CMMN OMG Specification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Artificial Intelligence in Health Care: the Hope, the Hype, the Promise, the Peril
Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril Michael Matheny, Sonoo Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher, Editors WASHINGTON, DC NAM.EDU PREPUBLICATION COPY - Uncorrected Proofs NATIONAL ACADEMY OF MEDICINE • 500 Fifth Street, NW • WASHINGTON, DC 20001 NOTICE: This publication has undergone peer review according to procedures established by the National Academy of Medicine (NAM). Publication by the NAM worthy of public attention, but does not constitute endorsement of conclusions and recommendationssignifies that it is the by productthe NAM. of The a carefully views presented considered in processthis publication and is a contributionare those of individual contributors and do not represent formal consensus positions of the authors’ organizations; the NAM; or the National Academies of Sciences, Engineering, and Medicine. Library of Congress Cataloging-in-Publication Data to Come Copyright 2019 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Suggested citation: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, DC: National Academy of Medicine. PREPUBLICATION COPY - Uncorrected Proofs “Knowing is not enough; we must apply. Willing is not enough; we must do.” --GOETHE PREPUBLICATION COPY - Uncorrected Proofs ABOUT THE NATIONAL ACADEMY OF MEDICINE The National Academy of Medicine is one of three Academies constituting the Nation- al Academies of Sciences, Engineering, and Medicine (the National Academies). The Na- tional Academies provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. -
Iot4cps Deliverable
IoT4CPS – Trustworthy IoT for CPS FFG - ICT of the Future Project No. 863129 Deliverable D5.1 Lifecycle Data Models for Smart Automotive and Smart Manufacturing Deliverable number: D5.1 Dissemination level: Public Delivery data: 13. June 2018 Editor: Violeta Damjanovic-Behrendt Author(s): Violeta Damjanovic-Behrendt (SRFG) Michaela Mühlberger (SRFG) Cristina de Luca (IFAT) Thomos Christos (IFAT) Reviewers: Heinz Weiskirchner (NOKIA) Edin Arnautovic (TTTech) The IoT4CPS project is partially funded by the “ICT of the Future” Program of the FFG and the BMVIT. The IoT4CPS Consortium: IoT4CPS – 863129 Lifecycle Data Models for Smart Automotive and Smart Manufacturing AIT – Austrian Institute of Technology GmbH AVL – AVL List GmbH DUK – Donau-Universität Krems IFAT – Infineon Technologies Austria AG JKU – JK Universität Linz / Institute for Pervasive Computing JR – Joanneum Research Forschungsgesellschaft mbH NOKIA – Nokia Solutions and Networks Österreich GmbH NXP – NXP Semiconductors Austria GmbH SBA – SBA Research GmbH SRFG – Salzburg Research Forschungsgesellschaft SCCH – Software Competence Center Hagenberg GmbH SAGÖ – Siemens AG Österreich TTTech – TTTech Computertechnik AG IAIK – TU Graz / Institute for Applied Information Processing and Communications ITI – TU Graz / Institute for Technical Informatics TUW – TU Wien / Institute of Computer Engineering XNET – X-Net Services GmbH Document Control Title: Lifecycle Data Models for Smart Automotive and Smart Manufacturing Type: Public Editor(s): Violeta Damjanovic-Behrendt Author(s): Violeta -
The Ingham County News Oh! ~.No ••••• Published THURSDAY AFTERNOONS Rev
·stranger Rules Mason While Mayor Fishes Thein m Whllt! M11yor CuriiH Mur•fon of qroc·r!r' nnrl mmnhm· 11f I he C!lly IlnrriHorr \VflH htrsy runnlnr: f!ity r·mrneil. llnrpcr Is jii'I!Sii!ent of the 4 Sections - 20 P4gos uf'f:ilm In Mason Monday, Mnsun's 'lanlsun Eciwol honrd. Mnynr Pnul ftlchlll'ris und Pollen 'l'ha vlr;!Jurs ,were met nt the Chief IInrry Chundler wenl fish· north dly limits nnrl Cicicnrtcd to Copy Mus# Come. Ill!~· 'own hy Cuptnln Tim Stol?. and Mayor Murlon nnrl Mnynr Welt· '::ounellman Nels Ji'nrrlby, of'flclul A· Day Earlier onls r.xdrungPd jnlm Monduy 011 Mn,~nn hosl. After· a ~>lop al city Hospital Pledges 1\ltmtorhll ilay Uri~ year• fllll!i mnyor· cxchungc day, a Jlart of hnll the group nltcnclctl 11 lunch· Mlehlgan weelt. on puhllmUon duy for f.lw lllJI'· con at Mrtson golf cour~e. After hum County New~. 1'1mt nwunH l11nch Counellman F'orrll>y pre Evnrymw In 1\ln~;nn Is In· tho lliiJler will lmve lo go to M:ntcrl Mayor· Mut·ton with u gnld Vlfllli ~~~ Nf.op ovm• In JlnrTINon pm~li Wedncr>duy noon lnstmul lwy In Mason, and v!Hitlng women of 'l'IIIII"IHiuy, .Pass $300~000 · In Urelr· h·nvi!IH' llu·nuJ:·h Uw wil h flowers, nnr·t.h nne! Hit 11 whlh!, 'l'hnt'.~ Cot'I'L'IIIIonctnnl!! 111111 IUivm·· Worlwrs in the $500,000 Mason lhnt nil of the eampalgn lltcrn· tho lnrltatlon extmulml hy '!'hn rr•st of llw afl['rnoon May· tlserH rnuHt hlt\'e Uwlr ltmnH hospital cum p nl g n cheered or Murl on's party look a r:rand lure nnrl puhlldty has clearly !Udym· Mnrion dur·ln~; his und co11Y In th(! otfh!e 11 ctuy Wedncs·day night when the score· sllrled fmm the beginning that vl~lt her·e. -
Using the UML for Architectural Description?
Using the UML for Architectural Description? Rich Hilliard Integrated Systems and Internet Solutions, Inc. Concord, MA USA [email protected] Abstract. There is much interest in using the Unified Modeling Lan- guage (UML) for architectural description { those techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. IEEE P1471, the Recommended Practice for Architectural Description, represents an emerging consensus for specifying the content of an architectural descrip- tion for a software-intensive system. Like the UML, IEEE P1471 does not prescribe a particular architectural method or life cycle, but may be used within a variety of such processes. In this paper, I provide an overview of IEEE P1471, describe its conceptual framework, and investigate the issues of applying the UML to meet the requirements of IEEE P1471. Keywords: IEEE P1471, architectural description, multiple views, view- points, Unified Modeling Language 1 Introduction The Unified Modeling Language (UML) is rapidly maturing into the de facto standard for modeling of software-intensive systems. Standardized by the Object Management Group (OMG) in November 1997, it is being adopted by many organizations, and being supported by numerous tool vendors. At present, there is much interest in using the UML for architectural descrip- tion: the techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. Such techniques enable architects to record what they are doing, modify or ma- nipulate candidate architectures, reuse portions of existing architectures, and communicate architectural information to others. These descriptions may the be used to analyze and reason about the architecture { possibly with automated support. -
OMG Systems Modeling Language (OMG Sysml™) Tutorial 25 June 2007
OMG Systems Modeling Language (OMG SysML™) Tutorial 25 June 2007 Sanford Friedenthal Alan Moore Rick Steiner (emails included in references at end) Copyright © 2006, 2007 by Object Management Group. Published and used by INCOSE and affiliated societies with permission. Status • Specification status – Adopted by OMG in May ’06 – Finalization Task Force Report in March ’07 – Available Specification v1.0 expected June ‘07 – Revision task force chartered for SysML v1.1 in March ‘07 • This tutorial is based on the OMG SysML adopted specification (ad-06-03-01) and changes proposed by the Finalization Task Force (ptc/07-03-03) • This tutorial, the specifications, papers, and vendor info can be found on the OMG SysML Website at http://www.omgsysml.org/ 7/26/2007 Copyright © 2006,2007 by Object Management Group. 2 Objectives & Intended Audience At the end of this tutorial, you should have an awareness of: • Benefits of model driven approaches for systems engineering • SysML diagrams and language concepts • How to apply SysML as part of a model based SE process • Basic considerations for transitioning to SysML This course is not intended to make you a systems modeler! You must use the language. Intended Audience: • Practicing Systems Engineers interested in system modeling • Software Engineers who want to better understand how to integrate software and system models • Familiarity with UML is not required, but it helps 7/26/2007 Copyright © 2006,2007 by Object Management Group. 3 Topics • Motivation & Background • Diagram Overview and Language Concepts • SysML Modeling as Part of SE Process – Structured Analysis – Distiller Example – OOSEM – Enhanced Security System Example • SysML in a Standards Framework • Transitioning to SysML • Summary 7/26/2007 Copyright © 2006,2007 by Object Management Group. -
Development of Line Width and Type Control of 2D Cad Software Based on Iso Technical Drawing Standard
UNIVERSITI PUTRA MALAYSIA DEVELOPMENT OF LINE WIDTH AND TYPE CONTROL OF 2D CAD SOFTWARE BASED ON ISO TECHNICAL DRAWING STANDARD PITOON NOPNAKORN FK 2003 44 DEVELOPMENT OF LINE WIDTH AND TYPE CONTROL OF 2D CAD SOFTWARE BASED ON ISO TECHNICAL DRAWING STANDARD By PITOON NOPNAKORN Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilmentof the Requirements for the Degree of Master of Science October 2003 DEDICATION To My Parents One who ever shared a moment of his love and one who has strived patiently fo r their beloved children 11 Abstract of the thesispresented to theSenate ofUniversiti Putra Malaysia in fulfilmentof the requirements fo r the degree of Master of Science DEVELOPMENT OF LINE WIDTH AND TYPE CONTROL OF 2D CAD SOFTWARE BASED ON ISO TECHNICAL DRAWING STANDARD By PITOON NOPNAKORN October 2003 Chairman: Associate Professor Napsiah Ismail, Ph.D. Faculty: Engineering Engineering drawing is the media of communication in manufacturing process. In order to communicate in the same graphic language in engineering, the technical drawing standard has been specified by the International Organization fo r Standardization (ISO). Some commercial CAD softwares such as AutoCAD, AutoSketch and Solid Edge provided high-end ability to work whether in 3D or 2D space. Their width, length and proportion of printed lines conform to the ISO Technical Drawing Standard. But the procedures and interface to create line width and line type fo r simple drawing are sometime tedious and complex. The aim of this research work is to develop a 2D CAD software with emphasize on line width and line type control based on the ISO technical drawing standard fo r technical drawing. -
Pivotpoint-Sparx Partnership Promotes Model-Based Systems
PivotPoint-Sparx Partnership Promotes Model-Based Systems Engineering with SysML PivotPoint Technology and Sparx Systems today announced a technology partnership that will combine their complementary strengths in SysML training and tools for systems engineers. PivotPoint announced that its “SysML Distilled™ with Enterprise Architect™” workshop is immediately available, and will use Sparx’s new MDG Technology for SysML™ product. Fallbrook, California (PRWEB) - October 9, 2006 -- PivotPoint Technology and Sparx Systems today announced a technology partnership to promote model-based systems engineering with the Systems Modeling Language (SysML). SysML is the new domain-specific modeling language for systems engineering applications that was adopted by the Object Management Group as OMG SysML™ in July 2006, and is attracting users among systems engineers worldwide. Under the agreement, PivotPoint will be Sparx’s primary partner for training and consulting services that use Sparx’s new SysML product (MDG Technology for SysML™), which was released last week. PivotPoint showed its readiness to partner by announcing the immediate availability of a new “SysML Distilled™ with Enterprise Architect™” workshop, which combines both SysML language and tool training. SysML extends the Unified Modeling Language (UML), the industry standard for specifying software-intensive systems, so that it can also specify hardware, processes, personnel, and facilities. Systems engineers who want to follow a model-based systems engineering process gain at least two important advantages in using SysML. First, SysML is a smaller language than UML 2.0 since it has fewer diagrams and constructs, so it is easier for engineers to learn and apply. Second, SysML adds to the semantic expressiveness of UML with two new diagrams for defining requirements and parametric constraints, which systems engineers need to fully specify complex systems. -
03-01-06 BPDM RFP.Pdf
Business Process Definition Metamodel RFP Object Management Group First Needham Place 250 First Avenue, Suite 100 Needham, MA 02494 Telephone: +1-781-444-0404 Facsimile: +1-781-444-0320 Business Process Definition Metamodel Request For Proposal OMG Document: bei/2003-01-06 Letters of Intent due: June 16, 2003 Submissions due: August 18, 2003 Objective of this RFP This Request For Proposals solicits submissions that specify a business process definition metamodel, which is platform independent with respect to specific business process definition languages. This metamodel will define an abstract language for specification of executable business processes that execute within an enterprise (with or without human involvement); and may collaborate between otherwise- independent business processes executing in different business units or enterprises. The specification developed in response to this RFP is expected to achieve the following: • A common metamodel to unify the diverse business process definition graphical and textual notations that exist in the industry • A metamodel that complements existing UML metamodels so that business processes specifications can be part of complete system specifications to assure consistency and completeness bei/2003-01-06, January 31, 2003 1 Business Process Definition Metamodel RFP • The ability to integrate process models for workflow management processes, automated business processes, and collaborations between business units. • Support for the specification of choreography, describing the collaboration -
Sysml, the Language of MBSE Paul White
Welcome to SysML, the Language of MBSE Paul White October 8, 2019 Brief Introduction About Myself • Work Experience • 2015 – Present: KIHOMAC / BAE – Layton, Utah • 2011 – 2015: Astronautics Corporation of America – Milwaukee, Wisconsin • 2001 – 2011: L-3 Communications – Greenville, Texas • 2000 – 2001: Hynix – Eugene, Oregon • 1999 – 2000: Raytheon – Greenville, Texas • Education • 2019: OMG OCSMP Model Builder—Fundamental Certification • 2011: Graduate Certification in Systems Engineering and Architecting – Stevens Institute of Technology • 1999 – 2004: M.S. Computer Science – Texas A&M University at Commerce • 1993 – 1998: B.S. Computer Science – Texas A&M University • INCOSE • Chapters: Wasatch (2015 – Present), Chicagoland (2011 – 2015), North Texas (2007 – 2011) • Conferences: WSRC (2018), GLRCs (2012-2017) • CSEP: (2017 – Present) • 2019 INCOSE Outstanding Service Award • 2019 INCOSE Wasatch -- Most Improved Chapter Award & Gold Circle Award • Utah Engineers Council (UEC) • 2019 & 2018 Engineer of the Year (INCOSE) for Utah Engineers Council (UEC) • Vice Chair • Family • Married 14 years • Three daughters (1, 12, & 10) 2 Introduction 3 Our Topics • Definitions and Expectations • SysML Overview • Basic Features of SysML • Modeling Tools and Techniques • Next Steps 4 What is Model-based Systems Engineering (MBSE)? Model-based systems engineering (MBSE) is “the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases.” -- INCOSE SE Vision 2020 5 What is Model-based Systems Engineering (MBSE)? “Formal systems modeling is standard practice for specifying, analyzing, designing, and verifying systems, and is fully integrated with other engineering models. System models are adapted to the application domain, and include a broad spectrum of models for representing all aspects of systems. -
Unifying Modeling and Programming with ALF
SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering Unifying Modeling and Programming with ALF Thomas Buchmann and Alexander Rimer University of Bayreuth Chair of Applied Computer Science I Bayreuth, Germany email: fthomas.buchmann, [email protected] Abstract—Model-driven software engineering has become more The Eclipse Modeling Framework (EMF) [5] has been and more popular during the last decade. While modeling the established as an extensible platform for the development of static structure of a software system is almost state-of-the art MDSE applications. It is based on the Ecore meta-model, nowadays, programming is still required to supply behavior, i.e., which is compatible with the Object Management Group method bodies. Unified Modeling Language (UML) class dia- (OMG) Meta Object Facility (MOF) specification [6]. Ideally, grams constitute the standard in structural modeling. Behavioral software engineers operate only on the level of models such modeling, on the other hand, may be achieved graphically with a set of UML diagrams or with textual languages. Unfortunately, that there is no need to inspect or edit the actual source code, not all UML diagrams come with a precisely defined execution which is generated from the models automatically. However, semantics and thus, code generation is hindered. In this paper, an practical experiences have shown that language-specific adap- implementation of the Action Language for Foundational UML tations to the generated source code are frequently necessary. (Alf) standard is presented, which allows for textual modeling In EMF, for instance, only structure is modeled by means of of software systems. -
Development of a New Drawing System for STS
School of Innovation, Design and Engineering BACHELOR THESIS IN AERONAUTICAL ENGINEERING 15 CREDITS, BASIC LEVEL 300 Development of a new drawing system for STS Authors: Mikael Berkelund and Christian Håkonsen Report code: MDH.IDT.FLYG.0189.2008.GN300.15HP.D. Abstract An engineering firm which handles and constructs drawings needs well defined routines and structures which should be homogeneous through all the different departments. A common drawing system results in better quality and cooperation between the departments. SAS Technical Services (STS) did not have a common drawing system which had led to development of different routines in the different regions and departments. Requested was development of new routines regarding engineering drawings, such as drawing numbering structure, revision and subscription routines, which standards to adhere to, custom made drawing templates and management of the drawings with belonging documents. Each requested task was broken into minor tasks and analyzed. Solutions by different leading engineering companies were used for comparison and ideas. All the tasks were collected and organized in one single document which is the result of the thesis; a drawing instruction. The drawing instruction will after a learning phase ease the work for the STS engineers as all necessary information can be found in one single place. Also, work with contractors will be time-saving as the instruction can be handed out for guidance. Date: 29 jan 2008 Carried out at: SAS Technical Services Advisor at MDH: Tommy Nygren Advisor at SAS Technical Services: Anders Pramler Examinator: Gustaf Enebog II Sammanfattning En ingenjörsfirma som hanterar och skapar mängder med ritningar behöver väldefinierade rutiner och strukturer som är homogena genom hela bolaget. -
Japanese Bibliographic Records and CJK Cataloging in U.S
San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2009 Japanese bibliographic records and CJK cataloging in U.S. university libraries. Mie Onnagawa San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Onnagawa, Mie, "Japanese bibliographic records and CJK cataloging in U.S. university libraries." (2009). Master's Theses. 4010. DOI: https://doi.org/10.31979/etd.pcb8-mryq https://scholarworks.sjsu.edu/etd_theses/4010 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. JAPANESE BIBLIOGRAPHIC RECORDS AND CJK CATALOGING IN U.S. UNIVERSITY LIBRARIES A Thesis Presented to The Faculty of the School of Library and Information Science San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Library and Information Science by Mie Onnagawa December 2009 UMI Number: 1484368 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UM! 1484368 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.