Thesis Is Divided Into Two Parts

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Is Divided Into Two Parts The Pennsylvania State University The Graduate School Department of Chemistry BRUSH-SHAPED HYBRID POLYPHOSPHAZENES FOR ADVANCED BIOMATERIAL APPLICATIONS AND SUBSTITUENT EXCHANGE REACTIONS BASED ON CYCLIC, OLIGOMERIC AND POLYMERIC PHOSPHAZENES A Dissertation in Chemistry By Xiao Liu © 2013 Xiao Liu Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2013 ii The dissertation of Xiao Liu was reviewed and approved* by the following: Harry R. Allcock Evan Pugh Professor of Chemistry Dissertation Advisor Chair of Committee John V. Badding Professor of Chemistry Ben Lear Assistant Professor of Chemistry James P. Runt Professor of Polymer Science Associate Head of Graduate Studies Barbara J. Garrison Shapiro Professor of Chemistry Head of the Chemistry Department *Signatures are on file in the Graduate School iii ABSTRACT The work described in this thesis is divided into two parts. The first part focuses on the synthesis and characterization of brush-shaped polyphosphazene hybrid materials for antibacterial surface coating and photocontrolled drug release applications. The second part describes the detailed study of substituent exchange reactions based on cyclic trimeric or tetrameric, and linear oligomeric and polymeric phospaphazenes. The reaction mechanism of substituent exchange is proposed and verified. The themes that ties the two parts of this thesis are solutions to some of the challenges of polyphosphazene synthesis, and the utilization of synthesis pathways to develop new phosphazene polymer architecture. Chapter 1 outlines the fundamental concepts for polymeric materials used in biomedical applications. The properties of the polymers that are used as antibacterial coatings and controlled drug release are described. The chemistry and applications of phosphazenes is also outlined. Chapter 2 deals with the synthesis of a series of densely grafted star- and comb- shaped molecular brushes composed of polystyrene, poly(tert-butyl acrylate) and poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization (ATRP) using either cyclotriphosphazenes or polyphosphazenes as initiators. The grafting conditions were optimized for various monomers. The kinetics of the reaction were first-order with respect to the monomer concentration in both the cyclotriphosphazene and polyphosphazene systems. The lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) brush polymers was measured by both dynamic light scattering (DLS) and differential scanning calorimetry (DSC), showed a sharp phase transition at 33 °C. Furthermore, star- and comb-block copolymers with a hard polystyrene core and a soft poly(tert-butyl acrylate) shell were also synthesized. iv Chapter 3 outlines the preparation of densely grafted star- and comb-shaped molecular brushes composed of poly[2-(dimethylamino)ethyl methacrylate] produced via atom transfer radical polymerization (ATRP), species that were quaternized with iodomethane, iodobutane, iodoheptane, iododecane and iodododecane. Electrospinning of the quaternized brushes gave rise to microfibers with diameters in the range of 700 nm to 1.1 μm. The antibacterial activity of the quaternized brush species in both aqueous solution and as fibrous solids against Escherichia coli (E. coli) has been evaluated. In aqueous solution, star-shaped brushes quaternized with iodoheptane showed the best antibacterial effect, with a minimum inhibitory concentration (MIC) as low as 250 μg mL-1. In the fibrous solid state, more than 99% of E. coli were killed within 2 hr after contacting 100 mg of microfibers electrospun from the star-shaped brush polymers quaternized with either iododecane or iodododecane. Chapter 4 covers the synthesis and characterization of UV-cleavable star polymers composed of amphiphilic block copolymer arms and a UV-cleavable core. The inner lipophilic poly(methyl methacrylate) (PMMA) and the outer hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate] (PPEGMA) were grafted by atom transfer radical polymerization (ATRP). The effects of various factors, such as molecular weight, solution concentration, solvent and monomer on the photodegradation rate of the star polymers were studied in details. Significant aggregation of the polymer micelles in aqueous solution was detected by DLS with hydrodynamic radii of 86 and 111 nm for the two star-PMMA-PPEGMA micelles. The critical aggregation concentration (CAC) of star-PMMA179-PPEGMA89-2 was 0.0026 g/L and 0.022 g/L before and after UV-irradiation, indicating the reduced stability of the polymer micellar structures after UV-irradiation. As a result, spontaneous dissociation of cleaved micelles can be induced by the dilution effect in the human body for stimulus-controlled drug release. v Chapter 5 deals with substituent exchange reactions of sodium 2,2,2-trifluoroethoxide with trimeric and tetrameric aryloxycyclophosphazenes. The ease of displacement of OAr in - cyclic trimeric and tetrameric molecules by CF3CH2O increased significantly with the presence of electron-withdrawing substituents in the polyphosphazene in the order, phenoxy << 4-formylphenoxy < 4-cyanophenoxy ≈ 4-nitrophenoxy. Fully substituted 2,2,2-trifluoroethoxyphosphazene trimer and tetramer were formed by side group exchange, but these reactions were followed by an attack by the nucleophile on the α-carbon of the 2,2,2-trifluoroethoxy groups linked to phosphorus to give a species in which one trifluoroethoxy group had been replaced by an ONa unit, and bis(trifluoroethyl) ether was formed as a side product. Chapter 6 describes the study of side group exchange reactions for short chain linear oligomeric phosphazenes, (RO)4P[N=P(OR2)]nOR (n = 6, 10, 20, and 40) as models for the corresponding linear high polymers (n ~ 15,000). Specifically, the exchange behavior of oligomers where OR = OCH2CF3, OC6H5, OC6H4CHO-p, OC6H4CN-p, and OC6H4NO2-p with sodium trifluoroethoxide was examined. The ease of aryloxy group replacement by trifluoroethoxy increased with the electron-withdrawing character in the order OR = OC6H5 << OC6H4CHO-p < OC6H4CN-p < OC6H4NO2-p, but the reaction was efficient only if the phosphazene contained no more than 20 repeating units. However, attempts to force the slower reactions by the use of excess sodium trifluoroethoxide induced secondary reactions at the - + trifluoroethoxy units already introduced to produce CF3CH2OCH2CF3 and insert -O Na units in their place. The longest chain model underwent side group exchange reactions preferentially at the end units. Chapter 7 discusses similar side group exchange reactions for linear high polymeric vi organophosphazenes, [N=P(OR2)]n (n ~ 15,000). Specifically, the exchange behavior of polymers where OR = OCH2CF3, OCH2CF2CF2CF2CF2H, OCH2Cl3, OC6H4CHO-p, OC6H4CN-p, and OC6H4NO2-p with sodium trifluoroethoxide was examined. No aryloxy group replacement by trifluoroethoxy was detected, due to the well-protected backbone of polyphosphazenes by aryloxy side groups. For the exchange behavior of [N=P(OCH2CF3)2]n and [N=P(OCH2CF2CF2CF2CF2H)2]n with NaOCH2CF2CF2CF2CF2H and NaOCH2CF3, partial substituent exchange could be achieved for both reactions. Furthermore, these side group exchange reactions are followed by reactions that introduce –O-Na+ groups attached to phosphorus in place of organic substituents, and this is a mechanism for subsequent hydrolysis and molecular weight decline. Substituent exchange reactions do appear to be an alternative synthetic approach in the synthesis of many polyphosphazenes, including the recently discovered trichloroethoxy/trifluoroethoxy containing polyphosphazenes. vii TABLE OF CONTENTS LIST OF FIGURES…………………………………………………………………………......xii LIST OF SCHEMES…………………………………………………………………………….xv LIST OF TABLES…………………………………………………………………………….. xvii PREFACE…………………………………………………………………………………….. xviii ACKNOWLEDGEMENTS……………………………………………………………………. xix Chapter 1. Introduction to Polymer Chemistry…………………………………………………...1 1.1 History of Polymers……………………………………………………………………..1 1.2 Polymer Architecture and Composition………………………………………………....4 1.2.1 Polymer Architecture…………………………………………………………….4 1.2.2 Polymer Composition…………………………………………………………….7 1.3 Controlled Radical Polymerization (CRP)………………………………………………9 1.3.1 Nitroxide Mediated Polymerization (NMP)……………………………………..9 1.3.2 Atom Transfer Radical Polymerizaton (ATRP)………………………………...12 1.3.3 Reversible Addition-fragmentation Chain Transfer (RAFT)…………………...15 1.4 Polyphosphazenes………………………………………………………………………15 1.4.1 History of Polyphosphazenes……………………………………………………15 1.4.2 Synthetic Routs of Polyphosphazenes…………………………………………..16 1.4.2.1 Thermal Ring-opening Polymerization…………………………………16 1.4.2.2 Living Cationic Condensation Polymerization…………………………19 1.4.2.3 Substitutent Exchange Reaction………………………………………..19 1.4.3 Applications……………………………………………………………………..22 1.4.3.1 Polyphosphazenes as Elastomers……………………………………….22 1.4.3.2 Polyphosphazenes as Biomaterials……………………………………..25 1.5 References………………………………………………………………………………27 Chapter 2. Synthesis and Characterization of Brush-Shaped Hybrid Inorganic-Organic Polymers Based on Polyphosphazenes………………………………………………………………..33 2.1 Introduction……………………………………………………………………………..33 2.2 Experimental Section…………………………………………………………………...38 2.2.1 Materials………………………………………………………………………...38 2.2.2 Equipment……………………………………………………………………….38 2.2.3 Synthesis of Macroinitiators…………………………………………………….39 2.2.3.1 2-[2-(Tetrahydropyranyloxy)ethoxy]ethanol (1)……………………….39 2.2.3.2 Hexakis[2-[2-(tetrahydropyranyloxy)ethoxy]ethoxy]
Recommended publications
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Chemistry SYNTHESIS AND CHARACTERIZATION OF MIXED-SUBSTITUENT POLY(ORGANOPHOSPHAZENES) A Thesis in Chemistry by Andrew Elessar Maher © 2004 Andrew Elessar Maher Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2004 The thesis of Andrew Elessar Maher was reviewed and approved* by the following: Harry R. Allcock Evan Pugh Professor of Chemistry Thesis Advisor Chair of Committee Alan Benesi Teaching Professor of Chemistry Karl Mueller Associate Professor of Chemistry James Runt Professor of Polymer Science Andrew Ewing J. Lloyd Huck Chair in Natural Sciences Professor of Chemistry Adjunct Professor of Neuroscience and Anatomy Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT This thesis focuses on the synthesis and characterization of mixed-substituent poly(organophosphazenes). The work in chapters 2 through 4 examines mixed- substituent polyphosphazenes with fluoroalkoxy side groups. Chapters 2 and 3 involve a synthetic route to mixed-substituent polyphosphazenes via side group replacement of fluoroalkoxy substituents. The thermal and mechanical properties of mixed-substituent poly(fluoroalkoxyphosphazenes) are examined through varying the ratios of two fluoroalkoxy substituents. These structure-property relationships and the potential use of these materials as fluoroelastomers are the subjects of chapter 4. The specifics of chapters 2-4 are summarized below. The work in chapter 5 concerns the synthesis and evaluation of mixed-substituent polyphosphazenes as single-ion conductors. The synthesis of a sulfonimide functionalized side group for proton conducting fuel cell applications is the subject of the appendix and is also utilized in the work in chapter 5.
    [Show full text]
  • Designing Polymers for Advanced Battery Chemistries
    REVIEWS Designing polymers for advanced battery chemistries Jeffrey Lopez 1, David G. Mackanic 1, Yi Cui 2,3 and Zhenan Bao 1* Abstract | Electrochemical energy storage devices are becoming increasingly important to our global society , and polymer materials are key components of these devices. As the demand for high- energy density devices increases, innovative new materials that build on the fundamental understanding of physical phenomena and structure–property relationships will be required to enable high-capacity next-generation battery chemistries. In this Review , we discuss core polymer science principles that are used to facilitate progress in battery materials development. Specifically , we discuss the design of polymeric materials for desired mechanical properties, increased ionic and electronic conductivity and specific chemical interactions. We also discuss how polymer materials have been designed to create stable artificial interfaces and improve battery safety. The focus is on these design principles applied to advanced silicon, lithium-metal and sulfur battery chemistries. The development of new electrochemical energy storage of existing materials or to enable the application of new technologies has been instrumental to the proliferation battery chemistries. In this Review, we summarize the of portable electronic devices and the increasing adop- fundamental polymer science and engineering con- tion of electric vehicles. Intermittent electricity genera- cepts related to the development of polymers for next- tion (for example, from wind and solar power sources) generation battery applications (Table 1). We specifically has further intensified the demand for high-energy den- discuss how these core concepts drive the design of new sity, high- power and low-cost energy storage devices1,2.
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Chemistry POLYPHOSPHAZENE DESIGN, SYNTHESIS, AND CHARACTERIZATION FOR POTENTIAL LIGAMENT AND TENDON SCAFFOLDS A Dissertation in Chemistry by Jessica L. Nichol 2014 Jessica L. Nichol Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2014 ii The dissertation of Jessica L. Nichol was reviewed and approved* by the following: Harry R. Allcock Evan Pugh Professor of Chemistry Dissertation Advisor Chair of Committee Philip Bevilacqua Professor of Chemistry Benjamin J. Lear Assistant Professor of Chemistry Mike Hickner Associate Professor of Materials Science and Engineering, Chemical Engineering Barbara J. Garrison Shapiro Professor of Chemistry Head of the Chemistry Department *Signatures are on file in the Graduate School iii ABSTRACT The work described in this thesis describes the progress towards developing polyphosphazenes designed specifically for tissue engineering applications with an emphasis on ligament and tendon repair and replacement. Chapter 1 outlines the fundamentals of polymer chemistry in conjunction with the importance of polyphosphazene chemistry and its potential for biomedical applications. Chapter 6 illustrates additional possibilities and considerations for designing future polymers for tissue engineering scaffolds. Chapter 2 discusses the design, synthesis, and characterization of new polyphosphazenes to determine their potential as scaffolds for ligament and tendon tissue engineering. The carboxylic
    [Show full text]
  • Effect of Cyclotriphosphazene-Based Curing Agents on the Flame Resistance of Epoxy Resins
    polymers Article Effect of Cyclotriphosphazene-Based Curing Agents on the Flame Resistance of Epoxy Resins Lucie Zarybnicka 1,* , Jana Machotova 2, Radka Kopecka 3, Radek Sevcik 1,4, Martina Hudakova 5, Jaroslav Pokorny 4 and Jiri Sal 4 1 Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telc, Prosecka 809/76, 190 00 Prague, Czech Republic; [email protected] 2 Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; [email protected] 3 Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 267/2, 611 37 Brno, Czech Republic; [email protected] 4 The Institute of Technology and Business in Ceske Budejovice, Okruzni 517/10, 370 01 Ceske Budejovice, Czech Republic; [email protected] (J.P.); [email protected] (J.S.) 5 Fire Research Institute, Ministry of Interior of the Slovak Republic, Roznavska 11, 83 104 Bratislava, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +420-567-225-333 Abstract: Epoxy resins are characterized by excellent properties such as chemical resistance, shape stability, hardness and heat resistance, but they present low flame resistance. In this work, the syn- thesized derivatives, namely hexacyclohexylamino-cyclotriphosphazene (HCACTP) and novel diaminotetracyclohexylamino-cyclotriphosphazene (DTCATP), were applied as curing agents for halogen-free flame retarding epoxy materials. The thermal properties and combustion behavior of the cured epoxy resins were investigated. The obtained results revealed that the application of both derivatives significantly increased flame resistance. The epoxy resins cured with HCACTP and DTCATP exhibited lower total heat release together with lower total smoke production compared to the epoxy materials based on conventional curing agents (dipropylenetriamine and ethylenediamine).
    [Show full text]
  • Polyphosphazenes with Stimulated Degradation
    Submitted by M.Sc. Aitziber Iturmendi Submitted at POLYPHOSPHAZENES Institute of Polymer Chemistry Supervisor and First Examiner WITH STIMULATED Assoc. Univ.-Prof. Dr. Ian Teasdale Second Examiner Assoc. Univ.-Prof. Dr. Uwe DEGRADATION Monkowius Month Year May 2018 PATHWAYS Doctoral Thesis to obtain the academic degree of Doktorin der Naturwissenschaften in the Doctoral Program Naturwissenschaften JOHANNES KEPLER UNIVERSITY LINZ Altenberger Str. 69 4040 Linz, Austria www.jku.at DVR 0093696 STATUTORY DECLARATION I hereby declare that the thesis submitted is my own unaided work, that I have not used other than the sources indicated, and that all direct and indirect sources are acknowledged as references. This printed thesis is identical with the electronic version submitted. Linz, May 2018 iii The Amazing thing about life is that You choose what you allow into it You choose how things affect you You choose how you react Happiness is a Choice Make it It´s up to you v ACKNOWLEDGMENTS First of all, I want to thank Assoc. Univ.-Prof. Dr. Ian Teasdale. Thank you so much for giving me the opportunity to work in your team not only for 6 months, even for more than 5 years! Many thanks also for being my supervisor, my guide, my support (in and out of work) and why not part of my stress ;) I am grateful to Univ.-Prof. Dr. Oliver Brüggemann for providing me with all equipments I needed, the access to the labs and his support. I would like to thank also Assoc. Univ.-Prof. Dr. Uwe Monkowius for his help and guidance during my thesis.
    [Show full text]
  • Polyphosphazene Copolymers Containing a Substituent Bonded to Phosphorus Through a Carbon Atom, and Their Preparation
    Patentamt J)JEuropaisches European Patent Office © Publication number: 0 010 590 Office europeen des brevets © EUROPEAN PATENT APPLICATION © Application number: 79103275.8 © Int. CI.3: C 08 G 79/02 @ Date of filing: 05.09.79 © Priority: 08.09.78 US 941109 @ Applicant: THE FIRESTONE TIRE & RUBBER 08.09.78 US 941117 COMPANY, 1200 Firestone Parkway, Akron, 20.10.78 US 953281 Ohio 44317 (US) @ Inventor: Hergenrother, William Lee, 195 Dorchester © Date of publication of application: 14.05.80 Road, Akron, Ohio 44313 (US) Bulletin 80/10 Inventor: Halasa, Adel Farhan, 5040 Everett Road, Bath, Ohio 44210 (US) @ Representative: Kraus, Walter, Dr. et ai, Patentanwalte Dres. Kraus & Weisert Irmgardstrasse 15, D-8000 @ Designated Contracting States: BE DE FR GB IT NL SE Miinchen 71 (DE) © Polyphosphazene copolymers containing a substituent bonded to phosphorus through a carbon atom, and their preparation. The copolymers can be utilized to form protective films, moldings, coatings, and the like where heat stability and solvent resistance are important. The copolymers are prepared by reacting poly(dichloro- phosphazene) with a mixture of compounds of the formulas 5 HX and HX'. BACKGROUND OF THE INVENTION This invention relates to polyphosphazene copolymers containing repeating = N- units in the polymer chain in which a substituent is attached or bonded to the phosphorus atom through a carbon atom. More particularly, the invention relates to polyphosphazene copolymers containing a substituent derived from a malononitrile or substituted malononitrile compound or nitroalkyl compound or sulfone compound and a substituent which may be a substituted or unsubstituted alkoxy, alkenyloxy, aryloxy, alkenylaryloxy, amino or mercapto group.
    [Show full text]
  • Controlled Synthesis of Polyphosphazenes with Chain-Capping Agents
    molecules Article Controlled Synthesis of Polyphosphazenes with Chain-Capping Agents Robert A. Montague † and Krzysztof Matyjaszewski * Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; [email protected] * Correspondence: [email protected] or [email protected] † Current address: 2217 Forest Avenue, Ashland, KY 41101, USA. Abstract: N-alkyl phosphoranimines were synthesized via the Staudinger reaction of four different alkyl azides with tris(2,2,2-trifluoroethyl) phosphite. N-adamantyl, N-benzyl, N-t-butyl, and N-trityl phosphoranimines were thoroughly characterized and evaluated as chain-capping compounds in the anionic polymerization of P-tris(2,2,2-trifluoroethoxy)-N-trimethylsilyl phosphoranimine monomer. All four compounds reacted with the active chain ends in a bulk polymerization, and the alkyl end groups were identified by 1H-NMR spectroscopy. These compounds effectively controlled the molecular weight of the resulting polyphosphazenes. The chain transfer constants for the monomer and N-benzyl phosphoranimine were determined using Mayo equation. Keywords: N-alkyl phosphoranimines; polyphosphazenes; phosphoramidate esters; fluoride; trifluoroethoxide; N-methylimidazole initiators; anionic; chain-capping agents Citation: Montague, R.A.; 1. Introduction Matyjaszewski, K. Controlled The most important examples of inorganic polymers [1–3] are the polysiloxanes—(R2Si- Synthesis of Polyphosphazenes with O)n [4–8], polysilanes—(R2Si)n [9–11], and the polyphosphazenes—(R2P=N)n− [12–14]. Chain-Capping Agents. Molecules They have been the subject of significant research due to desirable properties, such as 2021, 26, 322. https://doi.org/ biocompatibility, high thermal resistance, oxidative stability, UV resistance, interesting 10.3390/molecules26020322 photoelectronic behavior, and high flexibility that are often difficult or impossible to achieve Academic Editors: in carbon-based organic polymers.
    [Show full text]
  • Polymers with Pendant Ferrocenes
    Chem Soc Rev View Article Online TUTORIAL REVIEW View Journal | View Issue Polymers with pendant ferrocenes Cite this: Chem. Soc. Rev., 2016, Rudolf Pietschnig 45,5216 The tailoring of smart material properties is one of the challenges in materials science. The unique features of polymers with pendant ferrocene units, either as ferrocenyl or ferrocenediyl groups, provide electrochemical, electronic, optoelectronic, catalytic, and biological properties with potential for applications as smart materials. The possibility to tune or to switch the properties of such materials relies mostly on the redox activity of the ferrocene/ferricenium couple. By switching the redox state of ferrocenyl units – separately or in a cooperative fashion – charge, polarity, color (UV-vis range) and hydrophilicity of Received 10th March 2016 polymers, polymer functionalized surfaces and polymer derived networks (sol–gel) may be controlled. In DOI: 10.1039/c6cs00196c turn, also the vicinity of such polymers influences the redox behavior of the pendant ferrocenyl units allowing for sensing applications by using polymer bound enzymes as triggering units. In this review the www.rsc.org/chemsocrev focus is set mainly on the literature of the past five years. Creative Commons Attribution 3.0 Unported Licence. Key learning points Pendant ferrocenyl units may substantially alter the properties of the polymer and its backbone The redox properties of the ferrocenyl units may be used to tune charge, polarity, color and hydrophilicity of polymers and polymer functionalized interfaces and networks The connection between the polymer vicinity and the ferrocene redox couple via the polymer backbone enables sensing applications Pendant ferrocenyl units increase the thermal stability of polymer backbones Ferrocene containing polymers may be used as precursors for patterned metal oxides and alloys This article is licensed under a Open Access Article.
    [Show full text]
  • Synthesis of Block, Graft and Star Polymers from Inorganic Macroinitiators Krzysztof Matyjaszewski,* Peter J
    APPLIED ORGANOMETALLIC CHEMISTRY Appl. Organometal. Chem. 12, 667–673 (1998) REVIEW Synthesis of Block, Graft and Star Polymers from Inorganic Macroinitiators Krzysztof Matyjaszewski,* Peter J. Miller, Eric Fossum and Yoshiki Nakagawa Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA Recent advances in the synthesis of block, graft INTRODUCTION and star polymers containing inorganic macro- molecular species are described. Anionic copo- One of the most important elements in the lymerization techniques were used in the for- production of copolymers is control over the mation of diblock copolymers of poly(styrene- polymerization reaction. If the process can be block-methylphenylsilylene) and poly(isoprene- manipulated so that the number of growing chains block-methylphenylsilylene) by the ring-opening is constant and that chain transfer or termination polymerization of 1,2,3,4-tetramethyl-1,2,3,4- reactions are avoided (or eliminated), then the tetraphenylcyclotetrasilane initiated by living functional group at the polymer terminus will be anionic polystyrene and isoprene respectively. conserved, allowing for additional chemistry to Hydrosilation of an attachable initiator onto take place. Such transformation reactions can result telechelic vinyl- or hydrosilyl-terminal or in production of a macroinitiator which can initiate -pendant poly(dimethylsiloxane) (PDMS) polymerization of a different monomer, thereby yielded a PDMS macroinitiator. This macro- producing block copolymers. If a difunctional
    [Show full text]
  • Copper (II) Ions Into Polyphosphazenes: Solid-Like Solution Behavior
    J Inorg Organomet Polym (2010) 20:306–312 DOI 10.1007/s10904-010-9338-9 Copper (II) Ions into Polyphosphazenes: Solid-Like Solution Behavior Marı´a Luisa Valenzuela • Carlos Dı´az Received: 5 January 2010 / Accepted: 14 February 2010 / Published online: 3 March 2010 Ó Springer Science+Business Media, LLC 2010 Abstract Reaction of Cu(BF4)2 salt with the polymer view. Although the interaction of organic polymers with [NP(OC6H4C(O)C–OC6H5)2]n (1) in THF affords three ion metal have been extensively studied [1–7] there are new polymers gels containing varied copper (II) ions relatively few reports on the interaction of inorganic such contents, (2), (3), and (4). The nature of the copper (II) ions as polyphosphazenes with metal ions [8–12]. It well known in the gel (2)–(4) was examined by IR spectroscopy, solid in general that the incorporation of single metals ions to state 31P, 13C and 63Cu NMR spectroscopy and EPR polyphosphazenes affords gels materials. Allcock et al. spectroscopy. Despite the copper content, the gels were [9–12] has studied the formation of microspheres from the insulators as measured by complex impedance spectros- cross-linking of the water soluble polymer poly[bis(carb- copy. SEM images show a uniform distribution of the Cu oxylatophenoxy)phosphazene] with ions metals [9, 11, 12] (II) ions and a most porous morphology than those without and the formations of hydrogel or organogel from the copper polymer. TEM images show the formation of small polymers soluble water poly[bis(2-(2-methoxyethoxy)eth- aggregates being smallest for, gel (2) of about 200 nm.
    [Show full text]
  • Synthesis of Polyphosphazenes with Different Side Groups and Various
    RSC Advances View Article Online REVIEW View Journal | View Issue Synthesis of polyphosphazenes with different side groups and various tactics for drug delivery Cite this: RSC Adv.,2017,7, 23363 Raja Summe Ullah, Li Wang, * Haojie Yu,* Nasir M. Abbasi, Muhammad Akram, Zain -ul-Abdin, Muhammad Saleem, Muhammad Haroon and Rizwan Ullah Khan Polyphosphazenes (PPZs) are hybrid polymers comprising a main chain containing nitrogen and phosphorous linked through interchanging single and double bonds, and side chains. The two chlorine atoms attached to the phosphorous of polydichlorophosphazene, which is produced by thermal ring-opening and living- cationic polymerization, are significant in the importance of polyphosphazene, as they can be easily replaced by an uncountable number of nucleophiles, resulting in hundreds of different PPZs with different properties ranging from hydrophobic to hydrophilic, fast to slow degradation, and burst to sustained drug release. More than seven hundred types of PPZs are synthesized as a result of different combinations of Received 21st November 2016 side groups. For applications in drug delivery, PPZs can be treated in various ways and converted into Accepted 10th April 2017 different vehicles of nano/micro size to load and release drugs. This review covers the synthesis of PPZs Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/c6ra27103k and their different modifications, especially focusing on the side groups and different vehicles, including rsc.li/rsc-advances microspheres, micelles, films and hydrogels, that are involved in drug-delivery applications. 1 Introduction lenses, surgically replaced parts and tissue engineering. The polymer rst used is poly(methyl methacrylate) (PMMA), which One of the greatest inventions in the eld of materials is the was used as an intraocular lens.3 Aer that, scientists started to invention of polymeric biomaterials.
    [Show full text]
  • Activatable Hybrid Polyphosphazene-Aunp Nanoprobe for ROS Detection by Bimodal PA/CT Imaging
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author ACS Appl Manuscript Author Mater Interfaces Manuscript Author . Author manuscript; available in PMC 2020 August 14. Published in final edited form as: ACS Appl Mater Interfaces. 2019 August 14; 11(32): 28648–28656. doi:10.1021/acsami.9b08386. Activatable Hybrid Polyphosphazene-AuNP Nanoprobe for ROS Detection by Bimodal PA/CT Imaging Mathilde Bouché†, Manuel Pühringer§, Aitziber Iturmendi§, Ahmad Amirshaghaghi‡, Andrew Tsourkas‡, Ian Teasdale§, David P. Cormode*,†,‡ †Department of Radiology, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States ‡Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States §Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria Abstract Overproduction of reactive oxygen species (ROS) is often related to inflammation or cancer and can cause tissue damage. Probes that have been previously reported to image ROS typically rely on imaging techniques that have low depth penetration in tissue, thus limiting their use to superficial disease sites. We report herein a novel formulation of hybrid nanogels loaded with gold nanoparticles (AuNP) to produce contrast for computed tomography (CT) and photoacoustics (PA), both being deep-tissue imaging techniques. The polyphosphazene polymer has been designed to selectively degrade upon ROS exposure, which triggers a switch-off of the PA signal by AuNP disassembly. This ROS-triggered degradation of the nanoprobes leads to a significant decrease in the PA contrast, thus allowing ratiometric ROS imaging by comparing the PA to CT signal. Furthermore, ROS imaging using these nanoprobes was applied to an in vitro model of inflammation, that is, LPS-stimulated macrophages, where ROS-triggered disassembly of the nanoprobe was confirmed via reduction of the PA signal.
    [Show full text]