The Enigmatic Truffle Fevansia Aurantiaca Is an Ectomycorrhizal Member of the Albatrellus Lineage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix K. Survey and Manage Species Persistence Evaluation
Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site. -
Mycodiversity Studies in Selected Ecosystems of Greece: 5
Uploaded — May 2011 [Link page — MYCOTAXON 115: 535] Expert reviewers: Giuseppe Venturella, Solomon P. Wasser Mycodiversity studies in selected ecosystems of Greece: 5. Basidiomycetes associated with woods dominated by Castanea sativa (Nafpactia Mts., central Greece) ELIAS POLEMIS1, DIMITRIS M. DIMOU1,3, LEONIDAS POUNTZAS4, DIMITRIS TZANOUDAKIS2 & GEORGIOS I. ZERVAKIS1* 1 [email protected], [email protected] Agricultural University of Athens, Lab. of General & Agricultural Microbiology Iera Odos 75, 11855 Athens, Greece 2 University of Patras, Dept. of Biology, Panepistimioupoli, 26500 Rion, Greece 3 Koritsas 10, 15343 Agia Paraskevi, Greece 4 Technological Educational Institute of Mesologgi, 30200 Mesologgi, Greece Abstract — Very scarce literature data are available on the macrofungi associated with sweet chestnut trees (Castanea sativa, Fagaceae). We report here the results of an inventory of basidiomycetes, which was undertaken in the region of Nafpactia Mts., central Greece. The investigated area, with woods dominated by C. sativa, was examined for the first time in respect to its mycodiversity. One hundred and four species belonging in 54 genera were recorded. Fifteen species (Conocybe pseudocrispa, Entoloma nitens, Lactarius glaucescens, Lichenomphalia velutina, Parasola schroeteri, Pholiotina coprophila, Russula alutacea, R. azurea, R. pseudoaeruginea, R. pungens, R. vitellina, Sarcodon glaucopus, Tomentella badia, T. fibrosa and Tubulicrinis sororius) are reported for the first time from Greece. In addition, 33 species constitute new habitats/hosts/substrates records. Key words — biodiversity, macromycete, Mediterranean, mushroom Introduction Castanea sativa Mill., Fagaceae (sweet chestnut) generally prefers north- facing slopes where the rainfall is greater than 600 mm, on moderately acid soils (pH 4.5–6.5) with a light texture. It covers ca. -
Russulas of Southern Vancouver Island Coastal Forests
Russulas of Southern Vancouver Island Coastal Forests Volume 1 by Christine Roberts B.Sc. University of Lancaster, 1991 M.S. Oregon State University, 1994 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Biology © Christine Roberts 2007 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47323-8 Our file Notre reference ISBN: 978-0-494-47323-8 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. -
Download Download
LITERATURE UPDATE FOR TEXAS FLESHY BASIDIOMYCOTA WITH NEW VOUCHERED RECORDS FOR SOUTHEAST TEXAS David P. Lewis Clark L. Ovrebo N. Jay Justice 262 CR 3062 Department of Biology 16055 Michelle Drive Newton, Texas 75966, U.S.A. University of Central Oklahoma Alexander, Arkansas 72002, U.S.A. [email protected] Edmond, Oklahoma 73034, U.S.A. [email protected] [email protected] ABSTRACT This is a second paper documenting the literature records for Texas fleshy basidiomycetous fungi and includes both older literature and recently published papers. We report 80 literature articles which include 14 new taxa described from Texas. We also report on 120 new records of fleshy basdiomycetous fungi collected primarily from southeast Texas. RESUMEN Este es un segundo artículo que documenta el registro de nuevas especies de hongos carnosos basidiomicetos, incluyendo artículos antiguos y recientes. Reportamos 80 artículos científicamente relacionados con estas especies que incluyen 14 taxones con holotipos en Texas. Así mismo, reportamos unos 120 nuevos registros de hongos carnosos basidiomicetos recolectados primordialmente en al sureste de Texas. PART I—MYCOLOGICAL LITERATURE ON TEXAS FLESHY BASIDIOMYCOTA Lewis and Ovrebo (2009) previously reported on literature for Texas fleshy Basidiomycota and also listed new vouchered records for Texas of that group. Presented here is an update to the listing which includes literature published since 2009 and also includes older references that we previously had not uncovered. The authors’ primary research interests center around gilled mushrooms and boletes so perhaps the list that follows is most complete for the fungi of these groups. We have, however, attempted to locate references for all fleshy basidio- mycetous fungi. -
Cadmium, Lead, Arsenic and Nickel in Wild Edible Mushrooms
THE FINNISH ENVIRONMENT 17 | 2006 ENVIRONMENTALYMPÄRISTÖN- Cadmium, lead, arsenic PROTECTIONSUOJELU and nickel in wild edible mushrooms Riina Pelkonen, Georg Alfthan and Olli Järvinen THE FINNISH ENVIRONMENT 17/2006 Cadmium, lead, arsenic and nickel in wild edible mushrooms Riina Pelkonen, Georg Alfthan and Olli Järvinen Helsinki 2006 Finnish Environment Institute THE FINNISH ENVIRONMENT 17 | 2006 Suomen ympäristökeskus Laboratorio Taitto: Callide/Terttu Halme Kansikuva(t): Riina Pelkonen Sisäsivujen kuvat: Figures 1 - 4: Copyright: Geologian tutkimuskeskus 1996 Figure 5: Suomen ympäristökeskus Julkaisu on saatavana myös internetistä: www.ymparisto.fi /julkaisut Edita Print Oy, Helsinki 2006 ISBN 952-11-2274-9 (nid.) ISBN 952-11-2275-7 (PDF) ISSN 1238-7312 (pain.) ISSN 1796-1637 (verkkoj.) PREFACE In Finland wild-growing products such as mushrooms and berries grow in abundance in forests and are traditionally used as a source of food by the Finns. Although the majority of edible mushrooms growing in Finnish forests are not consumed, picking mushrooms is a common activity for a large part of the population. Fungi are widely recognised to have a good nutritional value and in the recent years younger gener- ations in particular seem to have taken a culinary interest in mushrooms. As mushrooms may be freely picked and consumed there is no monitoring sys- tem to control the amounts of trace elements that enter the human body from the consumption of fungi. In Finland the levels of trace elements in fungi have not been extensively researched apart from the studies carried out in the turn of the 1970s and 1980s (Hinneri 1975, Laaksovirta & Alakuijala 1978, Laaksovirta & Lodenius 1979, Kuusi et al. -
Phylum Order Number of Species Number of Orders Family Genus Species Japanese Name Properties Phytopathogenicity Date Pref
Phylum Order Number of species Number of orders family genus species Japanese name properties phytopathogenicity date Pref. points R inhibition H inhibition R SD H SD Basidiomycota Polyporales 98 12 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-18 Kumamoto Haru, Kikuchi 40.4 -1.6 7.6 3.2 Basidiomycota Agaricales 171 1 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-16 Hokkaido Shari, Shari 74 39.3 2.8 4.3 Basidiomycota Agaricales 269 1 Agaricaceae Agaricus Agaricus arvensis シロオオハラタケ saprobic "-" 2000-09-25 Gunma Kawaba, Tone 87 49.1 2.4 2.3 Basidiomycota Polyporales 181 12 Agaricaceae Agaricus Agaricus bisporus ツクリタケ saprobic "-" 2004-04-16 Gunma Horosawa, Kiryu 36.2 -23 3.6 1.4 Basidiomycota Hymenochaetales 129 8 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-07-15 Gunma Hirai, Kiryu 64.4 44.4 9.6 4.4 Basidiomycota Polyporales 105 12 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-06-26 Nagano Minamiminowa, Kamiina 70.1 3.7 2.5 5.3 Basidiomycota Auriculariales 37 2 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2001-08-20 Fukushima Showa 67.9 37.8 0.6 0.6 Basidiomycota Boletales 251 3 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2000-09-25 Yamanashi Hakusyu, Hokuto 80.7 48.3 3.7 7.4 Basidiomycota Agaricales 9 1 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 85.9 68.1 1.9 3.1 Basidiomycota Hymenochaetales 129 8 Strophariaceae Agrocybe Agrocybe cylindracea ヤナギマツタケ saprobic "-" 2003-08-23 -
Fungal Diversity in the Mediterranean Area
Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
A Checklist of Clavarioid Fungi (Agaricomycetes) Recorded in Brazil
A checklist of clavarioid fungi (Agaricomycetes) recorded in Brazil ANGELINA DE MEIRAS-OTTONI*, LIDIA SILVA ARAUJO-NETA & TATIANA BAPTISTA GIBERTONI Departamento de Micologia, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, Recife 50670-420 Brazil *CORRESPONDENCE TO: [email protected] ABSTRACT — Based on an intensive search of literature about clavarioid fungi (Agaricomycetes: Basidiomycota) in Brazil and revision of material deposited in Herbaria PACA and URM, a list of 195 taxa was compiled. These are distributed into six orders (Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales) and 12 families (Aphelariaceae, Auriscalpiaceae, Clavariaceae, Clavulinaceae, Gomphaceae, Hymenochaetaceae, Lachnocladiaceae, Lentariaceae, Lepidostromataceae, Physalacriaceae, Pterulaceae, and Typhulaceae). Among the 22 Brazilian states with occurrence of clavarioid fungi, Rio Grande do Sul, Paraná and Amazonas have the higher number of species, but most of them are represented by a single record, which reinforces the need of more inventories and taxonomic studies about the group. KEY WORDS — diversity, taxonomy, tropical forest Introduction The clavarioid fungi are a polyphyletic group, characterized by coralloid, simple or branched basidiomata, with variable color and consistency. They include 30 genera with about 800 species, distributed in Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales (Corner 1970; Petersen 1988; Kirk et al. 2008). These fungi are usually humicolous or lignicolous, but some can be symbionts – ectomycorrhizal, lichens or pathogens, being found in temperate, subtropical and tropical forests (Corner 1950, 1970; Petersen 1988; Nelsen et al. 2007; Henkel et al. 2012). Some species are edible, while some are poisonous (Toledo & Petersen 1989; Henkel et al. 2005, 2011). Studies about clavarioid fungi in Brazil are still scarce (Fidalgo & Fidalgo 1970; Rick 1959; De Lamônica-Freire 1979; Sulzbacher et al. -
80130Dimou7-107Weblist Changed
Posted June, 2008. Summary published in Mycotaxon 104: 39–42. 2008. Mycodiversity studies in selected ecosystems of Greece: IV. Macrofungi from Abies cephalonica forests and other intermixed tree species (Oxya Mt., central Greece) 1 2 1 D.M. DIMOU *, G.I. ZERVAKIS & E. POLEMIS * [email protected] 1Agricultural University of Athens, Lab. of General & Agricultural Microbiology, Iera Odos 75, GR-11855 Athens, Greece 2 [email protected] National Agricultural Research Foundation, Institute of Environmental Biotechnology, Lakonikis 87, GR-24100 Kalamata, Greece Abstract — In the course of a nine-year inventory in Mt. Oxya (central Greece) fir forests, a total of 358 taxa of macromycetes, belonging in 149 genera, have been recorded. Ninety eight taxa constitute new records, and five of them are first reports for the respective genera (Athelopsis, Crustoderma, Lentaria, Protodontia, Urnula). One hundred and one records for habitat/host/substrate are new for Greece, while some of these associations are reported for the first time in literature. Key words — biodiversity, macromycetes, fir, Mediterranean region, mushrooms Introduction The mycobiota of Greece was until recently poorly investigated since very few mycologists were active in the fields of fungal biodiversity, taxonomy and systematic. Until the end of ’90s, less than 1.000 species of macromycetes occurring in Greece had been reported by Greek and foreign researchers. Practically no collaboration existed between the scientific community and the rather few amateurs, who were active in this domain, and thus useful information that could be accumulated remained unexploited. Until then, published data were fragmentary in spatial, temporal and ecological terms. The authors introduced a different concept in their methodology, which was based on a long-term investigation of selected ecosystems and monitoring-inventorying of macrofungi throughout the year and for a period of usually 5-8 years. -
<I>Neoalbatrellus Subcaeruleoporus</I>
ISSN (print) 0093-4666 © 2015. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/130.1191 Volume 130, pp. 1191–1202 October–December 2015 Neoalbatrellus subcaeruleoporus sp. nov. (Scutigeraceae) from western North America Serge Audet1* & Brian S. Luther2 11264, Gaillard, Québec, G3J 1J9, Canada 2 PSMS Office, Center for Urban Horticulture, University of Washington, Box 354115, Seattle, Washington 98195, U.S.A. * Corresponding author: [email protected] Abstract –Neoalbatrellus subcaeruleoporus is described as a new species. Its systematic position is supported by molecular and morphological analyses, and a key to the three Neoalbatrellus species is provided. A revised key to American and European species of Scutiger sensu lato (Albatrellopsis, Albatrellus, Laeticutis, Neoalbatrellus, Polypus, Polyporoletus, Polyporopsis, Scutiger s.s., Xanthoporus, and Xeroceps) is appended. Keywords –Albatrellaceae, caeruleoporus, correct family, genetic, Russulales Introduction The genus Neoalbatrellus was proposed by Audet (2010) and is distinguished from Albatrellus by the hymeniderm and the blue, black and brown colors of the basidiomata. Two species have been placed in Neoalbatrellus: N. caeruleoporus and N. yasudae (Audet 2010). Their trophic status is poorly understood and specific ectomycorrhizal host trees have not been confirmed, although N. caeruleoporus is often found underTsuga (Gilbertson & Ryvarden 1986). The presence of extracellular laccase has been reported in basidiomata of N. caeruleoporus (Marr et al. 1986). The closest genus to Neoalbatrellus is Albatrellopsis, based on molecular (ITS) and the dimeric meroterpenoid pigment, grifolinone B (Zhou & Liu 2010). The correct family for these genera is Scutigeraceae Bondartsev & Singer ex Singer 1969, a name that has priority over Albatrellaceae Nuss 1980 (Audet 2010: 439).