Fundamentals of Nonequilibrium Thermodynamics 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
31 Jan 2021 Laws of Thermodynamics . L01–1 Review of Thermodynamics. 1
31 jan 2021 laws of thermodynamics . L01{1 Review of Thermodynamics. 1: The Basic Laws What is Thermodynamics? • Idea: The study of states of physical systems that can be characterized by macroscopic variables, usu- ally equilibrium states (mechanical, thermal or chemical), and possible transformations between them. It started as a phenomenological subject motivated by practical applications, but it gradually developed into a coherent framework that we will view here as the macroscopic counterpart to the statistical mechanics of the microscopic constituents, and provides the observational context in which to verify many of its predictions. • Plan: We will mostly be interested in internal states, so the allowed processes will include heat exchanges and the main variables will always include the internal energy and temperature. We will recall the main facts (definitions, laws and relationships) of thermodynamics and discuss physical properties that characterize different substances, rather than practical applications such as properties of specific engines. The connection with statistical mechanics, based on a microscopic model of each system, will be established later. States and State Variables for a Thermodynamical System • Energy: The internal energy E is the central quantity in the theory, and is seen as a function of some complete set of variables characterizing each state. Notice that often energy is the only relevant macroscopic conservation law, while momentum, angular momentum or other quantities may not need to be considered. • Extensive variables: For each system one can choose a set of extensive variables (S; X~ ) whose values specify ~ the equilibrium states of the system; S is the entropy and the X are quantities that may include V , fNig, ~ ~ q, M, ~p, L, .. -
Nonequilibrium Thermodynamics and Scale Invariance
Article Nonequilibrium Thermodynamics and Scale Invariance Leonid M. Martyushev 1,2,* and Vladimir Celezneff 3 1 Technical Physics Department, Ural Federal University, 19 Mira St., Ekaterinburg 620002, Russia 2 Institute of Industrial Ecology, Russian Academy of Sciences, 20 S. Kovalevskaya St., Ekaterinburg 620219, Russia 3 The Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel; [email protected] * Correspondence: [email protected]; Tel.: +7-92-222-77-425 Academic Editors: Milivoje M. Kostic, Miguel Rubi and Kevin H. Knuth Received: 30 January 2017; Accepted: 14 March 2017; Published: 16 March 2017 Abstract: A variant of continuous nonequilibrium thermodynamic theory based on the postulate of the scale invariance of the local relation between generalized fluxes and forces is proposed here. This single postulate replaces the assumptions on local equilibrium and on the known relation between thermodynamic fluxes and forces, which are widely used in classical nonequilibrium thermodynamics. It is shown here that such a modification not only makes it possible to deductively obtain the main results of classical linear nonequilibrium thermodynamics, but also provides evidence for a number of statements for a nonlinear case (the maximum entropy production principle, the macroscopic reversibility principle, and generalized reciprocity relations) that are under discussion in the literature. Keywords: dissipation function; nonequilibrium thermodynamics; generalized fluxes and forces 1. Introduction Classical nonequilibrium thermodynamics is an important field of modern physics that was developed for more than a century [1–5]. It is fundamentally based on thermodynamics and statistical physics (including kinetic theory and theory of random processes) and is widely applied in biophysics, geophysics, chemistry, economics, etc. -
Ch. 3. the Third Law of Thermodynamics (Pdf)
3-1 CHAPTER 3 THE THIRD LAW OF THERMODYNAMICS1 In sharp contrast to the first two laws, the third law of thermodynamics can be characterized by diverse expression2, disputed descent, and questioned authority.3 Since first advanced by Nernst4 in 1906 as the Heat Theorem, its thermodynamic status has been controversial; its usefulness, however, is unquestioned. 3.1 THE HEAT THEOREM The Heat Theorem was first proposed as an empirical generalization based on the temperature dependence of the internal energy change, ∆U, and the Helmholtz free energy change, ∆A, for chemical reactions involving condensed phases. As the absolute temperature, T, approaches zero, ∆U and ∆A by definition become equal, but The Heat Theorem stated that d∆U/dT and d∆A/dT also approach zero. These derivatives are ∆Cv and -∆S respectively. The statement that ∆Cv equals zero would attract little attention today in view of the abundance of experimental and theoretical evidence showing that the heat capacities of condensed phases approach zero as zero absolute temperature is approached. However, even today the controversial and enigmatic aspect of The Heat Theorem is the equivalent statement 1 Most of this chapter is taken from B.G. Kyle, Chem. Eng. Ed., 28(3), 176 (1994). 2 For a sampling of expressions see E. M. Loebl, J. Chem. Educ., 37, 361 (1960). 3 For extreme positions see E. D. Eastman, Chem. Rev., 18, 257 (1936). 4 All of Nernst's work in this area is covered in W. Nernst, The New Heat Theorem; Dutton: New York, 1926. 3-2 lim ∆S = 0 (3-1) T → 0 In 1912 Nernst offered a proof that the unattainability of zero absolute temperature was dictated by the second law of thermodynamics and was able to show that Eq. -
Bsc Chemistry
Subject Chemistry Paper No and Title 10: Physical Chemistry –III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface Chemistry, Fast Kinetics) Module No and Title 12: Thermodynamic criteria for non-equilibrium states Module Tag CHE_P10_M12 CHEMISTRY Paper No. 10: Physical Chemistry –III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface Chemistry, Fast Kinetics) Module No. 12: Thermodynamic criteria for nonequilibrium states TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Difference between equilibrium and non-equilibrium thermodynamics 4. Postulates of irreversible thermodynamics 5. Non equilibrium state variables 6. Basic concepts 6.1 Zeroth law of thermodynamics 6.2 First law of thermodynamics 6.3 Second law of thermodynamics 6.4 Third law of thermodynamics 7. Summary CHEMISTRY Paper No. 10: Physical Chemistry –III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface Chemistry, Fast Kinetics) Module No. 12: Thermodynamic criteria for nonequilibrium states 1. Learning Outcomes After studying this module you shall be able to: Know the significance of irreversible thermodynamics Differentiate between equilibrium and non-equilibrium thermodynamics. Learn postulates of non-equilibrium thermodynamics. Know about different laws of thermodynamics (first, second and third) laws. 2. Introduction In classical thermodynamics, we have seen time dependent variation of thermodynamic quantities such as is internal energy (U), enthalpy (H), entropy (S),Gibb’s free energy (G) etc. are not considered. Classical thermodynamics deals with transitions from one equilibrium state to another brought about by different mechanical or chemical methods. Non equilibrium thermodynamics is that branch of thermodynamics that deals with the system which are not in thermodynamic equilibrium. But such systems can be described by non-equilibrium state variables which represent an extrapolation of variables used to specify system in thermodynamic equilibrium. -
Thermodynamics and Phase Diagrams
Thermodynamics and Phase Diagrams Arthur D. Pelton Centre de Recherche en Calcul Thermodynamique (CRCT) École Polytechnique de Montréal C.P. 6079, succursale Centre-ville Montréal QC Canada H3C 3A7 Tél : 1-514-340-4711 (ext. 4531) Fax : 1-514-340-5840 E-mail : [email protected] (revised Aug. 10, 2011) 2 1 Introduction An understanding of phase diagrams is fundamental and essential to the study of materials science, and an understanding of thermodynamics is fundamental to an understanding of phase diagrams. A knowledge of the equilibrium state of a system under a given set of conditions is the starting point in the description of many phenomena and processes. A phase diagram is a graphical representation of the values of the thermodynamic variables when equilibrium is established among the phases of a system. Materials scientists are most familiar with phase diagrams which involve temperature, T, and composition as variables. Examples are T-composition phase diagrams for binary systems such as Fig. 1 for the Fe-Mo system, isothermal phase diagram sections of ternary systems such as Fig. 2 for the Zn-Mg-Al system, and isoplethal (constant composition) sections of ternary and higher-order systems such as Fig. 3a and Fig. 4. However, many useful phase diagrams can be drawn which involve variables other than T and composition. The diagram in Fig. 5 shows the phases present at equilibrium o in the Fe-Ni-O2 system at 1200 C as the equilibrium oxygen partial pressure (i.e. chemical potential) is varied. The x-axis of this diagram is the overall molar metal ratio in the system. -
Laws of Thermodynamics
Advanced Instructional School on Mechanics, 5 - 24, Dec 2011 Special lectures Laws of Thermodynamics K. P. N. Murthy School of Physics, University of Hyderabad Dec 15, 2011 K P N Murthy (UoH) Thermodynamics Dec 15, 2011 1 / 126 acknowledgement and warning acknowledgement: Thanks to Prof T Amaranath and V D Sharma for the invitation warning: I am going to talk about the essential contents of the laws of thermodynamics, tracing their origin, and their history The Zeroth law, the First law the Second law .....and may be the Third law, if time permits I leave it to your imagination to connect my talks to the theme of the School which is MECHANICS. K P N Murthy (UoH) Thermodynamics Dec 15, 2011 2 / 126 Each law provides an experimental basis for a thermodynamic property Zeroth law= ) Temperature, T First law= ) Internal Energy, U Second law= ) Entropy, S The earliest was the Second law discovered in the year 1824 by Sadi Carnot (1796-1832) Sadi Carnot Helmholtz Rumford Mayer Joule then came the First law - a few decades later, when Helmholtz consolidated and abstracted the experimental findings of Rumford, Mayer and Joule into a law. the Zeroth law arrived only in the twentieth century, and I think Max Planck was responsible for it K P N Murthy (UoH) Thermodynamics Dec 15, 2011 3 / 126 VOCALUBARY System: The small part of the universe under consideration: e.g. a piece of iron a glass of water an engine The rest of the universe (in which we stand and make observations and measurements on the system) is called the surroundings a glass of water is the system and the room in which the glass is placed is called the surrounding. -
History of Thermodynamics Consequences of the Laws Of
International Journal of Pure and Applied Mathematics Volume 119 No. 12 2018, 1675-1683 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu CONCEPTS OF THERMODYNAMICS Dr.N.Selvi1, Dr. P.Sugumar2 Associate Professor 1 2 Department of Physics, BIST, BIHER, Bharath University, Chennai. [email protected] The branch of science called thermodynamics deals with systems that are able to transfer thermal energy into at least one other form of energy (mechanical, electrical, etc.) or into work. The laws of thermodynamics were developed over the years as some of the most fundamental rules which are followed when a thermodynamic system goes through some sort of energy change. History of Thermodynamics The history of thermodynamics begins with Otto von Guericke who, in 1650, built the world's first vacuum pump and demonstrated a vacuum using his Magdeburg hemispheres[1-6]. Guericke was driven to make a vacuum to disprove Aristotle's long-held supposition that 'nature abhors a vacuum'. Shortly after Guericke, the English physicist and chemist Robert Boyle had learned of Guericke's designs and, in 1656[7-13], in coordination with English scientist Robert Hooke, built an air pump. Using this pump, Boyle and Hooke noticed a correlation between pressure, temperature, and volume[14-19]. In time, Boyle's Law was formulated, which states that pressure and volume are inversely proportional. Consequences of the Laws of Thermodynamics The laws of thermodynamics tend to be fairly easy to state and understand ... so much so that it's easy to underestimate the impact they have[20-25]. -
Comparative Examination of Nonequilibrium Thermodynamic Models of Thermodiffusion in Liquids †
Proceedings Comparative Examination of Nonequilibrium Thermodynamic Models of Thermodiffusion in Liquids † Semen N. Semenov 1,* and Martin E. Schimpf 2 1 Institute of Biochemical Physics RAS, Moscow 119334, Russia 2 Department of Chemistry, Boise State University, Boise, ID 83725, USA; [email protected] * Correspondence: [email protected] † Presented at the 5th International Electronic Conference on Entropy and Its Applications, 18–30 November 2019; Available online: https://ecea-5.sciforum.net/. Published: 17 November 2019 Abstract: We analyze existing models for material transport in non-isothermal non-electrolyte liquid mixtures that utilize non-equilibrium thermodynamics. Many different sets of equations for material have been derived that, while based on the same fundamental expression of entropy production, utilize different terms of the temperature- and concentration-induced gradients in the chemical potential to express the material flux. We reason that only by establishing a system of transport equations that satisfies the following three requirements can we obtain a valid thermodynamic model of thermodiffusion based on entropy production, and understand the underlying physical mechanism: (1) Maintenance of mechanical equilibrium in a closed steady-state system, expressed by a form of the Gibbs–Duhem equation that accounts for all the relevant gradients in concentration, temperature, and pressure and respective thermodynamic forces; (2) thermodiffusion (thermophoresis) is zero in pure unbounded liquids (i.e., in the absence of wall effects); (3) invariance in the derived concentrations of components in a mixture, regardless of which concentration or material flux is considered to be the dependent versus independent variable in an overdetermined system of material transport equations. The analysis shows that thermodiffusion in liquids is based on the entropic mechanism. -
Thermodynamic Temperature
Thermodynamic temperature Thermodynamic temperature is the absolute measure 1 Overview of temperature and is one of the principal parameters of thermodynamics. Temperature is a measure of the random submicroscopic Thermodynamic temperature is defined by the third law motions and vibrations of the particle constituents of of thermodynamics in which the theoretically lowest tem- matter. These motions comprise the internal energy of perature is the null or zero point. At this point, absolute a substance. More specifically, the thermodynamic tem- zero, the particle constituents of matter have minimal perature of any bulk quantity of matter is the measure motion and can become no colder.[1][2] In the quantum- of the average kinetic energy per classical (i.e., non- mechanical description, matter at absolute zero is in its quantum) degree of freedom of its constituent particles. ground state, which is its state of lowest energy. Thermo- “Translational motions” are almost always in the classical dynamic temperature is often also called absolute tem- regime. Translational motions are ordinary, whole-body perature, for two reasons: one, proposed by Kelvin, that movements in three-dimensional space in which particles it does not depend on the properties of a particular mate- move about and exchange energy in collisions. Figure 1 rial; two that it refers to an absolute zero according to the below shows translational motion in gases; Figure 4 be- properties of the ideal gas. low shows translational motion in solids. Thermodynamic temperature’s null point, absolute zero, is the temperature The International System of Units specifies a particular at which the particle constituents of matter are as close as scale for thermodynamic temperature. -
Equation of State - Wikipedia, the Free Encyclopedia 頁 1 / 8
Equation of state - Wikipedia, the free encyclopedia 頁 1 / 8 Equation of state From Wikipedia, the free encyclopedia In physics and thermodynamics, an equation of state is a relation between state variables.[1] More specifically, an equation of state is a thermodynamic equation describing the state of matter under a given set of physical conditions. It is a constitutive equation which provides a mathematical relationship between two or more state functions associated with the matter, such as its temperature, pressure, volume, or internal energy. Equations of state are useful in describing the properties of fluids, mixtures of fluids, solids, and even the interior of stars. Thermodynamics Contents ■ 1 Overview ■ 2Historical ■ 2.1 Boyle's law (1662) ■ 2.2 Charles's law or Law of Charles and Gay-Lussac (1787) Branches ■ 2.3 Dalton's law of partial pressures (1801) ■ 2.4 The ideal gas law (1834) Classical · Statistical · Chemical ■ 2.5 Van der Waals equation of state (1873) Equilibrium / Non-equilibrium ■ 3 Major equations of state Thermofluids ■ 3.1 Classical ideal gas law Laws ■ 4 Cubic equations of state Zeroth · First · Second · Third ■ 4.1 Van der Waals equation of state ■ 4.2 Redlich–Kwong equation of state Systems ■ 4.3 Soave modification of Redlich-Kwong State: ■ 4.4 Peng–Robinson equation of state Equation of state ■ 4.5 Peng-Robinson-Stryjek-Vera equations of state Ideal gas · Real gas ■ 4.5.1 PRSV1 Phase of matter · Equilibrium ■ 4.5.2 PRSV2 Control volume · Instruments ■ 4.6 Elliott, Suresh, Donohue equation of state Processes: -
Chapter 5 the Laws of Thermodynamics: Entropy, Free
Chapter 5 The laws of thermodynamics: entropy, free energy, information and complexity M.W. Collins1, J.A. Stasiek2 & J. Mikielewicz3 1School of Engineering and Design, Brunel University, Uxbridge, Middlesex, UK. 2Faculty of Mechanical Engineering, Gdansk University of Technology, Narutowicza, Gdansk, Poland. 3The Szewalski Institute of Fluid–Flow Machinery, Polish Academy of Sciences, Fiszera, Gdansk, Poland. Abstract The laws of thermodynamics have a universality of relevance; they encompass widely diverse fields of study that include biology. Moreover the concept of information-based entropy connects energy with complexity. The latter is of considerable current interest in science in general. In the companion chapter in Volume 1 of this series the laws of thermodynamics are introduced, and applied to parallel considerations of energy in engineering and biology. Here the second law and entropy are addressed more fully, focusing on the above issues. The thermodynamic property free energy/exergy is fully explained in the context of examples in science, engineering and biology. Free energy, expressing the amount of energy which is usefully available to an organism, is seen to be a key concept in biology. It appears throughout the chapter. A careful study is also made of the information-oriented ‘Shannon entropy’ concept. It is seen that Shannon information may be more correctly interpreted as ‘complexity’rather than ‘entropy’. We find that Darwinian evolution is now being viewed as part of a general thermodynamics-based cosmic process. The history of the universe since the Big Bang, the evolution of the biosphere in general and of biological species in particular are all subject to the operation of the second law of thermodynamics. -
Definition of the Ideal Gas
ON THE DEFINITION OF THE IDEAL GAS. By Edgar Bucidngham. I . Nature and purpose of the definition.—The notion of the ideal gas is that of a gas having particularly simple physical properties to which the properties of the real gases may be considered as approximations; or of a standard to which the real gases may be referred, the properties of the ideal gas being simply defined and the properties of the real gases being then expressible as the prop- erties of the standard plus certain corrections which pertain to the individual gases. The smaller these corrections the more nearly the real gas approaches to being in the "ideal state." This con- ception grew naturally from the fact that the earlier experiments on gases showed that they did not differ much in their physical properties, so that it was possible to define an ideal standard in such a way that the corrections above referred to should in fact all be ''small" in terms of the unavoidable errors of experiment. Such a conception would hardly arise to-day, or if it did, would not be so simple as that which has come down to us from earlier times when the art of experimenting upon gases was less advanced. It is evident that a quantitative definition of the ideal standard gas needs to be more or less complete and precise according to the nature of the problem under immediate consideration. If changes of temperature and of internal energy play no part, all that is usually needed is a standard relation between pressure and volume.