A New Explicit Way of Obtaining Special Generic Maps Into the 3

Total Page:16

File Type:pdf, Size:1020Kb

A New Explicit Way of Obtaining Special Generic Maps Into the 3 A NEW EXPLICIT WAY OF OBTAINING SPECIAL GENERIC MAPS INTO THE 3-DIMENSIONAL EUCLIDEAN SPACE NAOKI KITAZAWA Abstract. A special generic map is a smooth map regarded as a natural gen- eralization of Morse functions with just 2 singular points on homotopy spheres. Canonical projections of unit spheres are simplest examples of such maps and manifolds admitting special generic maps into the plane are completely deter- mined by Saeki in 1993 and ones admitting such maps into general Euclidean spaces are determined under appropriate conditions. Moreover, if the difference of dimensions of source and target manifolds are not so large, then the diffeomorphism types of source manifolds are often limited; for example, homotopy spheres except standard spheres do not admit special generic maps into Euclidean spaces whose dimensions arenot so low. As another example, 4-dimensional simply connected manifolds admitting special generic maps are only manifolds represented as the connected sum of the total spaces of 2-dimensional sphere bundles over the 2-dimensional sphere (or the 4-dimensional standard sphere) and there are many manifolds homeomorphic and not diffeomorphic to these manifolds. These explicit facts make special generic maps attractive objects in the theory of Morse functions and higher dimensional versions and application to algebraic and differentiable topology of manifolds, which is an important study in both singuarity theory of maps and algebraic and differential topology of manifolds. In this paper, we demonstrate a way of construction of special generic maps into the 3-dimensional Euclidean space. For this, first we prepare maps onto 2-dimensional polyhedra regarded as simplicial maps naturally called pseudo quotient maps, which are generalizations of the quotient maps to the spaces of all the connected components of inverse images, so-called Reeb spaces of original smooth maps, being fundamental and important tools in the studies. More precisely, we prepare specific pseudo quotient maps, locally construct maps onto 3-dimensional manifolds, glue them and realize the map as a special generic map into the 3-dimensional space. Most of the procedure for the construction is based on technique the author previously noticed and used in simpler situations. arXiv:1806.04581v4 [math.GT] 29 Nov 2018 The success of the construction explicitly shows that a class of maps which seems to cover a larger class of source manifolds may not be not so large and that the diffeomorphism types of source manifolds may be restricted as strongly as in the case of special generic maps. We also explain differential topological facts and problems related to this. 1. Introduction. 1.1. Backgrounds and fundamental tools. Morse functions and higher dimen- sional versions and application to algebraic and differentiable topology of manifolds 2010 Mathematics Subject Classification. Primary 57R45. Secondary 57N15. Key words and phrases. Singularities of differentiable maps; generic maps. Differential topology. 1 2 NAOKI KITAZAWA is an important study in both singularity theory of maps and algebraic and differ- ential topology of manifolds. A fold map is a smooth map such that each singular point is p is of the form m−i(p) 2 m 2 (x1, ··· , xm) 7→ (x1, ··· , xn−1, Pk=n xk − Pk=m−i(p)+1 xk ) for some integers m−n+1 m,n,i(p). i(p) is taken as a non-negative integer not larger than 2 uniquely and we call i(p) the index of p. The set of all the singular points of an index is a smooth submanifold of dimension n−1. Morse functions are regarded as fold maps. A fold map is stable or the C∞ equivalence classes of the maps are invariant under slight perturbations in the C∞ Whitney topology, if and only if the restriction to the set of all the singular points (of a fixed index), which are codimension 1 smooth immersions, are transversal. Note that for example, stable Morse functions or Morse functions such that at distinct singular points, the values are distinct, exist densely. For Morse functions, fold maps and stable maps etc., see [3] for example. For algebraic and differential topological properties of fold maps, see [22] for example. Special generic maps are fold maps indices of whose singular points are 0. They are regarded as simplest generalizations of Morse functions with just 2 singular points on homotopy spheres. Canonical projections of unit spheres are simplest examples of such maps and manifolds admitting special generic maps into the plane are completely determined by Saeki in 1993 [23], ones admitting such maps into general Euclidean spaces are determined under appropriate conditions and more precise facts have been shown. For example, if the difference of dimensions of source and target manifolds are not so large, then the diffeomorphism types of source manifolds are often limited; homotopy spheres except standard spheres do not admit special generic maps into Euclidean spaces whose dimensions are not so low. As another example, 4-dimensional simply connected and closed manifolds admitting special generic maps into R3 are only manifolds represented as the connected sum of the total spaces of smooth S2-bundles over the 2-dimensional sphere (or the 4- dimensional standard sphere) and there are many manifolds homeomorphic and not diffeomorphic to these manifolds; in [27] and [28], there are several 4-dimensional closed manifolds admitting fold maps into R3 and admitting no special generic maps into R3 homeomorphic to ones admitting special generic maps into R3. These facts make special generic maps attractive objects from the viewpoint of differential topology of smooth manifolds. 1.2. Contents of this paper. We define a normal spherical fold map. Definition 1. A stable fold map from a closed manifold of dimension m into Rn satisfying m ≥ n is said to be normal spherical (standard-spherical) if the inverse image of each regular value is a disjoint union of (resp. standard) spheres (or points) and the connected component containing a singular point of the inverse image of a small interval intersecting with the singular value set at once in its interior is either of the following. (1) The (m − n + 1)-dimensional standard closed disc. (2) A manifold PL homeomorphic to an (m − n + 1)-dimensional compact manifold obtained by removing the interior of three disjoint (m − n + 1)-dimensional smoothly embedded closed discs from the (m − n + 1)- dimensional standard sphere. OBTAINING SPECIAL GENERIC MAPS INTO THE 3-DIMENSIONAL SPACE 3 As a fundamental fact, this class includes special generic maps. Such fold maps are studied by Saeki and Suzuoka for example and for example, they can be ob- tained by projections of special generic maps by fundamental discussions of Saeki and Suzuoka [29]. Conversely, whether manifolds admitting such maps admit spe- cial generic maps into one dimensional higher Euclidean spaces is a natural and interesting problem, explicitly stated in the paper. Several answers have been given in [10] and [11] in the case of Morse functions. In this paper, we consider such maps and extended ones and by applying technique based on ideas useful for obtaining the shown theorems for several cases of Morse functions, we obtain special generic maps. As additional remarks, we explain about diffeomorphsim types of source manifolds admitting such maps: for example, we will present the discovered fact that classes of source manifolds are not so large as conjectured and related topics on differential topology of manifolds. This paper is organized as follows. In the next section, we review Reeb spaces and we define pseudo special generic maps and as general PL maps, pseudo quotient maps, which were first introduced in [12]. Pseudo special generic maps have been introduced also in [9] and [11]. They are fundamental objects in the paper. After introducing these maps, we perform construction of special generic maps into R3; this is a main result. Last, we explain remarks on differential topological meanings of the obtained result and related facts and problems. Throughout the paper, all the manifolds and maps between them and bundles over manifolds with fibers being manifolds etc. are smooth and of class C∞ un- less otherwise stated. We also note that maps between polyhedra are PL unless otherwise stated in the paper. Last, we call the set of all singular points of a smooth map the singular set of the map and we call the image of the singular set the singular value set. We call the set of all regular values the regular value set. 2. Reeb spaces, triangulable maps and two classes of maps on manifolds. 2.1. Reeb spaces and triangulable maps. We review Reeb spaces. For precise facts, see also [21] and introduced papers. Definition 2. Let X and Y be topological spaces. For points p1,p2 ∈ X and for a continuous map c : X → Y , we define as p1∼cp2 if and only if p1 and p2 are in the same connected component of c−1(p) for some p ∈ Y . The relation is an equivalence relation and we call the quotient space Wc := X/∼c the Reeb space of c. Example 1. (1) For a Morse function, the Reeb space is a graph. (2) For a special generic map, the Reeb space is regarded as an immersed compact manifold with a non-empty boundary whose dimension is same as that of the target manifold. The Reeb space of a special generic map is known to be contractible if and only if the source manifold is a homotopy sphere. It is also a fundamental and important property that the quotient map from the source manifold onto the Reeb space induces isomorphisms on homology groups whose degrees are not larger than the difference of the dimension of the source manifold and that of the target one.
Recommended publications
  • 1.10 Partitions of Unity and Whitney Embedding 1300Y Geometry and Topology
    1.10 Partitions of unity and Whitney embedding 1300Y Geometry and Topology Theorem 1.49 (noncompact Whitney embedding in R2n+1). Any smooth n-manifold may be embedded in R2n+1 (or immersed in R2n). Proof. We saw that any manifold may be written as a countable union of increasing compact sets M = [Ki, and that a regular covering f(Ui;k ⊃ Vi;k;'i;k)g of M can be chosen so that for fixed i, fVi;kgk is a finite ◦ ◦ cover of Ki+1nKi and each Ui;k is contained in Ki+2nKi−1. This means that we can express M as the union of 3 open sets W0;W1;W2, where [ Wj = ([kUi;k): i≡j(mod3) 2n+1 Each of the sets Ri = [kUi;k may be injectively immersed in R by the argument for compact manifolds, 2n+1 since they have a finite regular cover. Call these injective immersions Φi : Ri −! R . The image Φi(Ri) is bounded since all the charts are, by some radius ri. The open sets Ri; i ≡ j(mod3) for fixed j are disjoint, and by translating each Φi; i ≡ j(mod3) by an appropriate constant, we can ensure that their images in R2n+1 are disjoint as well. 0 −! 0 2n+1 Let Φi = Φi + (2(ri−1 + ri−2 + ··· ) + ri) e 1. Then Ψj = [i≡j(mod3)Φi : Wj −! R is an embedding. 2n+1 Now that we have injective immersions Ψ0; Ψ1; Ψ2 of W0;W1;W2 in R , we may use the original argument for compact manifolds: Take the partition of unity subordinate to Ui;k and resum it, obtaining a P P 3-element partition of unity ff1; f2; f3g, with fj = i≡j(mod3) k fi;k.
    [Show full text]
  • Simple Stable Maps of 3-Manifolds Into Surfaces
    Tqmlogy. Vol. 35, No. 3, pp. 671-698. 1996 Copyright 0 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 004@9383,96/315.00 + 0.00 0040-9383(95)ooo3 SIMPLE STABLE MAPS OF 3-MANIFOLDS INTO SURFACES OSAMU SAEKI~ (Receioedjiir publication 19 June 1995) 1. INTRODUCTION LETS: M3 -+ [w2 be a C” stable map of a closed orientable 3-manifold M into the plane. It is known that the local singularities off consist of three types: definite fold points, indefinite fold points and cusp points (for example, see [l, 91). Note that the singular set S(f) offis a smooth l-dimensional submanifold of M. In their paper [l], Burlet and de Rham have studied those stable maps which have only definite fold points as the singularities and have shown that the source manifolds of such maps, called special generic maps, must be diffeomorphic to the connected sum of S3 and some copies of S’ x S2 (see also [14,16]). On the other hand, Levine [9] has shown that we can eliminate the cusp points of any stable mapfby modifying it homotopically; i.e., every orientable 3-manifold admits a stable map into the plane without cusp points. In this paper we investigate an intermediate class of stable maps, namely simple ones [ 171. A stable mapf: M -+ R2 is simple iffhas no cusp points and if every component of the fiberf -l(x) contains at most one singular point for all x E [w’.In the terminology of [S, lo], fis simple if and only if it has no vertices.
    [Show full text]
  • Solving Variational Problems and Partial Differential Equations Mapping Into General Target Manifolds
    Journal of Computational Physics 195 (2004) 263–292 www.elsevier.com/locate/jcp Solving variational problems and partial differential equations mapping into general target manifolds Facundo Memoli a, Guillermo Sapiro a,*, Stanley Osher b a Electrical and Computer Engineering, University of Minnesota, 200 Union Street, Minneapolis, MN 55455, USA b UCLA Mathematics Department, Los Angeles, CA 90095, USA Received 6 May 2003; received in revised form 30 September 2003; accepted 4 October 2003 Abstract A framework for solving variational problems and partial differential equations that define maps onto a given ge- neric manifold is introduced in this paper. We discuss the framework for arbitrary target manifolds, while the domain manifold problem was addressed in [J. Comput. Phys. 174(2) (2001) 759]. The key idea is to implicitly represent the target manifold as the level-set of a higher dimensional function, and then implement the equations in the Cartesian coordinate system where this embedding function is defined. In the case of variational problems, we restrict the search of the minimizing map to the class of maps whose target is the level-set of interest. In the case of partial differential equations, we re-write all the equationÕs geometric characteristics with respect to the embedding function. We then obtain a set of equations that, while defined on the whole Euclidean space, are intrinsic to the implicitly defined target manifold and map into it. This permits the use of classical numerical techniques in Cartesian grids, regardless of the geometry of the target manifold. The extension to open surfaces and submanifolds is addressed in this paper as well.
    [Show full text]
  • DIFFERENTIABLE MANIFOLDS Course C3.1B 2012 Nigel Hitchin
    DIFFERENTIABLE MANIFOLDS Course C3.1b 2012 Nigel Hitchin [email protected] 1 Contents 1 Introduction 4 2 Manifolds 6 2.1 Coordinate charts . .6 2.2 The definition of a manifold . .9 2.3 Further examples of manifolds . 11 2.4 Maps between manifolds . 13 3 Tangent vectors and cotangent vectors 14 3.1 Existence of smooth functions . 14 3.2 The derivative of a function . 16 3.3 Derivatives of smooth maps . 20 4 Vector fields 22 4.1 The tangent bundle . 22 4.2 Vector fields as derivations . 26 4.3 One-parameter groups of diffeomorphisms . 28 4.4 The Lie bracket revisited . 32 5 Tensor products 33 5.1 The exterior algebra . 34 6 Differential forms 38 6.1 The bundle of p-forms . 38 6.2 Partitions of unity . 39 6.3 Working with differential forms . 41 6.4 The exterior derivative . 43 6.5 The Lie derivative of a differential form . 47 6.6 de Rham cohomology . 50 2 7 Integration of forms 57 7.1 Orientation . 57 7.2 Stokes' theorem . 62 8 The degree of a smooth map 68 8.1 de Rham cohomology in the top dimension . 68 9 Riemannian metrics 76 9.1 The metric tensor . 76 9.2 The geodesic flow . 80 10 APPENDIX: Technical results 87 10.1 The inverse function theorem . 87 10.2 Existence of solutions of ordinary differential equations . 89 10.3 Smooth dependence . 90 10.4 Partitions of unity on general manifolds . 93 10.5 Sard's theorem (special case) . 94 3 1 Introduction This is an introductory course on differentiable manifolds.
    [Show full text]
  • Title Topology of Manifolds and Global Theory of Singularities
    Topology of manifolds and global theory of singularities Title (Theory of singularities of smooth mappings and around it) Author(s) Saeki, Osamu Citation 数理解析研究所講究録別冊 (2016), B55: 185-203 Issue Date 2016-04 URL http://hdl.handle.net/2433/241312 © 2016 by the Research Institute for Mathematical Sciences, Right Kyoto University. All rights reserved. Type Departmental Bulletin Paper Textversion publisher Kyoto University RIMS Kôkyûroku Bessatsu B55 (2016), 185−203 Topology of manifolds and global theory of singularities By Osamu SAeKI* Abstract This is a survey article on topological aspects of the global theory of singularities of differentiable maps between manifolds and its applications. The central focus will be on the notion of the Stein factorization, which is the space of connected components of fibers of a given map. We will give some examples where the Stein factorization plays essential roles in proving important results. Some related open problems will also be presented. §1. Introduction This is a survey article on the global theory of singularities of differentiable maps between manifolds and its applications, which is based on the authors talk in the RIMS Workshop (Theory of singularities of smooth mappings and around it, held in November 2013. Special emphasis is put on the Stein factorization, which is the space of connected components of fibers of a given map between manifolds. We will see that it often gives rise to a good manifold which bounds the original source manifold, and that it is a source of various interesting topological invariants of manifolds. We start with the study of a class of smooth maps that have the mildest singular‐ ities, i.e.
    [Show full text]
  • Relative Energy Gap for Harmonic Maps of Riemann Surfaces Into Real
    RELATIVE ENERGY GAP FOR HARMONIC MAPS OF RIEMANN SURFACES INTO REAL ANALYTIC RIEMANNIAN MANIFOLDS PAUL M. N. FEEHAN Abstract. We extend the well-known Sacks–Uhlenbeck energy gap result [34, Theorem 3.3] for harmonic maps from closed Riemann surfaces into closed Riemannian manifolds from the case of maps with small energy (thus near a constant map), to the case of harmonic maps with high absolute energy but small energy relative to a reference harmonic map. Contents 1. Introduction 1 1.1. Outline of the article 3 1.2. Acknowledgments 3 2.Lojasiewicz–Simon gradient inequality for the harmonic map energy function 3 3. A priori estimate for the difference of two harmonic maps 7 References 9 1. Introduction Let (M, g) and (N, h) be a pair of smooth Riemannian manifolds, with M orientable. One defines the harmonic map energy function by 1 (1.1) E (f) := df 2 d vol , g,h 2 | |g,h g ZM for smooth maps, f : M N, where df : T M TN is the differential map. A map f arXiv:1609.04668v4 [math.AP] 1 Feb 2018 ∞ → → E E ′ ∈ C (M; N) is (weakly) harmonic if it is a critical point of g,h, so g,h(f)(u) = 0 for all u ∞ ∗ ∈ C (M; f TN), where ′ E (f)(u)= df, u d vol . g,h h ig,h g ZM The purpose of this article is to prove Theorem 1 (Relative energy gap for harmonic maps of Riemann surfaces into real analytic Riemannian manifolds). Let (M, g) be a closed Riemann surface and (N, h) a closed, real analytic Riemannian manifold equipped with a real analytic isometric embedding into a Euclidean space, Date: This version: February 1, 2018, incorporating final galley proof corrections.
    [Show full text]
  • Constructing Generic Smooth Maps of a Manifold Into a Surface with Prescribed Singular Loci Annales De L’Institut Fourier, Tome 45, No 4 (1995), P
    ANNALES DE L’INSTITUT FOURIER OSAMU SAEKI Constructing generic smooth maps of a manifold into a surface with prescribed singular loci Annales de l’institut Fourier, tome 45, no 4 (1995), p. 1135-1162 <http://www.numdam.org/item?id=AIF_1995__45_4_1135_0> © Annales de l’institut Fourier, 1995, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 45, 4 (1995), 1135-1162 CONSTRUCTING GENERIC SMOOTH MAPS OF A MANIFOLD INTO A SURFACE WITH PRESCRIBED SINGULAR LOCI by Osamu SAEKI 1. Introduction. Let / : M —>• N be a smooth map of an n-dimensional manifold M (n >, 2) into a surface N. It has been known that if / is generic enough, then / has only folds and cusps as its singularities and that the singular set S(f) is a closed 1-dimensional submanifold of M (see [W], [T], [L2], [L3]). It is a very important problem in the study of the global topology of generic maps to study the position of their singular set (see [T], Chap. IV and V, and [E2], §1). When M is closed, S(f) represents a 1-dimensional homology class in Zs-coefficients and this class has been studied by Thorn [T], who described its Poincare dual in terms of the Stiefel-Whitney classes of TM and f*TN.
    [Show full text]
  • ON MINIMAL MAPS of 2-MANIFOLDS 1. Introduction
    ON MINIMAL MAPS OF 2-MANIFOLDS ALEXANDER BLOKH, LEX OVERSTEEGEN, AND E. D. TYMCHATYN Abstract. We prove that a minimal self-mapping of a compact 2-manifold has tree-like fibers (i.e. all points have preimages which are connected, at most 1-dimensional and with trivial shape). We also prove that the only 2-manifolds (compact or not) which admit minimal maps are either finite unions of tori, or finite unions of Klein bottles. 1. Introduction Minimal maps are one of the main topics of topological dynamics (see e.g. [AU88, Br79, deV93]). A map f : X → X is minimal provided for each x ∈ X the orbit O(x) = {x, f(x), f 2(x),... } is dense in X. For compact spaces this is equivalent to: there exists no proper closed non-empty subset A ⊂ X such that f(A) = A. An excellent brief introduction into a number of problems related to minimal maps can be found in recent papers [Brkosn03] and [KST00]. One basic problem is whether a given space admits a minimal map or a minimal homeomorphism (see e.g. [Brkosn03, E64, E64, GW79, P74]). Another question, due to Auslander ([AG68], p. 514) is whether on a given space there exist minimal maps which are not homeomorphisms (it is now known that in general such maps exist, see e.g. [AY80, Ree79] as well as [KST00] in which a nice construction using ideas from [Ree79] is suggested). A number of results deal with the case when the space is a Cantor set. For example, in one-dimension it turns out that restrictions of interval maps on the so-called “wild attractors” (whose existence is proven in [BKNS96]) must be minimal [L91], and in the case of negative Schwarzian maps they must be minimal maps of specific type [BL91, BM98]; in all these cases the wild attractor on which the map is minimal is a Cantor set.
    [Show full text]
  • Derived Differential Geometry
    Orbifold groups, tangent and obstruction spaces Immersions, embeddings and d-submanifolds Differential Geometry of derived manifolds and orbifolds Embedding derived manifolds into manifolds Fibre products of derived manifolds and orbifolds Submersions Orientations Derived Differential Geometry Lecture 9 of 14: Differential Geometry of derived manifolds and orbifolds Dominic Joyce, Oxford University Summer 2015 These slides, and references, etc., available at http://people.maths.ox.ac.uk/∼joyce/DDG2015 1 / 48 Dominic Joyce, Oxford University Lecture 9: Differential geometry of derived manifolds Orbifold groups, tangent and obstruction spaces Immersions, embeddings and d-submanifolds Differential Geometry of derived manifolds and orbifolds Embedding derived manifolds into manifolds Fibre products of derived manifolds and orbifolds Submersions Orientations Plan of talk: 9 Differential Geometry of derived manifolds and orbifolds 9.1 Orbifold groups, tangent and obstruction spaces 9.2 Immersions, embeddings and d-submanifolds 9.3 Embedding derived manifolds into manifolds 9.4 Submersions 9.5 Orientations 2 / 48 Dominic Joyce, Oxford University Lecture 9: Differential geometry of derived manifolds Orbifold groups, tangent and obstruction spaces Immersions, embeddings and d-submanifolds Differential Geometry of derived manifolds and orbifolds Embedding derived manifolds into manifolds Fibre products of derived manifolds and orbifolds Submersions Orientations 9. Differential Geometry of derived manifolds and orbifolds Here are some important topics in
    [Show full text]
  • Assembly Maps in Bordism-Type Theories
    Assembly maps in bordism-type theories Frank Quinn Preface This paper is designed to give a careful treatment of some ideas which have been in use in casual and imprecise ways for quite some time, partic- ularly some introduced in my thesis. The paper was written in the period 1984{1990, so does not refer to recent applications of these ideas. The basic point is that a simple property of manifolds gives rise to an elaborate and rich structure including bordism, homology, and \assembly maps." The essential property holds in many constructs with a bordism fla- vor, so these all immediately receive versions of this rich structure. Not ev- erything works this way. In particular, while bundle-type theories (including algebraic K-theory) also have assembly maps and similar structures, they have them for somewhat di®erent reasons. One key idea is the use of spaces instead of sequences of groups to orga- nize invariants and obstructions. I ¯rst saw this idea in 1968 lecture notes by Colin Rourke on Dennis Sullivan's work on the Hauptvermutung ([21]). The idea was expanded in my thesis [14] and article [15], where \assembly maps" were introduced to study the question of when PL maps are ho- motopic to block bundle projections. This question was ¯rst considered by Andrew Casson, in the special case of bundles over a sphere. The use of ob- struction spaces instead of groups was the major ingredient of the extension to more general base spaces. The space ideas were expanded in a di®erent direction by Buoncristiano, Rourke, and Sanderson [4], to provide a setting for generalized cohomology theories.
    [Show full text]
  • Applications of Partial Differential Equations to Problems in Geometry
    Applications of Partial Differential Equations To Problems in Geometry Jerry L. Kazdan Preliminary revised version Copyright c 1983, 1993 by Jerry L. Kazdan ° Preface These notes are from an intensive one week series of twenty lectures given to a mixed audience of advanced graduate students and more experienced mathematicians in Japan in July, 1983. As a consequence, these they are not aimed at experts, and are frequently quite detailed, especially in Chapter 6 where a variety of standard techniques are presented. My goal was to in- troduce geometers to some of the techniques of partial differential equations, and to introduce those working in partial differential equations to some fas- cinating applications containing many unresolved nonlinear problems arising in geometry. My intention is that after reading these notes someone will feel that they can cope with current research articles. In fact, the quite sketchy Chapter 5 and Chapter 6 are merely intended to be advertisements to read the complete details in the literature. When writing something like this, there is the very real danger that the only people who understand anything are those who already know the subject. Caveat emptor. In any case, I hope I have shown that if one assumes a few basic results on Sobolev spaces and elliptic operators, then the basic techniques used in the applications are comprehensible. Of course carrying out the details for any specific problem may be quite complicated—but at least the ideas should be clearly recognizable. These notes definitely do not represent the whole subject. I did not have time to discuss a number of beautiful applications such as minimal surfaces, harmonic maps, global isometric embeddings (including the Weyl and Minkowski problems as well as Nash’s theorem), Yang-Mills fields, the wave equation and spectrum of the Laplacian, and problems on compact manifolds with boundary or complete non-compact manifolds.
    [Show full text]
  • HARMONIC MAPPINGS BETWEEN RIEMANNIAN MANIFOLDS by Anand Arvind Joshi a Thesis Presented to the FACULTY of the GRADUATE SCHOOL UN
    HARMONIC MAPPINGS BETWEEN RIEMANNIAN MANIFOLDS by Anand Arvind Joshi A Thesis Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree MASTER OF ARTS (MATHEMATICS) August 2006 Copyright 2006 Anand Arvind Joshi Dedication I dedicate this thesis to my parents Arvind and Suvarna Joshi. ii Table of Contents Dedication ii Abstract iv 1 Harmonic Mappings 1 1.1 SpaceofMaps............................... 1 1.2 ConnectionsintheSpaceofMaps . 4 1.3 TheFirstVariationFormula. 11 1.4 HarmonicMaps.............................. 16 2 The Heat Flow Method 18 2.1 TheEellsSampsonTheorem . 18 2.2 TheHeatFlowMethod .......................... 19 3 Existence of Local and Global Solutions 31 3.1 ExistenceofLocalSolutions . 31 3.2 ExistenceofGlobalTime-DependentSolutions . ..... 43 Bibliography 48 Appendices 49 A Holder¨ Spaces and Some Results on PDEs 49 A.1 H¨olderSpaces............................... 49 A.2 SomeResultsonPDEs .......................... 51 A.3 Fr´echetDerivative.. .. .. .. .. .. .. .. 53 iii Abstract Harmonic mappings between two Riemannian manifolds is an object of extensive study, due to their wide applications in mathematics, science and engineering. Proving the existence of such mappings is challenging because of the non-linear nature of the cor- responding partial differential equations. This thesis is an exposition of a theorem by Eells and Sampson, which states that any given map from a Riemannian manifold to a Riemannian manifold with non-positive sectional curvature can be freely homotoped to a harmonic map. In particular, this proves the existence of harmonic maps between such manifolds. The technique used for the proof is the heat-flow method. iv Chapter 1 Harmonic Mappings In this chapter we define and discuss harmonic mappings.
    [Show full text]