Heavy Element Abundances in Ionized Nebulae

Total Page:16

File Type:pdf, Size:1020Kb

Heavy Element Abundances in Ionized Nebulae H e a v y E l e m e n t A b u n d a n c e s in I o n ized N e b u l a e loannis Tsamis A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University of London University College London University of London UCL 2002 ProQuest Number: U641824 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U641824 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 A(^iepov Tm, TiTovç joi>SL(; pov Teuj'pyto nai Qeone pTrrp^ y ta TO (£LU ceAAa KaL t o e v (^Siv. Etti ap<; g t o v aôep^po pov Mavuj \p pe evxs Ç yicn pia K,aXp aTaSioSpopi a ! Alla Silvia per tutto il sostegno e ramore. Et77 pup pp Tpç Tiayiaç. A b s t r a c t Optical recombination-line (ORL) abundances for carbon, nitrogen, and oxygen, relative to hydrogen, are presented for 12 Galactic planetary nebulae (PN) and 3 Magellanic Cloud PN (LMC N141, LMC N66 & SMC N87) and an extensive comparison with the corresponding abundances derived from UV {lUE), optical and IR {IRAS, ISO) collisionally-excited lines (CELs) is performed. Two extreme nebulae, NGC2022 and LMC N66, are exposed that exhibit very discordant - ORL versus CEL - abundances; by a factor of > 10 for the O^"*" ion. The Type I PN NGC2440 is revealed to have discrepancy factors similar to those of the pre­ viously studied NGC7009 and M 2-36. Along with previous results it is shown that ORL/CEL ionic abundance enhancements differ among nebulae, spanning a range from ~ 1.5 to > 20. There are indications that the C /0, N /0 elemental ra­ tios derived from ORLs may be larger that the corresponding CEL ratios, hinting at an origin for the two types of line from nebular material of dissimilar chemical history. The abundance enhancements of doubly ionized C, N and O are positively correlated with the difference (AT) between the Baimer recombination continuum and [O III] forbidden-line temperatures, suggesting that temperature variations, real or induced, are partly to blame for the discrepancies. The relative unifor­ mity, however, of the overabundance patterns and lack of consistent correlation with CEL excitation energies point away from Peimbert-type, simple temperature fluctuations as the cause of the problem. Recent results by Garnett & Dinerstein (2000) are confirmed, showing that the abundance discrepancies are: i) anticor­ related with the intrinsic nebular surface brightness, and ii) positively correlated with PN absolute radii, i.e. young, bright nebulae display less abundance discrep­ ancies than older, more extended ones. It is further shown however, that very sim­ ilar correlations exist between AT and the nebular radii and surface brightnesses, suggesting that fainter, more extended objects are more likely to have temperature discrepancies than brighter, smaller ones. These findings strongly indicate that the long-standing ORL/CEL abundance discrepancy problem is associated with the evolution of PN. Optical spectra of five H II regions, two within the Galaxy (M 17 and NGC 3576) and three in the Magellanic Clouds (30 Doradus, LMC N llB and SMC N66) were analyzed. The ORL/CEL discrepancy factors for the 0^+ ion are found for the first time to be in the range of 2-5, thus placing these objects in the abundance discrepancy regime of PN. For the first time also ORL/CEL discrepancies are doc­ umented for extragalactic Hll regions. Accurate, temperature-insensitive ORL C2+ /o 2+ ratios are derived for all five nebulae, showing remarkable agreement within each galactic system. A cknowledgements I’d like to thank Mike Barlow for taking me on this project, ensuring that it was not left unfinished by sustaining me through my fourth year and then declaring that my thesis is a joy to read (I leave that to the reader); also for making possible the trip to ESO’s mountaintop on La Silla, Chile, where I checked for myself the round Earth hypothesis by observing the southern sky.. .only I forgot to put that in my thesis. He is also thanked for advice on the analysis of H II regions spectra and for other bits of astronomical information. Mike in short is a European student’s ideal supervisor, mainly because he won’t let you give up, once your studentship evaporates right on time when you thought you’ve got a thesis at last. I would therefore strongly recommend Mike in case he wanted to become Departmental chairman, provost or European Commissioner (since he’s not a euro-sceptic). Next I’d like to thank Xiaowei Liu and Pete Storey; the former mainly for the loan of his customized MIDAS line-fitting routine that made my life a lot simpler and the latter for letting me use his nebular optimization code that made Chapter 3 possible. Paul Crowther is also thanked for advice on the spectral characteristics of OB and WR stars. I hope all the people in Physics & Astronomy who did their PhDs at roughly the same time when I did mine, go on to do something even more rewarding after it’s all over; and that the Perren Fund continues as a financial support for non-UK students. Silvia wants to be acknowledged too, so let me say it here that I have no pity for her would be thesis advisor in Guildford whose project she dumped (after having pocketed his 1st semester grants in a typical Italian way) and so she came to cool atoms in UCL and to meet me. These last 2.5 years in London wouldn’t have been so cool - and hot! - otherwise. Finally, and most importantly, I thank my family in Thessaloniki, Greece for their love and support through all this experience. C o n t e n t s List of Figures 8 List of Tables 10 1 Introduction 13 1.1 Physical processes in photoionized nebulae ........................................... 14 1.1.1 Photoionization ................................................................................ 14 1.1.2 Radiative recombination and line emission ............................... 17 1.1.3 Dielectronic recombination ......................................................... 19 1.1.4 Collisionally excited line emission ................................................ 19 1.2 Determination of electron densities and temperatures in nebulae . 22 1.2.1 Ne, Te determinations from CELs ................................................ 22 1.2.2 Ne, Te determinations from HI Baimer lines and optical con­ tinuum measurements.................................................................. 26 1.3 Determination of elemental abundances in nebulae ......................... 28 1.3.1 Derivation from observations of C E L s ...................................... 28 1.3.2 Derivation from observations of O R L s ...................................... 29 1.3.2.1 H e liu m ........................................................................... 29 1.3.2.2 Heavier elements: Carbon, Nitrogen, Oxygen, and N e o n ............................................................................... 30 CONTENTS 1.3.3 Temperature and density variations in nebulae: implications on abundance determinations .................................................... 31 1.4 Interstellar extinction ............................................................................... 35 1.4.1 The derivation of c (H /3 ) .............................................................. 38 1.5 Aims of this thesis and outline ............................................................... 38 2 Elemental Abundances in Galactic and Magellanic Cloud Plane­ tary Nebulae 40 2.1 Optical Observations .................................................................................. 40 2.1.1 D ata re d u c tio n ............................................................................... 43 2.2 The lUE observations ............................................................................... 47 2.3 D ata a n a ly sis ............................................................................................... 48 2.4 Nebular A n aly sis ........................................................................................ 52 2.4.1 Reddening ......................................................................................... 52 2.4.2 Nebular Diagnostics ..................................................................... 54 2.4.2.1 Electron D en sities ....................................................... 55 2.4.2.2 Electron Temperatures .............................................. 57 2.4.2.3 Recombination excitation of the N II and O II au­ roral lines ........................................................................ 58 2.4.2.4 Baimer discontinuity electron temperatures .... 63 2.5 Elemental abundances from CELs ........................................................ 64 2.6 Ionic Abundances from O R L s .................................................................. 71 2.6.1 Helium ............................................................................................ 72 2.6.2 C2+/H+, C3+/H+ and C^+/H+ .................................................. 72 2.6.3 N2+/H+, N^+/H+ and /E + .................................................. 76 2.6.4 0 2 + /H + ...........................................................................................
Recommended publications
  • Multi-Generation Massive Star-Formation in NGC 3576
    A&A 504, 139–159 (2009) Astronomy DOI: 10.1051/0004-6361/200811358 & c ESO 2009 Astrophysics Multi-generation massive star-formation in NGC 3576 C. R. Purcell1,2, V. Minier3,4, S. N. Longmore2,5,6, Ph. André3,4,A.J.Walsh2,7,P.Jones2,8,F.Herpin9,10, T. Hill2,11,12, M. R. Cunningham2, and M. G. Burton2 1 Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK e-mail: [email protected] 2 School of Physics, University of New South Wales, Sydney, NSW 2052, Australia 3 CEA, DSM, IRFU, Service d’Astrophysique, 91191 Gif-sur-Yvette, France 4 Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, IRFU/Service d’Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette, France 5 Harvard-Smithsonian Centre For Astrophysics, 60 Garden Street, Cambridge, MA, 02138, USA 6 CSIRO Australia Telescope National Facillity, PO Box 76, Epping, NSW 1710, Australia 7 Centre for Astronomy, James Cook University, Townsville, QLD 4811, Australia 8 Departmento de Astronoma, Universidad de Chile, Casilla 36-D, Santiago, Chile 9 Université de Bordeaux, Laboratoire d’Astrophysique de Bordeaux, 33000 Bordeaux, France 10 CNRS/INSU, UMR 5804, BP 89, 33271 Floirac Cedex, France 11 School of Physics, University of Exeter, Stocker Road, EX4 4QL, Exeter, UK 12 Leiden Observatory, Leiden University, PO BOX 9513, 2300 RA Leiden, the Netherlands Received 16 November 2008 / Accepted 3 July 2009 ABSTRACT Context. Recent 1.2-mm continuum observations have shown the giant H II region NGC 3576 to be embedded in the centre of an extended filamentary dust-cloud.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • An X-Ray Tour of Massive Star-Forming Regions with Chandra
    An X-ray Tour of Massive Star-forming Regions with Chandra By LEISA K. TOWNSLEY1 1 Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA The Chandra X-ray Observatory is providing fascinating new views of massive star-forming re- gions, revealing all stages in the life cycles of massive stars and their effects on their surroundings. I present a Chandra tour of some of the most famous of these regions: M17, NGC 3576, W3, Tr14 in Carina, and 30 Doradus. Chandra highlights the physical processes that characterize the lives of these clusters, from the ionizing sources of ultracompact HII regions (W3) to superbubbles so large that they shape our views of galaxies (30 Dor). X-ray observations usually reveal hundreds of pre-main sequence (lower-mass) stars accompanying the OB stars that power these great HII region complexes, although in one case (W3 North) this population is mysteriously absent. The most massive stars themselves are often anomalously hard X-ray emitters; this may be a new indicator of close binarity. These complexes are sometimes suffused by soft diffuse X-rays (M17, NGC 3576), signatures of multi-million-degree plasmas created by fast O-star winds. In older regions we see the X-ray remains of the deaths of massive stars that stayed close to their birthplaces (Tr14, 30 Dor), exploding as cavity supernovae within the superbubbles that these clusters created. 1. Revealing the Life Cycle of a Massive Stellar Cluster High-resolution X-ray images from the Chandra X-ray Observatory and XMM-Newton elucidate all stages in the life cycles of massive stars – from ultracompact HII (UCHII) regions to supernova remnants – and the effects that those massive stars have on their surroundings.
    [Show full text]
  • MUSE Commissioning
    Telescopes and Instrumentation MUSE Commissioning Roland Bacon1 The Multi Unit Spectroscopic Explorer reach MUSE from the star’s surface, but Joel Vernet2 (MUSE) is now in Paranal and was it is also the duration of the project, which Elena Borisiva3 installed on the VLT’s Unit Telescope 4 started in 2001 when the consortium Nicolas Bouché4 in January 2014. MUSE enters science answered the ESO call for ideas for sec- Jarle Brinchmann5 operations in October. A short summary ond generation VLT instrumentation. Marcella Carollo3 of the commissioning activities and Sci- David Carton5 ence Verification are presented. Some Joseph Caruana7 examples of the first results achieved Commissioning Susana Cerda2 during the two commissioning runs are Thierry Contini4 highlighted. After some technical half nights to finalise Marijn Franx5 the instrument’s alignment on the tele- Marianne Girard4 scope, the first commissioning period Adrien Guerou4,2 The Multi Unit Spectroscopic Explorer started. During 15 nights, from 7 to Nicolas Haddad2 (MUSE) is a second generation Very 21 February 2014, functional tests and George Hau2 Large Telescope (VLT) instrument for performance assessments were per- Christian Herenz7 integral field spectroscopy in the optical formed. From the first minute, MUSE Juan Carlos Herrera2 range (460–940 nm). It has two modes worked as expected and the whole run Bernd Husemann2 with different fields of view: 1 by 1 arc- went very smoothly, with no down time. Tim-Oliver Husser6 minutes at a spatial sampling of 0.2 arc- Aurélien Jarno1 seconds; and, when coupled to the The performance, as anticipated by the Sebastian Kamann6 Adaptive Optics Facility, a laser tomogra- laboratory measurements, is excellent Davor Krajnovic7 phy adaptive optics assisted mode with a and in general, much better than the Simon Lilly3 field of 7.5 by 7.5 arcseconds (with original specifications.
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • SAC's 110 Best of the NGC
    SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog.
    [Show full text]
  • Catalogue of Excitation Classes P for 750 Galactic Planetary Nebulae
    Catalogue of Excitation Classes p for 750 Galactic Planetary Nebulae Name p Name p Name p Name p NeC 40 1 Nee 6072 9 NeC 6881 10 IC 4663 11 NeC 246 12+ Nee 6153 3 NeC 6884 7 IC 4673 10 NeC 650-1 10 Nee 6210 4 NeC 6886 9 IC 4699 9 NeC 1360 12 Nee 6302 10 Nee 6891 4 IC 4732 5 NeC 1501 10 Nee 6309 10 NeC 6894 10 IC 4776 2 NeC 1514 8 NeC 6326 9 Nee 6905 11 IC 4846 3 NeC 1535 8 Nee 6337 11 Nee 7008 11 IC 4997 8 NeC 2022 12 Nee 6369 4 NeC 7009 7 IC 5117 6 NeC 2242 12+ NeC 6439 8 NeC 7026 9 IC 5148-50 6 NeC 2346 9 NeC 6445 10 Nee 7027 11 IC 5217 6 NeC 2371-2 12 Nee 6537 11 Nee 7048 11 Al 1 NeC 2392 10 NeC 6543 5 Nee 7094 12 A2 10 NeC 2438 10 NeC 6563 8 NeC 7139 9 A4 10 NeC 2440 10 NeC 6565 7 NeC 7293 7 A 12 4 NeC 2452 10 NeC 6567 4 Nee 7354 10 A 15 12+ NeC 2610 12 NeC 6572 7 NeC 7662 10 A 20 12+ NeC 2792 11 NeC 6578 2 Ie 289 12 A 21 1 NeC 2818 11 NeC 6620 8 IC 351 10 A 23 4 NeC 2867 9 NeC 6629 5 Ie 418 1 A 24 1 NeC 2899 10 Nee 6644 7 IC 972 10 A 30 12+ NeC 3132 9 NeC 6720 10 IC 1295 10 A 33 11 NeC 3195 9 NeC 6741 9 IC 1297 9 A 35 1 NeC 3211 10 NeC 6751 9 Ie 1454 10 A 36 12+ NeC 3242 9 Nee 6765 10 IC1747 9 A 40 2 NeC 3587 8 NeC 6772 9 IC 2003 10 A 41 1 NeC 3699 9 NeC 6778 9 IC 2149 2 A 43 2 NeC 3918 9 NeC 6781 8 IC 2165 10 A 46 2 NeC 4071 11 NeC 6790 4 IC 2448 9 A 49 4 NeC 4361 12+ NeC 6803 5 IC 2501 3 A 50 10 NeC 5189 10 NeC 6804 12 IC 2553 8 A 51 12 NeC 5307 9 NeC 6807 4 IC 2621 9 A 54 12 NeC 5315 2 NeC 6818 10 Ie 3568 3 A 55 4 NeC 5873 10 NeC 6826 11 Ie 4191 6 A 57 3 NeC 5882 6 NeC 6833 2 Ie 4406 4 A 60 2 NeC 5879 12 NeC 6842 2 IC 4593 6 A
    [Show full text]
  • 00E the Construction of the Universe Symphony
    The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope
    [Show full text]
  • Abundances of Planetary Nebulae IC 418, IC 2165 and NGC 5882
    A&A 423, 593–605 (2004) Astronomy DOI: 10.1051/0004-6361:20040413 & c ESO 2004 Astrophysics Abundances of Planetary Nebulae IC 418, IC 2165 and NGC 5882 S. R. Pottasch1, J. Bernard-Salas1,2,3,D.A.Beintema1,2,andW.A.Feibelman3 1 Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands e-mail: [email protected] 2 SRON Laboratory for Space Research, PO Box 800, 9700 AV Groningen, The Netherlands 3 Center for Radiophysics and Space Research, Cornell University, 219 Space Sciences Building, Ithaca, NY-14850-6801, USA 4 Laboratory for Astronomy and Solar Physics, Code 681, Goddard Space Flight Center, MD, USA Received 9 March 2004 / Accepted 14 May 2004 Abstract. The ISO and IUE spectra of the elliptical nebulae NGC 5882, IC 418 and IC 2165 are presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous determinations. A discussion is given of: (1) the recombination line abundances; (2) the exciting stars of the nebulae; and (3) possible evolutionary effects. Key words. ISM: abundances – ISM: planetary nebulae: individual: NGC 5882; IC 418; IC 2165 – infrared: ISM 1. Introduction been discussed in earlier papers (e.g. see Pottasch & Beintema 1999; Pottasch et al. 2000, 2001; Bernard Salas et al. 2001), IC 418, IC 2165 and NGC 5882 are morphologically quite sim- and can be summarized as follows. ilar; they are usually classified as elliptical in shape, and they are located rather far from the galactic plane, which is prob- The most important advantage is that the infrared lines orig- ably an indication that they have been formed from low mass inate from very low energy levels and thus give an abundance stars.
    [Show full text]
  • SAA 100 Club
    S.A.A. 100 Observing Club Raleigh Astronomy Club Version 1.2 07-AUG-2005 Introduction Welcome to the S.A.A. 100 Observing Club! This list started on the USENET newsgroup sci.astro.amateur when someone asked about everyone’s favorite, non-Messier objects for medium sized telescopes (8-12”). The members of the group nominated objects and voted for their favorites. The top 100 objects, by number of votes, were collected and ranked into a list that was published. This list is a good next step for someone who has observed all the objects on the Messier list. Since it includes objects in both the Northern and Southern Hemispheres (DEC +72 to -72), the award has two different levels to accommodate those observers who aren't able to travel. The first level, the Silver SAA 100 award requires 88 objects (all visible from North Carolina). The Gold SAA 100 Award requires all 100 objects to be observed. One further note, many of these objects are on other observing lists, especially Patrick Moore's Caldwell list. For convenience, there is a table mapping various SAA100 objects with their Caldwell counterparts. This will facilitate observers who are working or have worked on these lists of objects. We hope you enjoy looking at all the great objects recommended by other avid astronomers! Rules In order to earn the Silver certificate for the program, the applicant must meet the following qualifications: 1. Be a member in good standing of the Raleigh Astronomy Club. 2. Observe 80 Silver observations. 3. Record the time and date of each observation.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • Annual Report Astronomy Australia Limited
    2011 / 12 Annual Report Astronomy Australia Limited Vision Astronomers in Australia will have access to the best astronomical research infrastructure. Mission AAL will achieve its vision by: 1. Engaging with Australian astronomers to advance the national research infrastructure priorities of the Australian astronomy decadal plan. 2. Advising the Australian Government on future investments in national astronomical research infrastructure. 3. Managing investments in national astronomical research infrastructure as required. Principles 1. Access to major astronomical research infrastructure should be available to any Australian-based astronomer purely on scientific merit. 2. The concept of national astronomical research infrastructure includes Australian participation in international facilities. 3. The AAO and CSIRO are empowered by the Australian Government to provide a component of the national astronomical research infrastructure and there is no need for AAL to directly manage investments to upgrade or operate the AAT and ATNF. Front cover image Gemini Legacy image of the complex planetary nebula Sh2-71 as imaged by the Gemini Multi-Object Spectrograph on Gemini North on Mauna Kea in Hawai‘i. A research team, led by Australian astronomers David Frew and Quentin Parker (Macquarie University, Sydney) are studying the dimmer, bluer star to understand its nature. The long-assumed central star is the brightest star near the centre, but the much dimmer and bluer star (just to the right and down a little) might be the parent of this beautiful object. The image is composed of three narrow- band images, and each is assigned a colour as follows: H-alpha (orange), HeII (blue) and [OIII] (cyan). Image credit: Gemini Observatory/AURA Background image Dipoles on one “tile” of the Murchison Widefield Array; one of the first telescopes with no moving parts.
    [Show full text]