier 154 , F.G. Oakham 128 , S. Martin-Haugh , T. Mori , D. Orestano , H. Ohman 118 174 – 41 – , L.F. Oleiro Seabra , T. Mashimo 55 , G. Mornacchi , F. Mueller 55 40a , P. M¨attig 167 , A. Negri , N. Norjoharuddeen 16 , H. Musheghyan , K. Motohashi , T. Nobe 85 170 105a,105b 145 156 19 , P. Nemethy , K. Nagata , F. Miano 28b 86 32 153 158 , J. Mitrevski ,ad , M. Medinnis 102 61 , B. Meirose 128 60a , S.P. Mc Kee , K. Ntekas , I. Ochoa , J. Olszowska , K. Nikolopoulos , D.A. Milstead , R. Nicolaidou 175 ,m , L. Massa 146 , E.F. McDonald , A. Montalbano , R. Moles-Valls , A. Mengarelli 101 174,132 69 , M. Mlynarikova 41 82 162 116 , I. Naryshkin 80 , R. Mazini 87 176 121 91 173 , R.M. Neves 83 , G. Otero y Garzon , B.P. Nachman ,c , P. Mullen , D. Mori , Y. Oren , T. Nakamura , V. O’Shea 60a , A.S. Mete , B. Mindur , N. Morange , K.P. Oussoren 86 179 , C.C. Ohm 74 , T.A. Martin , L. Merola 6 22a,22b 32 33 3 , A. Olariu , L. Masetti 68 129 110 44 , T.J. Neep , M. Mikestikova 47 , R.D. Mudd , R. Nisius 92 51 111 137 68 32 149a,149b , J. Moss 97 , A. Ochi , A.K. Morley 87 , M. Nordberg , T. Mitani 176 , S. Nemecek , Y. Nagasaka , T. Masubuchi , L. Nozka 85 82 133a 53b , X. Meng , A. Milov 114 , C. Meineck 68 123 68 167 18 48 , E. Monnier , W.J. Murray , A. Olszewski , I. Massa 60a 38 19 , S.H. Oh ,c 27 , M. Myska 39a,39b , I. Nikolic-Audit , J. Metcalfe , G. Mc Goldrick , R. Ospanov , R.B. Nickerson 86 , B. Martin , L.I. McClymont , M. Neumann , A. Marzin ,∗ , R.W. Moore , M.J. Oreglia , J.U. Mj¨ornmark , A. Ouraou 110 , R.A. McPherson ,ae , P. Mermod 96 ,ae , A.I. Mincer , K. Nakamura 106 , S. Muanza , V.I. Martinez Outschoorn 80 , A. Nisati ,w , J. Ocariz , S. Molander 171 102 , T. Okuyama 17 , S. Moritz , S. Morgenstern , D.A. Maximov 170 67 , A.A. O’Rourke 142 120 132 ,s 131 , C. Mills 131 88 11 37 23 104 , D.I. Narrias Villar 76 , M. Mosidze 158 , D. Muenstermann , S. Norberg 158 , K. Nagano , A. Nelson 13 , M. Nozaki 120 , F. Meloni , G. Mikenberg 52a 33 , P.Yu. Nechaeva 145 , H. Meyer Zu Theenhausen , K. Meier , J. Monk 11 52a,52b , A. Oh , K.P. Mistry 93a,93b 133a,133b ,z 30 78 48 151 91 118 76 44 102 63 13 68 108 147a S.J. McMahon A. Mehta T.G. McCarthy S.J. Maxfield M. Melo N.C. Mc Fadden S. Mergelmeyer Y. Nakahama M. Martinez D.W. Miller R. Nagai A. Messina R. Narayan H.A. Neal S. Marti-Garcia L.M. Mir A. Mastroberardino P.S. Miyagawa I.A. Minashvili L. Mijovi´c A.G. Myagkov A.C. Martyniuk A.L. Maslennikov C. Nellist J. Meyer Y. Ninomiya M.S. Neubauer J.A. Murillo Quijada P. Morettini S. Monzani K. M¨onig S. Nowak S. Mohapatra L. Morvaj E.J.W. Moyse T. Mueller T. Nooney T. Nguyen Manh V. Nikolaenko V. Morisbak H. Ogren D.C. O’Neil Y. Okumura B. Osculati D. Oliveira Damazio T. Obermann P.U.E. Onyisi F. Ould-Saada JHEP01(2017)099 , , , , , , , , , , 56 129 137 86 27 , 102 35a , 90 , , , 52a , 88 55 , , 78 , 51 , 44 , , 91 , 6 , , , 58 , 63 , , 157 32 , , 36 118 , , 125a,125b , , 142 44 32 , 137 133a 92 , H. Ren , 60a 157 93a,93b , , 86 , , D. Price , , J. Rieger 139 , , 138 , P. Pais , 32 , S. Pospisil , P. Rados 50 , A. Peyaud 36 , 27 66 44 , R. Richter , 133a , , J. Qian ,m , S. Ryu 27 179 , L.P. Rossi 32 , B. Risti´c 88 , D. Quilty 76 171 96 117 85 32 89 , E. Piccaro , 118 44 118 22a , H. Pirumov 88 , C. Roda , D. Pallin , J. Penwell , J. Poveda 29 , C.S. Rogan , A. Poley , S. Protopopescu 135a,135b , T. Pauly 149a,149b 82 55 , S. Rosati , C. Petridou 59 32 32 , L. Perini 40b 1 86 , D. Rousseau , S. Prell , F. R¨uhr , R. Reece 34b , K.A. Parker 105a,105b 122a 171 , P. Plucinski , F. Paige , K. Peters 16 , M. Sahinsoy 27 , S. Rave 30 , H.L. Russell 139 162 164a , C. Rembser 67 , P. Puzo 67 , C.J. Riegel 180 , P. Radloff 109 85 101 , R. Rezvani 101 , A.D. Pilkington ,aj , P. Pani 17 , K. Papageorgiou , S. Roe , G. Rybkin , A. Poppleton , S. Pires , L. Rinaldi , E. Pasqualucci , A. Picazio , N.P. Readioff 151 , H. Peng 33 27 79 10 130 38 18 , E. Ros , M. Palka , N.E. Pettersson 28c , V. Polychronakos , S. Sacerdoti 171 170 , A. Robson , M. Rammensee , E. Rossi , S.H. Robertson 162 174 120 , L. Pacheco Rodriguez , G. Poulard 35a , S.M. Romano Saez , J.R. Pater 82 , A. Petridis 32 , S. Pedraza Lopez 55 44 27 13 , G. Salamanna 108 13 , A. Pranko 57 117 , P. Saha 179 , G. Polesello , F. Prokoshin 120 , A. Reiss 87 175 , J. Rothberg , P. Rieck , M.A. Parker , G. Redlinger 23 62c 22a,22b 123 133a 82 , M.S. Rudolph 135a,135b , E. Plotnikova 74 , M. Queitsch-Maitland , M. Paganini , A. Ruschke , F. Rauscher 149a,149b 176 178 , A. Pingel , C. Peng 85 16 , L. Roos 67 , E. Perez Codina 3 44 , M. Rybar , M. Purohit 146 , J.E. Pilcher , P. Reznicek , M. Rimoldi , C. Rizzi , E. Pianori , A.L. Read 50 27 , E. Petit ,c 128 29 , V.D. Peshekhonov 124 78 , G. Sabato , S. Palestini 32 ,ah 38 , D. Pohl , C.S. Pollard 44 , V.R. Pascuzzi 110 , S. Pataraia , G.A. Popeneciu 168a,168b , C.T. Potter 153 – 42 – , I. Roth 50 , Y. Sakurai 146 , M. Ridel 118 22a , M. Pedersen 92 , S. Rajagopalan 30 ,ag , S.K. Radhakrishnan 135a,135b , P. Pralavorio , J. Reichert , J.E.M. Robinson 122a,122b 23 38 , F. Petrucci 28b , M. Romano 158 39a,39b , Th.D. Papadopoulou 86 , A.J. Parker 31 , K. Prokofiev , V. Rossetti , A. Pacheco Pages 32 , V. Pleskot , F. Rubbo 17 , J.G. Panduro Vazquez 30 121 , O. Penc 99 51 89 56 , E. Rizvi 121 , J.L. Pinfold , A. Redelbach ,c 27 180 82 , D.M. Rauch 145 , R. Piegaia , D. Rodriguez Rodriguez , M. Ronzani , F. Safai Tehrani 148c ,ai 115 , S. Pagan Griso 110 13 67 , R. Peschke 121 , Y.F. Ryabov 139 , N.A. Rusakovich , A. Polini 50 , M. Raymond , T.C. Petersen 32 , D.V. Perepelitsa , B.G. Pope , L. Poggioli , D. Puddu 50 93a,93b , U. Parzefall , W.B. Quayle , C.J. Potter , O. Ricken 162 176 32 , O.L. Rezanova 122a,122b , S. Palazzo , M. Rotaru , A. Rimoldi , A.F. Saavedra , J.A. Raine 37 56 , G. P´asztor 137 , G. Piacquadio 67 40a , S. Prince 133a 168a,168c 40b 56 , H. Sakamoto , V. Radescu , M. Petrov 93a , L. Paolozzi 79 , L. Rehnisch 139 151 , L.E. Pedersen , X. Ruan 182 , K. Pachal , D. Robinson 105a,105b 132 164b 75a 8 27 43 , N.-A. Rosien , M.-A. Pleier 158 89 28b , C.E. Pandini , A. Romaniouk 114 155 149a,149b 133a , R. Sadykov 10 138 58 147a , F. Rizatdinova , N. Rompotis , R. Polifka , M. Pag´aˇcov´a 138 , M.G. Ratti , Z. Rurikova , A. Quadt , M.A. Pickering 13 13 , N. Ruthmann 171 31 , S.V. Peleganchuk 86 , M.E. Pozo Astigarraga , I.N. Potrap , I. Ravinovich 7 , G. Rahal 169 , S. Resconi , R. Rosten , J.A. Parsons , B.A. Petersen , T. Saito , D.M. Rebuzzi , D. Paredes Hernandez , M.M. Perego , Fr. Pastore , S. Perrella , A. Rodriguez Perez 67 16 55 , N. Ozturk 6 , K. Reeves , V. Radeka 30 86 , M. Przybycien , Y. Rozen 39a,39b , G.F. Rzehorz , P. Rose , L. Pontecorvo , G. Palacino , M. Pinamonti , D. Pantea 32 6 , J. Roloff 137 , E. Petrolo ,ak 26b 52a 133a , B. Pearson 22a,22b , P.W. Phillips , E. Richter-Was 87 50 20a 32 86 , I. Riu , M. Primavera 27 120 , M. Rijssenbeek , R. Poettgen 131 120 148c , L. Plazak 87 93a,93b 6 80 120 52a,52b 118 32 173 75a,75b , Y. Qin 127a,127b 34b 66 114 176 55 V. Pozdnyakov A. Paramonov L.E. Price F. Parodi K. Pajchel M. Pitt K. Potamianos K. Pomm`es D. Pluth G. Qin E.St. Panagiotopoulou A. Policicchio S. Panitkin A.W.J. Pin S. Passaggio J. Proudfoot C. Padilla Aranda J. Pearce R. Pedro M. Piccinini V.E. Ozcan S. Raddum B.S. Peralva F. Ragusa R. Pezoa P. Petroff H. Pernegger M. Reale R.F.Y. Peters C. Rangel-Smith M. Rescigno R.G. Reed E. Ritsch Y. Rodina T. Ravenscroft S. Richter A. Robichaud-Veronneau O. Røhne O. Rifki E. Romero Adam K. Rosbach J.H.N. Rosten J.P. Rutherfoord A. Rozanov A. Ruiz-Martinez A. Ryzhov H.F-W. Sadrozinski M. Saimpert JHEP01(2017)099 , , , , , 99 , , 50 85 102 60a , , , , , , 32 , , , , , , , , 21 162 23 129 27 22a 115 , , , 128 92 , , , 77 , , 102 108 60b 102 , 114 , 32 , , 170 , 60a 16 , 171 120 , 91 , 137 8 , 105a , , 46 , 89 , , E. Shulga 37 80 , C. Schillo , 97 , V. Scharf 75a,75b 147a , , C. Schmitt 69 112 , D. Salihagic , 67 138 151 , V. Simak 32 , P. Sinervo , R. Spighi , S. Snyder , N. Savic , S. Schaepe , 134a,134b 44 , T. Sfiligoj , C. Sandoval 127a,127d , D. Sidorov , P. Staroba 85 139 ,d , P. Schacht , A. Sood 85 , 102 , R. Shang 117 , M. Strauss 57 , J. Searcy 149a , C. Serfon 149a,149b 114 179 178 , R. Stamen , H.J. Stelzer ,ao 162 86 , M. Slawinska , A. Schoening 62a,62b,62c , 176 90 , Ph. Schune 35a 120 59 , R. Schwienhorst 23 93a 145 129 137 , T. Scanlon , C.A. Solans Sanchez 138 , J. Smiesko 125a,125b , A. Straessner , S. Schier , J. Schovancova , S. Spagnolo , G. Sekhniaidze 22a,22b 137 , A. Shmeleva 8 , S. Shimizu 77 15 , S. Shrestha , M.C. Stockton , M.N.K. Smith 79 ,al , M. Simon 107 , J. Stark 26a 23 83 , J. Sj¨olin ,am 114 , F. Spettel 22a,22b , A. Soloshenko , K. Schmieden , R. Santonico 36 33 , V. Sanchez Martinez , J.G. Saraiva , J. Schaeffer 67 154 , P. Savard , F. Scutti 52a,52b , I.M. Snyder 17 100 , H. Severini 36 , S.M. Shaw 67 44 , L.Y. Shan 131 , A. Salvucci 79 102 , M. Sandhoff 171 97 , H.Y. Song , B. Stelzer , A. Stabile , R.D. Schamberger , A. Strandlie 173 78 , S.B. Silverstein ,∗ , T. Slavicek , M. Stanescu-Bellu 152 27 , L. Schoeffel 166 , O. Sidiropoulou 101 55 19 50 , L. Shi , P.H. Sales De Bruin , M.J. Schultens , L. Smestad , J. Schaarschmidt , B.A. Schumm 125a,125b 135a 150 5 80 85 168a,168b , D. Simon , A. Sbrizzi , J.M. Seixas 149a,149b 50 , B.C. Sowden 108 , A.R. Stradling , G. Sokhrannyi , D.R. Shope , O. Smirnova , G.H. Stark , Ph. Schwemling , C. Schiavi , J.A. Stillings 80 149a,149b 44 , C.L. Sotiropoulou 127a,127d , C. Santoni , D. Sperlich 22a 129 , G. Savage 102 86 55 154 , H. Son ,an , J. S´anchez , R. Schaefer 5 39a,39b 131 , M. Shiyakova 167 , N. Semprini-Cesari , A. Sapronov 49 79 , R. Seuster 60b 50 ,∗ 72 100 157 123 , M. Slater 93a,93b , A.A. Solodkov , D. Schaile , F. Scuri , A.A. Snesarev 126 – 43 – , F. Salvatore , P. Steinberg , S.Yu. Sivoklokov , J.F.P. Schouwenberg 124 , K. Shaw , U. Schnoor 25 , D. Salek , R.L. Sandbach 114 41 171 118 129 85 , A. Schulte 98 , J. Silva 178 , B.H. Smart , P.E. Sidebo , C. Stanescu , R.D. St. Denis , D. South 6 , P. Sherwood 85 120 34b 164a 14 , F. Seifert 135a,135b , C. Sbarra ,c , D.A. Soh , N.W. Shaikh , D. Sosa 176 170 39a,39b , S. Stonjek , B. Simmons , F. Span`o 130 , E. Sauvan 33 152 56 13 138 , M. Schumacher 56 , A. Sansoni 110 156 85 , V. Scarfone , S. Strandberg , K. Sapp , H. Schweiger , S. Shirabe , P. Sommer , G.A. Stewart 174 , S. Shojaii , M. Schernau 165 17 , K.R. Schmidt-Sommerfeld , L. Schaefer 91 153 54 150 33 152 , G. Sciolla 103 , P. Skubic 124 32 130 32 , E.A. Starchenko , M. Schott , K. Smolek , L.N. Smirnova 23 58 , N. Schuh 52a,52b , D. Sampsonidis , U. Soldevila , M. Sessa 23 , G. Siragusa 74 99 120 , A.C. Schaffer , Dj. Sijacki , R. Staszewski 50 99 , J. Saxon , V. Sorin , P.B. Shatalov 178 , H. Sandaker , P. Stolte , R.W. Stanek , D.M. Seliverstov 85 46 , A. Soffer , B. Schneider ,r 32 , A. Seiden , K. Sato , M. Spousta 16 , A.M. Sickles , D. Salvatore , V. Smakhtin , C.Y. Shehu , E. Simioni 41 42 129 46 85 81 , H. Schulz 68 28b 90 , E. Shabalina 106 22a,22b 128 171 130 , H. Stenzel 118 51 168a,168b 60a , J.E. Salazar Loyola , M. Scarcella , V. Solovyev , D. Schaefer , T.A. Schwarz , A.M. Soukharev , D. Scheirich , M.J. Shochet , S. Schlenker 105a,105b , E. Schopf , J. Strandberg 164a , M. Spangenberg , T. Schwindt , M. Sannino , M. Shimojima , S. Stapnes , S. St¨arz 167 96 131 92 149a,149b 101 18 , Y. Smirnov 146 124 , D. Sammel , F. Siegert , H.P. Skottowe 44 , U. Sch¨afer , J. Salt 137 132 99 167 , V. Sopko 60a , M. Smizanska , M. Schreyer , M. Sioli , F. Socher 32 , I. Santoyo Castillo , O. Sasaki 74 , L. Sawyer , M. Shapiro , P. Sicho , S. Schmitz 39a,39b , S.J. Sekula , G. Stoicea 37 51 7 60b , E. Stanecka 134a,134b , E.Yu. Soldatov 146 , R. Slovak ,m 23 129 , S.C. Seidel , A. Sfyrla , S. Simion 24 168a,168c , L. Serkin 117 , L.A. Spiller 44 91 89 132 17 127a 125a,125b 23 32 14 22a,22b 32 129 166 173 118 A. Salamon A. Salnikov A. Salzburger A. Sanchez Pineda D.P.C. Sankey C. Sawyer H. Santos B. Sarrazin D.A. Scannicchio B.M. Schachtner S. Schaetzel V.A. Schegelsky M. Schioppa P. Seema S. Schmitt B.D. Schoenrock F. Sforza K. Sekhon J.T. Shank J. Schwindling N.B. Sinev H.-C. Schultz-Coulon L. Serin A. Schwartzman A. Sidoti M.A. Shupe S. Schramm D. Shoaleh Saadi Lj. Simic A. Shcherbakova C.O. Shimmin M.M. Stanitzki K. Sliwa M. Solar S. Stamm A. Sopczak P. Starovoitov S.Yu. Smirnov O.V. Solovyanov R. Sobie M.B. Skinner G. Spigo M.E. Stramaglia R. Soualah O. Stelzer-Chilton R.W. Smith M. Spalla M. Stoebe JHEP01(2017)099 , , , , , , , , , , 31 67 27 , 151 108 104 , 87 , , 122a 33 , , , 140,87 , , , 180 , 179 142 90 , 22a,22b 13 161 , , , 50 143 , 58 , ,d , , , 70 85 89 50 , , 82 , , 162 145 , , 121 , 16 160 33 , , 127a,127c , , , , , 6 50 129 , S.A. Stucci 167 , , 50 108 121 , V. Vercesi , C. Wang 13 68 23 14 , M.G. Vincter 160 36 , M. Vogel , S. Turchikhin 25 , I. van Vulpen , 107 , D. Tsybychev , L. Valery 34b 49 35b , E. Tolley , D.R. Tovey 68 129 , J. Wakabayashi , G.N. Taylor , G. Ucchielli , 145 101 171 , M. Swiatlowski 68 87 , T. Tashiro , L.A. Thomsen 46 , T. Takeshita , P. Urrejola , P. Tornambe ,ap , A. Vaniachine , M. Suk 106 132 22a,22b , J. Taenzer , I. Vukotic , G. Unel , F. Veloso 128 55 , R. Wang 71 90 58 , M. Tanaka 128 97 , A. Warburton 44 32 27 , D. Varouchas 123 119 89 , M.C. Vetterli , K.K. Temming , T. Theveneaux-Pelzer , S. Terada 162 158 , N. Vranjes 42 117 , C. Wang 79 , F. Vazeille ,m ,as , K. Todome , J.C-L. Tseng , A. Strubig , V. Tsiskaridze 179 76 , S. Tsuno , E. Vilucchi , M.F. Tripiana 46 , A. Venturini 87 , E. von Toerne , M. Vlasak 41 42 , A. Valero 34b 13 162 16 , G.H.A. Viehhauser 82 10 , J.E. Sundermann , B. Tong 162 , S. Tapia Araya 102 , F. Touchard , P.C. Van Der Deijl , M. Tyndel , M. Svatos , C. Valderanis 142 , P. Urquijo , M. Trottier-McDonald , K. Wang , K. Tokushuku , A.C. Taylor 35a 106 149a,149b , S. Wahrmund 93a,93b 37 68 112 89 ,ar , A. Undrus , Y. Sugaya , T. Varol , S.A. Tupputi 108 22a,22b , R. Vanguri , M. Tasevsky , J. Tanaka 7 93a 73 , R. Takashima 153 , F. Tepel 87 32 , A. Vest , J. Van Nieuwkoop 147b 58 , L.M. Veloce 32 136e , K. Tackmann 147a , R. Vuillermet 90 60a , A.S. Thompson 6 7 27 130 119 108 19 , V.O. Tikhomirov 108 , V. Tsulaia , A. Trzupek , S. Tisserant , X. Sun , S. Vlachos 87 , C. Wanotayaroj , P. Teixeira-Dias 98 , J.H. Vossebeld , N. Venturi 41 , K. Toms , G.A. Vasquez , R.J. Teuscher , S. Tsiskaridze 58 180 59 32 32 , S. Suzuki , R. Stroynowski 9 152 , J. Toth , P.M. Tuts 49 135a,135b 173 , G. Unal , B. Vachon , J. Wang ,aq , P. Tas 180 , J. Urban , S. Tok´ar 152 117 44 – 44 – , H. Takai 139 , K.G. Tan , C. Troncon , S. Suchek , V. Wallangen , A.N. Tuna 165 129 146 93a , S. Trincaz-Duvoid 72 , E.W. Varnes , Y. Tayalati ,c , J.J. Teoh 101 , H. Wahlberg , W. Vandelli 44 , S. Valentinetti 156 126 , S. Sun 144 , H. von der Schmitt 28b 93a,93b , B.B. Tannenwald 110 , O.E. Vickey Boeriu 154 179 164a 70 , R. Voss 133a 90 108 69 , M. Vreeswijk , P. Tipton , M. Villaplana Perez , W. Wang , M. Testa 142 , J.C. Vermeulen 171 , P.D. Thompson , P. van Gemmeren , I. Vivarelli , V. Veeraraghavan 99 37 , C. Taccini , J. Wang , J. Tojo 128 13 , J. Su , M. Venturi , M. Trzebinski 127a,127b , I.I. Tsukerman 79 133a,133b 56 , V. Vacek 108 50 42 155 , N. Tsirintanis 130 , W. Van Den Wollenberg , J.G. Vasquez 146 , D.M. Strom , R.E. Ticse Torres 87 , M.R. Sutton 22a,22b 62a , F. Ukegawa 10 , R. Turra , R. Vari , F.A. Teischinger , L. Tompkins 16 22a,22b 171 , M. Volpi , N. Taiblum 153 178 , P.K. Teng , A. Trofymov 75a,75b , M. Vos , G.F. Tartarelli 176 , E. Torr´oPastor 181 , T. Sumida , W. Wagner 104 168a,168c 32 , D. Ta 164b 57 , I.M. Trigger , N. Valencic , V. Tudorache , T. Vickey , R. Tanioka , V. Vrba 99 , C. Unverdorben , T. Wang 4c , W. Walkowiak , S. Terzo 23 164a 155 , D. Su 39a,39b 145 , A.A. Talyshev ,∗ 27 68 14 68 23 130 84 , H. Wang 28b , J. Veatch 44 149a,149b 87 101 , M. Villa 170 , M. Vanadia 16 89 125a,125b , W. Verkerke , S. Timoshenko , K.M. Tsui , N. van Eldik 121 , L. Vacavant ,c , C. Vittori 108 149a,149b , G. Tsipolitis 53a 68 108 67 , A. Ventura , K.E. Varvell 110 , L. Truong , R. Str¨ohmer 94 , W. Taylor , B. Trocm´e , M.J. Tibbetts , M. Tomoto , S. Tarem 8 , H. Torres , J. Thomas-Wilsker , A. Tavares Delgado , Y. Unno , A. Tricoli , P. Wagner , T. Wang , D. Turgeman , S. Todorova-Nova , K. Vorobev 90 , J. Terron , H. Ten Kate , R. Tafirout , S. Tanaka , G. Susinno 86 , G. Vardanyan 85 , T. Sykora 173 , M. Talby 133a , S. Sultansoy 19 90 ,∗ 162 123 133a,133b , J.A. Valls Ferrer 147b , R. Walker , G. Volpi 117 , H. Wang , I. Vichou 5 178 129 154 129 , N.A. Styles 130 68 97 158 145 , M. Ughetto 167 118 152 108 74 83 130 147a , A. Tudorache 15 , L. Vigani , J. Usui 129 177 39a,39b 8 158 16 62b B. Stugu V.V. Sulin K. Suruliz R. Tanaka Y. Takubo P. Strizenec A. Taffard E. Tassi I. Sykora S. Tapprogge V. Vorobel K. Terashi P. Vokac P.T.E. Taylor J.P. Thomas E. Thomson G. Usai D. Temple L. Tomlinson V.B. Vinogradov P. Vankov I. Ueda Yu.A. Tikhonov T. Todorov S. Viel Y. Tu D. Turecek E. Torrence F.C. Ungaro E. Valdes Santurio A. Vartapetian E.G. Tskhadadze O. Viazlo M.C. van Woerden H. van der Graaf P.V. Tsiareshka S. Veneziano S. Valkar T. Trefzger T. Vazquez Schroeder M. Verducci M. Trovatelli W. Trischuk J. Walder M. Vranjes Milosavljevic Z. Vykydal F. Wang S.M. Wang JHEP01(2017)099 , , , 14 , , , 56 , , , , 35a , , 23 160 23 151 , ,au ,at 67 , 121 , 177 59 30 , , 167 92 , 67 , ˇ , Zivkovi´c 32 16 , 40a , , H. Zhu 104 117 , , 86 86 , L. , , 18 140 152 41 19 144 , A. Zaman , J. Zhong , N. Wermes , F. Zhang , I. Yusuff , J. Weingarten , R. Zhang , C. Willis 15 67 , N.I. Zimine 32 91 23 63 23 , D. Yamaguchi 63 108 , A. Zemla , D. Whiteson , W-M. Yao , I. Yeletskikh 148a 15 , K. Whalen , C.J.S. Young 129 27 , L.A.M. Wiik-Fuchs 34b , C.G. Zhu , K. Yamauchi , T.R. Wyatt 38 166 146 , M.S. Weber 91 35c , S. Wenig , M.J. Woudstra 158 85 , D. Zhang , O.J. Winston , A.T. Watson , M.W. Wolter , R. Zhang 32 , S. Ye 32 32 , J. Zalieckas , M. Ziolkowski , B. Weinert 19 , S.P.Y. Yuen 118 117 42 44 108 , Z. Yang 85 170 , S. Williams 69 121 , S. Yacoob , D. Zieminska , A. Zhemchugov Istanbul Aydin University, Istanbul; , R. White , M. Zeman , Y. Wu 154 1 ) 123 59 , N. Zhou , J. Wetter , C. Young 153 51 178 (b 179 , S. Webb , J. Ye 151 60a 123 80 23 , C. Wiglesworth , T. Wengler , T. Yamanaka , L. Yuan , D. Zerwas , M. Zinser , M. Zhang , L. Zwalinski , J. Wotschack 27 , Y. Yang , X. Wu 66 , Z. Zhao 56 132 50 17 158 , P.M. Watkins , T.M.H. Wolf 41 147a , A. Zibell , F. Winklmeier 177 177 48 , N. Zakharchuk 140 , M.J. White 5 , B. Yabsley – 45 – 101 97 8 , M. Zhou , A.R. Weidberg , C. Zeitnitz ,ae 6 27 , H.H. Williams 42 , J. Yu 90 ˇ , M. Wessels Zeniˇs 32 131 91 , B.M. Waugh 32 , K. Yoshihara 6 , L. Zhang 86 , T. Wenaus , T. 6 , Z. Zinonos , H. Yang , S.L. Wu , Y. Zhao , M. Wielers , K.H. Yau Wong , L. Xu 32 5 50 33 131 42 , A. White 141 , B.K. Wosiek , S. Yamamoto 177 , L. Zhou , K. Zhukov 35a , M. zur Nedden , D. Zanzi 74 68 37 , J.M. Yu 132 , A. Washbrook 35a 8 , J. Wittkowski , J.S. Webster , P. Werner 80 , S. Watts 31 , J. Zhang , I. Wingerter-Seez 146 66 , M. Wu , R. Yoshida , A.M. Zaitsev 22a,22b , H.G. Wilkens , D. Xu , X. Zhao 139 19 , O. Zenin 57 , H. Yang , P.S. Wells 65 35b 133a,133b 86 175 38 , J. Yu 24 , E. Yatsenko 118 , L. Zhou 146 108 16 68 177 , S.D. Worm , X. Zhuang , S. Zimmermann , A. Yamamoto 59 , M. Wu , A.M. Wharton 85 , W. Wiedenmann , F. Wilk , G. Watts , S.A. Weber , A. Zoccoli , S. Xella , Z. Yan 41 , M. Wittgen 119 , H. Zhang 139 , R. Zaidan , K. Yorita 19 , L. Zanello 132 48 69 , M.D. Werner , Q. Zeng , D.R. Wardrope , J.A. Wilson , Z. Zhang 102 23 , D.R. Yu 178 177 , H. Weits 41 ,ao , Y. Yasu 85 58 127a,127c 50 30 88 , C. Zhou 24 170 50 59 Department of Physics, Ankara University, Ankara; 82 140 Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey , Y. Zhu 91 ) 91 Department of Physics, UniversityPhysics of Department, Adelaide, SUNY Adelaide, Albany, Australia AlbanyDepartment NY, of United Physics, States University of of America Alberta, Edmonton AB, Canada (c) LAPP, CNRS/IN2P3 and Universit´eSavoie MontHigh Blanc, Energy Physics Annecy-le-Vieux, France Division,Department Argonne National of Laboratory, Physics, Argonne University IL,Department of United of Arizona, States Physics, Tucson of The AZ, America America University United States of of Texas at America Physics Arlington, Department, Arlington University TX, of UnitedPhysics Athens, States Department, Athens, of National Greece Technical UniversityDepartment of of Athens, Physics, Zografou, The Greece Institute University of of Physics, Texas at AzerbaijanInstitut Academy Austin, of de Austin d’Altes Sciences, F´ısica TX, Energies Baku, United (IFAE),Barcelona, Azerbaijan The States Spain Barcelona of Institute America ofInstitute Science of and Physics, Technology, UniversityDepartment of for Belgrade, Physics Belgrade, and Serbia Physics Technology, University Division, of Lawrence Berkeley Bergen, Bergen, NationalCA, Norway Laboratory United and States University of ofDepartment America California, of Berkeley Physics, Humboldt University, Berlin, Germany 1 2 3 4 (a 5 6 7 8 9 10 11 12 13 14 15 16 17 M. Werner N.L. Whallon C.P. Ward C. Weiser F.J. Wickens M.F. Watson S.W. Weber H. Wolters K.W. Wozniak B.T. Winter S. Willocq A. Wildauer B.M. Wynne S. Youssef E. Yildirim Y.C. Yap Y. Yamazaki Y. Yamaguchi J. Zhu B. Zhou C. Zimmermann X. Zhang B. Zabinski G. Zobernig S. Zambito J.C. Zeng G. Zhang JHEP01(2017)099 Departamento ) Electrical Circuits (b Department of ) ) (b Dipartimento di (b ) Federal University of Sao (b (c) University Politehnica ) (d Department of Physics Engineering, National Institute of Physics and ) ) (b (b Instituto de Fisica, Universidade de Sao Paulo, Sao – 46 – ) Physics Department, Tsinghua University, Beijing (d (c) Istanbul Bilgi University, Faculty of Engineering and Natural National Institute for Research and Development of Isotopic (d) Dipartimento di Fisica e Astronomia, Universit`adi Bologna, (c) Dipartimento di Fisica, Universit`adi Genova, Genova, Italy ) ) (b Bahcesehir University, Faculty of Engineering and Natural Sciences, (b (e) West University in Timisoara, Timisoara, Romania (e) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland ) (b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; Department of Physics, Bogazici University, Istanbul; INFN Sezione di Bologna; INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Departamento de Pontificia F´ısica, Universidad de Cat´olica Chile, Santiago; Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; Transilvania University of Brasov, Brasov, Romania; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, INFN Sezione di Genova; ) ) ) ) ) ) ) ) ) de Universidad Federico F´ısica, Santa T´ecnica Mar´ıa,Valpara´ıso,Chile Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; Albert Einstein Center forUniversity Fundamental Physics of and Bern, Laboratory Bern, forSchool Switzerland High of Energy Physics Physics, and Astronomy, University of Birmingham, Birmingham, United Kingdom Gaziantep University, Gaziantep; Istanbul, Turkey, Turkey Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia Sciences, Istanbul,Turkey; Laboratoire de Physique Corpusculaire, ClermontCNRS/IN2P3, Universit´eand Clermont-Ferrand, Universit´eBlaise France Pascal and Nevis Laboratory, Columbia University, IrvingtonNiels NY, Bohr United Institute, States University of of America Copenhagen, Kobenhavn, Denmark 100084, China Departamento de Universidad F´ısica, de BuenosCavendish Aires, Laboratory, Buenos University Aires, of Argentina Cambridge,Department of Cambridge, Physics, United Kingdom CarletonCERN, University, Geneva, Ottawa Switzerland ON, Canada Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America Physics, Nanjing University, Jiangsu; Bologna, Italy Physikalisches Institut, University ofDepartment Bonn, of Bonn, Physics, Germany BostonDepartment University, of Boston Physics, MA, Brandeis United University, States Waltham of MA, America United States of America and Molecular Technologies, Physics Department, Cluj Napoca; Joao del Rei (UFSJ), Sao Joao del Rei; Bucharest, Bucharest; Paulo, Brazil Physics Department, Brookhaven National Laboratory, Upton NY, United States of America Nuclear Engineering, Bucharest; Krakow; Fisica, Universit`adella Calabria, Rende, Italy Institute of Nuclear PhysicsPhysics Polish Department, Academy Southern of Methodist Sciences,Physics University, Krakow, Poland Department, Dallas University TX, of UnitedDESY, Texas States at Hamburg of and Dallas, America Zeuthen, RichardsonLehrstuhl Germany TX, f¨urExperimentelle United Physik States IV, of TechnischeInstitut Universit¨atDortmund, America Dortmund, f¨urKern- und Germany Teilchenphysik, TechnischeDepartment Universit¨atDresden, Dresden, of Germany Physics, DukeSUPA University, - Durham School NC, of United PhysicsINFN States and Laboratori of Nazionali Astronomy, America di University Frascati, undFakult¨atf¨urMathematik of Frascati, Italy Physik, Edinburgh, Germany Albert-Ludwigs-Universit¨at,Freiburg, Edinburgh, UnitedSection Kingdom de Physique, Universit´ede Gen`eve,Geneva, Switzerland 36 37 38 39 (a 40 (a 41 42 43 44 45 46 47 48 49 50 51 52 (a 35 (a 18 19 20 (a 21 22 (a 29 30 31 32 33 34 (a 23 24 25 26 (a 27 28 (a JHEP01(2017)099 ) (b ZITI Institut f¨ur (c) Department of Physics c) ( – 47 – Dipartimento di Fisica, Universit`adi Milano, Milano, Italy ) Dipartimento di Matematica e Fisica, Universit`adel Salento, Lecce, (b ) (b INFN Sezione di Milano; INFN Sezione di Lecce; Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; Kirchhoff-Institut f¨urPhysik, Heidelberg; Ruprecht-Karls-Universit¨atHeidelberg, Department of Physics, The University of Hong Kong, Hong Kong; High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia ) ) ) ) ) ) ) Italy Oliver Lodge Laboratory, University ofDepartment Liverpool, of Liverpool, Physics, United JoˇzefStefan Kingdom InstituteSchool and of University Physics of andDepartment Ljubljana, Astronomy, of Queen Ljubljana, Physics, Mary Slovenia Royal UniversityDepartment Holloway of of University London, Physics London, of and United London,Louisiana Kingdom Astronomy, Surrey, Tech University United University, College Kingdom Ruston London, LA,Laboratoire London, de United United Physique States et Kingdom Nucl´eaire of de America CNRS/IN2P3, Hautes Paris, Energies, France UPMC andFysiska Universit´eParis-Diderot and institutionen, Lunds universitet,Departamento Lund, de Sweden Fisica Teorica C-15,Institut Universidad f¨urPhysik, Autonoma Universit¨atMainz, Mainz, de Germany Madrid,School Madrid, of Spain Physics andCPPM, Astronomy, Aix-Marseille University of Universit´eand CNRS/IN2P3, Manchester, Marseille,Department Manchester, of France United Physics, Kingdom UniversityDepartment of of Massachusetts, Physics, Amherst McGill MA,School University, United of States Montreal Physics, QC, of University Canada America Department of of Melbourne, Physics, Victoria, The Australia Department University of of Physics Michigan, and Annof Astronomy, Arbor America Michigan MI, State United University, States East of Lansing America MI, United States and Institute for Advanced Study,Water The Bay, Hong Kowloon, Kong HongDepartment University Kong, of of China Physics, Science Indiana andInstitut University, Technology, Clear f¨urAstro- Bloomington und IN, Teilchenphysik, Austria United Leopold-Franzens-Universit¨at,Innsbruck, University States of of Iowa, America IowaDepartment City of IA, Physics United and StatesJoint Astronomy, of Institute Iowa America for State Nuclear University,KEK, Research, Ames JINR High IA, Dubna, Energy United Dubna, Accelerator States ResearchGraduate Russia Organization, of School Tsukuba, America of Japan Science, KobeFaculty University, of Kobe, Science, Japan Kyoto University,Kyoto Kyoto, University Japan of Education,Department Kyoto, of Japan Physics, KyushuInstituto University, de Fukuoka, La F´ısica Japan Plata, UniversidadPhysics Nacional Department, de Lancaster La University, Plata Lancaster, and United CONICET, Kingdom La Plata, Argentina technische Informatik, Mannheim, Ruprecht-Karls-Universit¨atHeidelberg, Germany Faculty of Applied Information Science, Hiroshima Institute(b of Technology, Hiroshima, Japan Physikalisches Institut, Heidelberg; Ruprecht-Karls-Universit¨atHeidelberg, (b II Physikalisches Institut, Justus-Liebig-Universit¨atGiessen, Giessen,SUPA - Germany School of PhysicsII and Physikalisches Astronomy, Institut, University Georg-August-Universit¨at,G¨ottingen,Germany Laboratoire of de Glasgow, Physique Glasgow, Subatomique United etGrenoble, Kingdom de France Cosmologie, Universit´eGrenoble-Alpes, CNRS/IN2P3, Laboratory for Particle Physics andof Cosmology, America Harvard University, CambridgeDepartment of MA, Modern United Physics, States University of Science and Technology of China, Anhui, China 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 (a 63 64 65 66 67 68 69 70 71 72 73 74 75 (a 61 62 (a 53 (a 54 55 56 57 58 59 60 (a JHEP01(2017)099 Faculdade ) (b Departamento de (e) Dep Fisica and CEFITEC of Faculdade de ) (g Department of Physics, University of Coimbra, c) ( Departamento de Fisica Teorica y del Cosmos and – 48 – ) (f Dipartimento di Fisica, Universit`adi Napoli, Napoli, Italy Dipartimento di Fisica, Universit`adi Pavia, Pavia, Italy ) Dipartimento di Fisica E. Fermi, Universit`adi Pisa, Pisa, Italy ) b ( ) (b (b Centro de Nuclear F´ısica da Universidade de Lisboa, Lisboa; ) (d INFN Sezione di Napoli; INFN Sezione di Pavia; INFN Sezione di Pisa; aoa´roeIsrmnacaeFıiaExperimental F´ısica deLaborat´oriode Instrumenta¸c˜aoe - Part´ıculas LIP, Lisboa; ) ) ) ) B.I. Stepanov Institute ofBelarus Physics, National Academy ofNational Sciences Scientific of and Belarus, Educational Minsk,of Centre Republic Belarus for of Particle andGroup High of Energy Particle Physics, Physics, Minsk,P.N. University Republic Lebedev of Physical Montreal, Institute Montreal of QC,Institute the Canada for Russian Theoretical and Academy of ExperimentalNational Sciences, Physics Research Nuclear Moscow, (ITEP), University Russia Moscow, MEPhI, Russia D.V. Moscow, Skobeltsyn Russia Institute ofRussia Nuclear Physics, M.V. Lomonosov Ludwig-Maximilians-Universit¨atM¨unchen,M¨unchen,Germany Fakult¨atf¨urPhysik, Moscow State University, Moscow, Max-Planck-Institut f¨urPhysik (Werner-Heisenberg-Institut), M¨unchen,Germany Nagasaki Institute of AppliedGraduate Science, School Nagasaki, of Japan Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan Department of Physics andof Astronomy, America University of NewInstitute Mexico, for Albuquerque Mathematics, NM, Astrophysics UnitedNijmegen/Nikhef, and States Nijmegen, Particle Netherlands Physics, RadboudNikhef University National Institute forNetherlands Subatomic Physics and UniversityDepartment of of Amsterdam, Physics, Amsterdam, NorthernBudker Illinois Institute University, of DeKalb Nuclear IL,Department Physics, United of SB States Physics, RAS, of New Novosibirsk, America Ohio York Russia University, State New University, York ColumbusFaculty NY, OH, of United United Science, States States Okayama of of University,Homer America America Okayama, L. Japan Dodge DepartmentUnited of States Physics of and America Astronomy,Department University of of Physics, Oklahoma, Oklahoma NormanPalack´yUniversity, State RCPTM, OK, University, Olomouc, Stillwater Czech OK, Republic Center United for States High of Energy America LAL, Physics, Univ. University of Paris-Sud, Oregon, CNRS/IN2P3,Graduate Eugene Universit´eParis-Saclay, School Orsay, OR, of France United Science, States OsakaDepartment of of University, America Physics, Osaka, University Japan Department of of Oslo, Physics, Oslo, Oxford Norway University, Oxford, United Kingdom Department of Physics, UniversityNational of Research Pennsylvania, Centre Philadelphia “Kurchatov PA, Institute”Institute, United B.P.Konstantinov St. States Petersburg of Petersburg, Nuclear Russia America Physics Department of Physics andAmerica Astronomy, University of Pittsburgh, Pittsburgh PA, United States of CAFPE, Universidad de Granada, Granada (Spain); Fisica, Universidade do Minho, Braga; Ciencias e Tecnologia, Universidade NovaInstitute de of Lisboa, Physics, Caparica, Academy Portugal Czech of Technical Sciences University of in the Prague,Faculty Czech Praha, of Republic, Czech Mathematics Praha, Republic and CzechState Republic Physics, Research Charles Center University Institute in for Prague, High Praha, Energy Czech Physics Republic (Protvino), NRC KI, Russia Coimbra; de Ciˆencias,Universidade de Lisboa, Lisboa; 94 95 96 97 98 99 100 101 102 103 104 105 (a 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 (a 123 124 125 (a 126 127 (a 128 129 130 131 JHEP01(2017)099 Facult´edes (e) Department of Physics, ) (b The Oskar Klein Centre, Stockholm, Sweden ) (b School of Physics, University of the Witwatersrand, Dipartimento di Fisica, Universit`adi Roma Tor (c) – 49 – ) (b Centre National de l’Energie des Sciences Techniques ) Dipartimento di Matematica e Fisica, Universit`aRoma Tre, (b ) Department of Physics and Astronomy, York University, Toronto (b ) Dipartimento di Fisica, Sapienza Universit`adi Roma, Roma, Italy (b ) (b Facult´edes Sciences Semlalia, Universit´eCadi Ayyad, LPHEA-Marrakech; University of Trento, Trento, Italy, Italy ) (c) (b INFN-TIFPA; TRIUMF, Vancouver BC; Department of Physics, Stockholm University; Department of Physics, University of Cape Town, Cape Town; Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; Facult´edes Sciences Ain Chock, Universitaire R´eseau de Physique des Hautes Energies - INFN Sezione di Roma; INFN Sezione di Roma Tre; INFN Sezione di Roma Tor Vergata; Facult´edes Sciences, Universit´eMohamed Premier and LPTPM, Oujda; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of ) ) ) ) ) ) ) ) ) ) ) Physics Department, Royal InstituteDepartments of of Technology, Stockholm, Physics Sweden &United Astronomy States and of Chemistry, America StonyDepartment Brook of University, Physics Stony and BrookSchool NY, Astronomy, of University Physics, of University Sussex,Institute of Brighton, of Sydney, United Physics, Sydney, Kingdom Academia Australia Department Sinica, of Taipei, Taiwan Physics, Technion:Raymond Israel and Institute Beverly of Sackler Technology, Haifa,Israel School Israel of Physics andDepartment Astronomy, of Tel Physics, Aviv Aristotle University,International University Tel Center Aviv, of for Thessaloniki, Elementary Thessaloniki,of Particle Greece Tokyo, Physics Tokyo, and Japan DepartmentGraduate of School Physics, of The Science University andDepartment of Technology, Tokyo Physics, Metropolitan Tokyo University, InstituteTomsk Tokyo, State of Japan University, Technology, Tokyo, Tomsk, Japan Russia,Department Russia of Physics, University of Toronto, Toronto ON, Canada ON, Canada Faculty of Pure and Appliedand Sciences, Engineering, and University Center of for Tsukuba, Integrated Tsukuba, Research Japan in Fundamental Science Johannesburg, South Africa University of Johannesburg, Johannesburg; (b Sciences, Kosice, Slovak Republic (d sciences, Universit´eMohammed V, Rabat, Morocco DSM/IRFU (Institut de Recherches sur(Commissariat les `al’Energie Atomique Lois et Fondamentales aux deSanta Energies l’Univers), Cruz Alternatives), CEA Institute Gif-sur-Yvette, Saclay for France United Particle States Physics, of University America ofDepartment California of Santa Physics, Cruz, UniversitySchool Santa of of Cruz Washington, Physics, CA, Seattle Shandong WA,Department United University, of States Shandong, Physics of China and America Cosmology, Astronomy, Shanghai Shanghai Jiao Key Tong Laboratory for University,Department of Particle Shanghai; Physics Physics (also and and affiliatedDepartment with Astronomy, of University PKU-CHEP), Physics, of China Shinshu Sheffield,Fachbereich University, Sheffield, Physik, Nagano, United Universit¨atSiegen, Siegen, Japan Kingdom Germany Department of Physics, SimonSLAC Fraser University, National Burnaby Accelerator Laboratory, BC, Stanford CA, Canada United States of America Nucleaires, Rabat; Universit´eHassan II, Casablanca; Roma, Italy Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom Vergata, Roma, Italy 150 151 152 153 154 155 156 157 158 159 160 161 162 163 (a 165 164 (a 149 (a 148 (a 137 138 139 140 141 142 143 144 145 146 147 (a 136 (a 132 133 (a 135 (a 134 (a JHEP01(2017)099 ICTP, Trieste; ) (b – 50 – INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; Dipartimento di Chimica, Fisica e Ambiente, Universit`adi Udine, Udine, Italy ) (c) Also at Department ofAlso Physics, at National Institute Tsing for HuaNijmegen/Nikhef, Mathematics, University, Nijmegen, Astrophysics Taiwan Netherlands and Particle Physics, Radboud University Also at Departament deAlso Fisica at de Departamento la de UniversitatPortugal Fisica Autonoma e de Astronomia, Barcelona, Faculdade Barcelona, deAlso Spain at Ciencias, Tomsk Universidade State doAlso University, Porto, at Tomsk, Russia, Universita Russia diAlso Napoli at Parthenope, Institute Napoli, Italy ofAlso Particle at Physics National (IPP), Institute Canada Also of at Physics Department and of NuclearRussia Physics, Engineering, St. Bucharest, Romania Petersburg StateAlso Polytechnical at University, Department St. of Petersburg, America Physics, The University ofAlso Michigan, at Ann Centre Arbor for MI,Africa High United Performance States Computing, of CSIRAlso Campus, at Rosebank, Louisiana Cape Tech Town, University,Also South Ruston at LA, Institucio United Catalana StatesAlso de of at Recerca i America Graduate Estudis School Avancats, of ICREA, Science, Barcelona, Osaka Spain University, Osaka, Japan Also at Department ofAlso Physics, at King’s Institute College of London,Also Physics, London, at United Azerbaijan Novosibirsk Kingdom Academy of StateAlso Sciences, University, at Baku, Novosibirsk, TRIUMF, Azerbaijan Russia Vancouver BC,Also Canada at Department ofStates Physics of & America Astronomy, UniversityAlso of at Louisville, Physics Louisville, Department, KY,Also An-Najah United at National Department University, of Nablus,Also Physics, Palestine at California Department State of University, Physics, Fresno CA, University United of States Fribourg, Fribourg, of Switzerland America Department of Physics andDepartment Astronomy, of University Physics, of University Uppsala,Instituto of Uppsala, de Illinois, Sweden Fisica Urbana Corpuscular IL,and (IFIC) United Departamento and States and de Departamento of Instituto Ingenier´ıaElectr´onica de America (IMB-CNM), de de Fisica University Barcelona Microelectr´onica Atomica, of Molecular y ValenciaDepartment and Nuclear of CSIC, Physics, Valencia, University Spain Department of of British Physics Columbia, and VancouverDepartment BC, Astronomy, of University Canada Physics, of University Victoria,Waseda of Victoria University, Warwick, BC, Tokyo, Coventry, Canada Japan UnitedDepartment Kingdom of Particle Physics,Department The of Weizmann Physics, Institute University of undFakult¨atf¨urPhysik of Science, Germany Astronomie, Wisconsin, Rehovot, Julius-Maximilians-Universit¨at,W¨urzburg, Madison Israel WI, undFakult¨atf¨urMathematik United Naturwissenschaften, States Fachgruppe of Physik, America BergischeWuppertal, Universit¨at Wuppertal, Germany Department of Physics, Yale University,Yerevan Physics New Institute, Haven Yerevan, CT, Armenia Centre United de States Calcul of de America (IN2P3), l’Institut Villeurbanne, National France de Physique et Nucl´eaire de Physique des Particules Department of Physics andDepartment Astronomy, of Tufts Physics University, and Medford MA,America Astronomy, United University States of of California America Irvine, Irvine CA, United States of l i t b c j s e q r o p d g v a k f h u n m 169 170 171 172 173 174 175 176 177 178 179 180 181 182 166 167 168 (a JHEP01(2017)099 – 51 – Also at section deAlso Physique, at Universit´ede Gen`eve,Geneva, Eotvos Switzerland Lorand University,Also at Budapest, Hungary Departments ofNY, Physics United & States Astronomy of andAlso America Chemistry, at Stony International Brook School University,Also for Stony at Advanced Brook Studies Department (SISSA), ofStates Trieste, Physics Italy of and America Astronomy, UniversityAlso of at South Institut Carolina, de Columbia d’AltesTechnology, F´ısica Barcelona, SC, Energies Spain (IFAE), United The BarcelonaAlso Institute at of School Science of and Also Physics at and Institute Engineering, for SunSciences, Nuclear Yat-sen Sofia, University, Research and Bulgaria Guangzhou, Nuclear China EnergyAlso (INRNE) at of Faculty of theAlso Physics, Bulgarian at M.V.Lomonosov Academy of Moscow Institute State ofAlso University, Physics, at Moscow, Academia National Russia Sinica, Taipei, Research Taiwan NuclearAlso University at MEPhI, Department Moscow, of Russia Also Physics, at Stanford Institute University, for StanfordHungary CA, Particle United and States Nuclear of Physics,Also America Wigner at Research Flensburg Centre University forAlso of Physics, at Applied Budapest, University Sciences, Flensburg, ofAlso Germany Malaya, at Department CPPM, of Aix-Marseille Physics,Deceased Universit´eand Kuala CNRS/IN2P3, Lumpur, Marseille, Malaysia France Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia Also at Department ofAmerica Physics, The University ofAlso Texas at at CERN, Austin, Geneva, AustinAlso Switzerland TX, at United Georgian States Technical University of Also (GTU),Tbilisi, at Georgia Ochadai Academic Production,Also Ochanomizu at University, Manhattan Tokyo, College, Japan Also New at York Academia NY, Sinica United GridAlso States Computing, at of Institute School America of ofAlso Physics, Physics, at Shandong Academia Sinica, Department University, Taipei, of Shandong, Taiwan America Physics, China California State University, Sacramento CA, United States of z ∗ y x w al ai at ab ac aj as ae aq ar ao ap ad ag aa ak af ah au an am