A Novel Hypothesis of Dinosaur Relationships and Early Dinosaur Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
JVP 26(3) September 2006—ABSTRACTS
Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra. -
A Neoceratopsian Dinosaur from the Early Cretaceous of Mongolia And
ARTICLE https://doi.org/10.1038/s42003-020-01222-7 OPEN A neoceratopsian dinosaur from the early Cretaceous of Mongolia and the early evolution of ceratopsia ✉ Congyu Yu 1 , Albert Prieto-Marquez2, Tsogtbaatar Chinzorig 3,4, Zorigt Badamkhatan4,5 & Mark Norell1 1234567890():,; Ceratopsia is a diverse dinosaur clade from the Middle Jurassic to Late Cretaceous with early diversification in East Asia. However, the phylogeny of basal ceratopsians remains unclear. Here we report a new basal neoceratopsian dinosaur Beg tse based on a partial skull from Baruunbayan, Ömnögovi aimag, Mongolia. Beg is diagnosed by a unique combination of primitive and derived characters including a primitively deep premaxilla with four pre- maxillary teeth, a trapezoidal antorbital fossa with a poorly delineated anterior margin, very short dentary with an expanded and shallow groove on lateral surface, the derived presence of a robust jugal having a foramen on its anteromedial surface, and five equally spaced tubercles on the lateral ridge of the surangular. This is to our knowledge the earliest known occurrence of basal neoceratopsian in Mongolia, where this group was previously only known from Late Cretaceous strata. Phylogenetic analysis indicates that it is sister to all other neoceratopsian dinosaurs. 1 Division of Vertebrate Paleontology, American Museum of Natural History, New York 10024, USA. 2 Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, c/de les Columnes s/n Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès Sabadell, Barcelona, Spain. 3 Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA. 4 Institute of Paleontology, Mongolian Academy of Sciences, ✉ Ulaanbaatar 15160, Mongolia. -
Ischigualasto Formation. the Second Is a Sile- Diversity Or Abundance, but This Result Was Based on Only 19 of Saurid, Ignotosaurus Fragilis (Fig
This article was downloaded by: [University of Chicago Library] On: 10 October 2013, At: 10:52 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Vertebrate Paleontology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ujvp20 Vertebrate succession in the Ischigualasto Formation Ricardo N. Martínez a , Cecilia Apaldetti a b , Oscar A. Alcober a , Carina E. Colombi a b , Paul C. Sereno c , Eliana Fernandez a b , Paula Santi Malnis a b , Gustavo A. Correa a b & Diego Abelin a a Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan , España 400 (norte), San Juan , Argentina , CP5400 b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina c Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology , University of Chicago , 1027 East 57th Street, Chicago , Illinois , 60637 , U.S.A. Published online: 08 Oct 2013. To cite this article: Ricardo N. Martínez , Cecilia Apaldetti , Oscar A. Alcober , Carina E. Colombi , Paul C. Sereno , Eliana Fernandez , Paula Santi Malnis , Gustavo A. Correa & Diego Abelin (2012) Vertebrate succession in the Ischigualasto Formation, Journal of Vertebrate Paleontology, 32:sup1, 10-30, DOI: 10.1080/02724634.2013.818546 To link to this article: http://dx.doi.org/10.1080/02724634.2013.818546 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. -
Download Full Article in PDF Format
A review of the systematic position of the dinosauriform archosaur Eucoelophysis baldwini Sullivan & Lucas, 1999 from the Upper Triassic of New Mexico, USA Martín D. EZCURRA Laboratorio de Anatomia Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. Angel Gallardo 470, Buenos Aires (1405) (Argentina) [email protected] Ezcurra M. D. 2006. — A review of the systematic position of the dinosauriform archosaur Eucoelophysis baldwini Sullivan & Lucas, 1999 from the Upper Triassic of New Mexico, USA. Geodiversitas 28 (4) : 649-684. Abstract Eucoelophysis baldwini Sullivan & Lucas, 1999 is represented by several post- cranial elements from the Petrified Forest Formation (Norian), New Mexico, USA. Eucoelophysis Sullivan & Lucas, 1999 was widely considered as a coelo- physoid dinosaur by several authors, but the hindlimb anatomy of this genus clearly indicates that it belongs to neither of these groups. The following fea- tures exclude Eucoelophysis from Neotheropoda: absence of oblique ligament groove on caudal surface of femoral head, femoral medial epicondyle small and smoothly rounded, absence of caudal cleft between medial part of the proximal end of the tibia and fibular condyles, cnemial crest low, and fibular crest absent. Moreover, Eucoelophysis lacks dinosaurian synapomorphic characters, but has a plesiomorphic slightly inturned femoral head that prevents its assignment to Dinosauria. Interestingly, the morphology of the femur of Eucoelophysis is extremely similar to that of the basal dinosauriform Silesaurus opolensis Dzik, Key words Dinosauriformes, 2003 from the Late Triassic of Poland. In order to determine the phylogenetic Coelophysoidea, position of Eucoelophysis, a cladistic analysis was carried out, which depicts Eu- Eucoelophysis, coelophysis as a non-dinosaurian dinosauriform. -
By HENRY FAIRFIELD OSBORN and CHARL
VoL. 6, 1920 PALAEONTOLOGY: OSBORN AND MOOK IS RECONSTRUCTION OF THE SKELETON OF THE SAUROPOD DINOSAUR CAMARASA URUS COPE (MOROSA URUS MARSH) By HENRY FAIRFIELD OSBORN AND CHARLES CRAIG MOOK AMERICAN MusEUM or NATURAL HISTORY, NEW YORK CITY Read before the Academy, November 11, 1919 The principles of modern research in vertebrate palaeontology are illustrated in the fifteen years' work resulting in the restoration of the massive sauropod dinosaur known as Camarasaurus, the "chambered saurian.." The animal was found near Canyon City, Colorado, in March, 1877. The first bones were described by Cope, August 23, 1877. The first at- tempted restoration was by Ryder, December 21, 1877. The bones analyzed by this research were found probably to belong to six individuals of Camarasaurus mingled with the remains of some carnivorous dinosaurs, all from the summit of the Morrison formation, now regarded as of Jurassic- Cretaceous age. In these two quarries Cope named nine new genera and fourteen new species of dinosaurs, none of which have found their way into. palaeontologic literature, excepting Camarasaurus. Out of these twenty-three names we unravel three genera, namely: One species of Camarasaurus, identical with Morosaurus Marsh. One species of Amphicaclias, close to Diplodocus Marsh. One species of Epanterias, close to Allosaurus Marsh. The working out of the Camarasaurus skeleton results in both the artica ulated restoration and the restoration of the musculature. The following are the principal characters: The neck is very flexible; anterior vertebrae of the back also freely movable; the division between the latter and the relatively rigid posterior dorsals is sharp. -
New Heterodontosaurid Remains from the Cañadón Asfalto Formation: Cursoriality and the Functional Importance of the Pes in Small Heterodontosaurids
Journal of Paleontology, 90(3), 2016, p. 555–577 Copyright © 2016, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.24 New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids Marcos G. Becerra,1 Diego Pol,1 Oliver W.M. Rauhut,2 and Ignacio A. Cerda3 1CONICET- Museo Palaeontológico Egidio Feruglio, Fontana 140, Trelew, Chubut 9100, Argentina 〈[email protected]〉; 〈[email protected]〉 2SNSB, Bayerische Staatssammlung für Paläontologie und Geologie and Department of Earth and Environmental Sciences, LMU München, Richard-Wagner-Str. 10, Munich 80333, Germany 〈[email protected]〉 3CONICET- Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca (predio Marabunta), Cipolletti, Río Negro, Argentina 〈[email protected]〉 Abstract.—New ornithischian remains reported here (MPEF-PV 3826) include two complete metatarsi with associated phalanges and caudal vertebrae, from the late Toarcian levels of the Cañadón Asfalto Formation. We conclude that these fossil remains represent a bipedal heterodontosaurid but lack diagnostic characters to identify them at the species level, although they probably represent remains of Manidens condorensis, known from the same locality. Histological features suggest a subadult ontogenetic stage for the individual. A cluster analysis based on pedal measurements identifies similarities of this specimen with heterodontosaurid taxa and the inclusion of the new material in a phylogenetic analysis with expanded character sampling on pedal remains confirms the described specimen as a heterodontosaurid. Finally, uncommon features of the digits (length proportions among nonungual phalanges of digit III, and claw features) are also quantitatively compared to several ornithischians, theropods, and birds, suggesting that this may represent a bipedal cursorial heterodontosaurid with gracile and grasping feet and long digits. -
The Origins of Dinosauria: Much Ado About Nothing
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library [Palaeontology, Vol. 57, Part 3, 2014, pp. 469–478] FRONTIERS IN PALAEONTOLOGY THE ORIGINS OF DINOSAURIA: MUCH ADO ABOUT NOTHING by MAX C. LANGER Departamento de Biologia, FFCLRP, Universidade de S~ao Paulo, Av. Bandeirantes 3900,14040-901, Ribeir~ao Preto, SP Brazil; e-mail: [email protected] Typescript received 19 February 2014; accepted in revised form 7 March 2014 Abstract: Research this century has greatly improved our early members of the main dinosauromorph lineages and knowledge of the origin and early radiation of dinosaurs. requires a more meticulous assessment of characters and The unearthing of several new dinosaurs and close out- homologies than those recently conducted. Presently, the groups from Triassic rocks from various parts of the oldest uncontroversial dinosaur records come from Late world, coupled with improved phylogenetic analyses, has Triassic (Carnian) rocks of South America, southern Africa set a basic framework in terms of timing of events and and India, hinting at a south-western Pangaea origin of the macroevolutionary patterns. However, important parts of group. Besides, macroevolutionary approaches suggest that the early dinosauromorph evolutionary history are still the rise of dinosaurs was a more gradual process than pre- poorly understood, rendering uncertain the phylogenetic viously understood. Obviously, these tentative scenarios position of silesaurids as either non-dinosaur Dinosaurifor- need to be tested by new fossil finds, which should also mes or ornithischians, as well as that of various early help close the major gaps recognized in the fossil record of saurischians, such as Eoraptor lunensis and herrerasaurs, as Triassic dinosauromorphs. -
From the Upper Triassic of North-Central New Mexico
Heckert, A.B., and Lucas, S.G., eds., 2002, Upper Triassic Stratigraphy and Paleontology. New Mexico Museum of Natural History and Science Bulletin No. 21. 189 THE TYPE LOCALITY OF BELODON BUCEROS COPE, 1881, A PHYTOSAUR (ARCHOSAURIA: PARASUCHIDAE) FROM THE UPPER TRIASSIC OF NORTH-CENTRAL NEW MEXICO SPENCER G. LUCAS, ANDREW B. HECKERT, KATE E. ZEIGLER and ADRIAN P. HUNT lNew Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, NM 87104-1375 Abstract-Here we establish the stratigraphic and geographic provenance of the "Belodon" buceros Cope. The holotype, originally collected by David Baldwin in 1881, is an incomplete phytosaur skull discov ered near "Huerfano Camp" in north-central New Mexico. This skull is the first phytosaur skull de scribed from the American West, and its precise provenance has never been established. Baldwin's use of the term Huerfano Camp may refer to Orphan Mesa, an isolated butte just south of Arroyo Seco. Fossils collected by Baldwin, and our subsequent collections from Orphan Mesa, are from a fossilifer ous interval high in the Petrified Formation of the Chinle Group. These strata yield a tetrapod fauna including the aetosaur Typothorax coccinarum and the phytosaur Pseudopalatus, both index taxa of the Revueltian (early-mid Norian) land-vertebrate faunachron. "Belodon" buceros is correctly referred to Pseudopalatus buceros (Cope) and is an index taxon of the Revueltian land-vertebrate faunachron. Keywords: phytosaur, Belodon, Pseudopalatus, Revueltian INTRODUCTION and its exact provenance has never been ascertained. Here, we establish the geographic and stratigraphic provenance of the ho In the Fall of 1874, Edward Drinker Cope (1840-1897) trav lotype of Belodon buceros and discuss its taxonomic position and eled through parts of north-central New Mexico and the San Juan biostratigraphic significance. -
The Origin and Early Evolution of Dinosaurs
Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’. -
A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member. -
University of Birmingham a New Dinosaur With
University of Birmingham A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, South Brazil Marsola, Julio; Bittencourt, Jonathas; Butler, Richard; Da Rosa, Atila; Sayao, Juliana; Langer, Max DOI: 10.1080/02724634.2018.1531878 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Marsola, J, Bittencourt, J, Butler, R, Da Rosa, A, Sayao, J & Langer, M 2019, 'A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, South Brazil', Journal of Vertebrate Paleontology, vol. 38, no. 5, e1531878. https://doi.org/10.1080/02724634.2018.1531878 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 25/07/2018 This is the accepted manuscript for a forthcoming publication in Journal of Vertebrate Paleontology. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. -
Integrating Gross Morphology and Bone Histology to Assess Skeletal Maturity in Early Dinosauromorphs: New Insights from Dromomeron (Archosauria: Dinosauromorpha)
Integrating gross morphology and bone histology to assess skeletal maturity in early dinosauromorphs: new insights from Dromomeron (Archosauria: Dinosauromorpha) Christopher T. Griffin1, Lauren S. Bano2, Alan H. Turner3, Nathan D. Smith4, Randall B. Irmis5,6 and Sterling J. Nesbitt1 1 Department of Geosciences, Virginia Tech, Blacksburg, VA, USA 2 Department of Biology, Virginia Tech, Blacksburg, VA, USA 3 Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA 4 The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA 5 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 6 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA ABSTRACT Understanding growth patterns is central to properly interpreting paleobiological signals in tetrapods, but assessing skeletal maturity in some extinct clades may be difficult when growth patterns are poorly constrained by a lack of ontogenetic series. To overcome this difficulty in assessing the maturity of extinct archosaurian reptiles—crocodylians, birds and their extinct relatives—many studies employ bone histology to observe indicators of the developmental stage reached by a given individual. However, the relationship between gross morphological and histological indicators of maturity has not been examined in most archosaurian groups. In this study, we examined the gross morphology of a hypothesized growth series of Dromomeron romeri femora (96.6–144.4 mm long), the first series of a non- dinosauriform dinosauromorph available for such a study. We also histologically sampled several individuals in this growth series. Previous studies reported that Submitted 7 August 2018 D. romeri lacks well-developed rugose muscle scars that appear during ontogeny in Accepted 20 December 2018 closely related dinosauromorph taxa, so integrating gross morphology and Published 11 February 2019 histological signal is needed to determine reliable maturity indicators for early Corresponding author Christopher T.