A Polynomial Kernel for 3-Leaf Power Deletion Jungho Ahn Department of Mathematical Sciences, KAIST, Daejeon, South Korea Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea
[email protected] Eduard Eiben Department of Computer Science, Royal Holloway, University of London, Egham, UK
[email protected] O-joung Kwon Department of Mathematics, Incheon National University, South Korea Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea
[email protected] Sang-il Oum Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea Department of Mathematical Sciences, KAIST, Daejeon, South Korea
[email protected] Abstract For a non-negative integer `, a graph G is an `-leaf power of a tree T if V pGq is equal to the set of leaves of T , and distinct vertices v and w of G are adjacent if and only if the distance between v and w in T is at most `. Given a graph G, 3-Leaf Power Deletion asks whether there is a set S Ď V pGq of size at most k such that GzS is a 3-leaf power of some tree T . We provide a polynomial kernel for this problem. More specifically, we present a polynomial-time algorithm for an input instance pG, kq to output an equivalent instance pG1, k1q such that k1 ¤ k and G1 has at most Opk14q vertices. 2012 ACM Subject Classification Theory of computation Ñ Design and analysis of algorithms; Theory of computation Ñ Graph algorithms analysis; Theory of computation Ñ Parameterized complexity and exact algorithms Keywords and phrases `-leaf power, parameterized algorithms, kernelization Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.5 Related Version A full version of this paper is available at https://arxiv.org/abs/1911.04249.