South of the Isles of Scilly Rmcz Post-Survey Site Report V3

Total Page:16

File Type:pdf, Size:1020Kb

South of the Isles of Scilly Rmcz Post-Survey Site Report V3 South of the Isles of Scilly rMCZ Post-survey Site Report Contract Reference: MB0120 Report Number: 47 Version 3 February 2016 Project Title: Marine Protected Areas Data and Evidence Co-ordination Programme Report No 47. Title: South of the Isles of Scilly rMCZ Post-survey Site Report Defra Project Code: MB0120 Defra Contract Manager: Carole Kelly Funded by: Department for Environment, Food and Rural Affairs (Defra) Marine Science and Evidence Unit Marine Directorate Nobel House 17 Smith Square London SW1P 3JR Authorship Louise Brown Centre for Environment, Fisheries and Aquaculture Science (Cefas) [email protected] Stefan Bolam Centre for Environment, Fisheries and Aquaculture Science (Cefas) [email protected] Acknowledgements We thank Christopher Barrio and Peter Mitchel (Cefas) for reviewing earlier drafts of this report. Disclaimer: The content of this report does not necessarily reflect the views of Defra, nor is Defra liable for the accuracy of information provided, or responsible for any use of the reports content. Although the data provided in this report have been quality assured, the final products - e.g. habitat maps – may be subject to revision following any further data provision or once they have been used in SNCB advice or assessments. Cefas Document Control Title: South of the Isles of Scilly rMCZ Post-survey Site Report Submitted to: Marine Protected Areas Survey Co-ordination & Evidence Delivery Group Date submitted: February 2016 Project Manager: Sue Ware Report compiled by: Louise Brown, Stefan Bolam Quality control by: Christopher Barrio Frojan Approved by & date: Keith Weston (25/02/2016) Version: V3 Version Control History Author Date Comment Version Louise Brown, 10/08/2015 First draft submitted for review 1 Stefan Bolam Louise Brown, 21/10/2015 Revised following 1st round review 2 Stefan Bolam Chris Barrio Frojan 25/02/2016 Revised following Defra comments 3 Table of Contents Table of Contents ........................................................................................................ i List of Tables .............................................................................................................. iii List of Figures ............................................................................................................. iv 1 Executive Summary: Report Card ................................................................. 1 1.1 Features proposed in the SAD for inclusion within the MCZ designation ...... 1 1.2 Features observed but not proposed in the SAD for inclusion within the rMCZ designation .......................................................................................... 2 1.3 Evidence of human activities occurring within the rMCZ ............................... 2 2 Introduction ................................................................................................... 3 2.1 Location of the rMCZ ..................................................................................... 3 2.2 Rationale for site position and designation .................................................... 4 2.3 Rationale for prioritising this rMCZ for additional evidence collection ........... 5 2.4 Survey aims and objectives .......................................................................... 5 3 Methods ........................................................................................................ 7 3.1 Acoustic data acquisition ............................................................................... 7 3.2 Ground truth sample acquisition .................................................................... 7 3.3 Production of the updated habitat map ......................................................... 9 3.4 Quality of the updated map ......................................................................... 11 4 Results ........................................................................................................ 12 4.1 SAD habitat map ......................................................................................... 12 4.2 Updated habitat map based on new survey data ........................................ 12 4.3 Quality of the updated habitat map ............................................................. 14 4.4 Broadscale habitats identified ..................................................................... 14 4.5 Habitat FOCI identified ................................................................................ 15 4.6 Species FOCI identified .............................................................................. 15 4.7 Quality Assurance and Quality Control ....................................................... 16 4.8 Data limitations and adequacy of the updated habitat map ......................... 17 4.9 Observations of human activity on the seabed............................................ 17 5 Conclusions ................................................................................................ 18 5.1 Presence and distribution of broadscale habitats ........................................ 18 5.2 Presence and distribution of habitat FOCI .................................................. 18 5.3 Presence and distribution of species FOCI ................................................. 18 5.4 Evidence of human activities impacting the seabed .................................... 19 References ............................................................................................................... 20 Data sources ............................................................................................................ 22 South of the Isles of Scilly rMCZ Post-survey Site Report i Annexes ................................................................................................................... 23 Annex 1. Broadscale habitat features listed in the ENG. ..................................... 23 Annex 2. Habitat FOCI listed in the ENG. ............................................................ 24 Annex 3. Low or limited mobility species FOCI listed in the ENG. ....................... 25 Annex 4. Highly mobile species FOCI listed in the ENG. ..................................... 25 Annex 5. Video and stills processing protocol. .................................................... 27 Appendices .............................................................................................................. 29 Appendix 1. Survey metadata (CEND0613) ........................................................ 29 Appendix 2. Outputs from acoustic surveys ......................................................... 31 Appendix 3. Evidence of human activities within the rMCZ ................................. 33 Appendix 4. Species list ....................................................................................... 34 Appendix 5. Analyses of sediment samples: classification and composition ...... 44 Appendix 6. BSH/EUNIS Level 3 descriptions derived from video and stills ........ 46 Appendix 7. Example images from survey for broadscale habitats ..................... 48 Appendix 8. Example images from survey for habitat FOCI ................................ 49 South of the Isles of Scilly rMCZ Post-survey Site Report ii List of Tables Table 1. Broadscale habitats for which this rMCZ was proposed for designation. .... 4 Table 2. Habitat FOCI for which this rMCZ was proposed for designation. ............... 5 Table 3. Species FOCI for which this rMCZ was proposed for designation. .............. 5 Table 4. Description of derivatives calculated for bathymetry. .................................. 9 Table 5. Broadscale habitats identified in this rMCZ. .............................................. 15 Table 6. Habitat FOCI identified in this rMCZ. ......................................................... 15 Table 7. Species FOCI identified in this rMCZ. ....................................................... 16 South of the Isles of Scilly rMCZ Post-survey Site Report iii List of Figures Figure 1. Location of the South of the Isles of Scilly rMCZ. Bathymetry is from the Defra Digital Elevation Model (Astrium, 2011). .................................................. 4 Figure 2. Location of ground truth sampling stations in the South of the Isles of Scilly rMCZ. Bathymetry displayed is from Defra’s Digital Elevation Model (Astrium, 2011).................................................................................................................. 8 Figure 3. Habitat map from the Site Assessment Document. .................................. 12 Figure 4. Updated map of broadscale habitats based on newly acquired survey data. ......................................................................................................................... 13 Figure 5. Overall MESH confidence score for updated broadscale habitat map. .... 14 Figure 6. Location of records of species FOCI from newly acquired ground truth data. ................................................................................................................. 16 Corrigendum In July 2015 Defra declared the following amendments to reporting of Features of Conservation Importance (FOCI) in MPAG reports to reflect changes described within Defra MCZ consultation and designation material: • The habitat FOCI ‘Subtidal Sands and Gravels’ is considered to be adequately protected by its component broadscale habitat features, subtidal sand and/or subtidal coarse sediment, and is no longer included within MCZ designations. • The species
Recommended publications
  • Growth, Tolerance to Low Salinity, and Osmoregulation in Decapod Crustacean Larvae
    Vol. 12: 249–260, 2011 AQUATIC BIOLOGY Published online June 1 doi: 10.3354/ab00341 Aquat Biol Growth, tolerance to low salinity, and osmoregulation in decapod crustacean larvae Gabriela Torres1, 2,*, Luis Giménez1, Klaus Anger2 1School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK 2Biologische Anstalt Helgoland, Foundation Alfred Wegener Institute for Polar and Marine Research, 27498 Helgoland, Germany ABSTRACT: Marine invertebrate larvae suffer high mortality due to abiotic and biotic stress. In planktotrophic larvae, mortality may be minimised if growth rates are maximised. In estuaries and coastal habitats however, larval growth may be limited by salinity stress, which is a key factor select- ing for particular physiological adaptations such as osmoregulation. These mechanisms may be ener- getically costly, leading to reductions in growth. Alternatively, the metabolic costs of osmoregulation may be offset by the capacity maintaining high growth at low salinities. Here we attempted identify general response patterns in larval growth at reduced salinities by comparing 12 species of decapod crustaceans with differing levels of tolerance to low salinity and differing osmoregulatory capability, from osmoconformers to strong osmoregulators. Larvae possessing tolerance to a wider range in salinity were only weakly affected by low salinity levels. Larvae with a narrower tolerance range, by contrast, generally showed reductions in growth at low salinity. The negative effect of low salinity on growth decreased with increasing osmoregulatory capacity. Therefore, the ability to osmoregulate allows for stable growth. In euryhaline larval decapods, the capacity to maintain high growth rates in physically variable environments such as estuaries appears thus to be largely unaffected by the energetic costs of osmoregulation.
    [Show full text]
  • Geodiversitas 2019 ● 41 ● 9 Directeur De La Publication : Bruno David, Président Du Muséum National D’Histoire Naturelle
    geodiversitas 2019 ● 41 ● 9 DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (MNHN, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (UPMC, Paris) Gaël Clément (MNHN, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (MNHN, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (UPMC, Paris) Sevket Sen (MNHN, Paris) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres) COUVERTURE / COVER : Left specimen: Hebertides jurassica Guinot, De Angeli & Garassino, 2007, in dorsal view; Right specimen: Xantho cf. moldavicus (Yanakevich, 1977), in outer lateral view; Background: Panoramic view of the Museum quarry ‘la carrière-musée’ (Channay-sur-Lathan). Geodiversitas est indexé dans / Geodiversitas is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Physical,
    [Show full text]
  • Decapoda, Brachyura
    APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA de Decápodos Braquiuros de la Península Ibérica bérica I enínsula P raquiuros de la raquiuros B ecápodos D de APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA LA DE IDENTIFICACIÓN EN LA Y MOLECULARES MORFOLÓGICAS TÉCNICAS DE APLICACIÓN Herrero - MEGALOPA “big eyes” Leach 1793 Elena Marco Elena Marco-Herrero Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 Tesis Doctoral, Valencia 2015 Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA DE DECÁPODOS BRAQUIUROS DE LA PENÍNSULA IBÉRICA TESIS DOCTORAL Elena Marco-Herrero Valencia, septiembre 2015 Directores José Antonio Cuesta Mariscal / Ferran Palero Pastor Tutor Álvaro Peña Cantero Als naninets AGRADECIMIENTOS-AGRAÏMENTS Colaboración y ayuda prestada por diferentes instituciones: - Ministerio de Ciencia e Innovación (actual Ministerio de Economía y Competitividad) por la concesión de una Beca de Formación de Personal Investigador FPI (BES-2010- 033297) en el marco del proyecto: Aplicación de técnicas morfológicas y moleculares en la identificación de estados larvarios planctónicos de decápodos braquiuros ibéricos (CGL2009-11225) - Departamento de Ecología y Gestión Costera del Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) - Club Náutico del Puerto de Santa María - Centro Andaluz de Ciencias y Tecnologías Marinas (CACYTMAR) - Instituto Español de Oceanografía (IEO), Centros de Mallorca y Cádiz - Institut de Ciències del Mar (ICM-CSIC) de Barcelona - Institut de Recerca i Tecnología Agroalimentàries (IRTA) de Tarragona - Centre d’Estudis Avançats de Blanes (CEAB) de Girona - Universidad de Málaga - Natural History Museum of London - Stazione Zoologica Anton Dohrn di Napoli (SZN) - Universitat de Barcelona AGRAÏSC – AGRADEZCO En primer lugar quisiera agradecer a mis directores, el Dr.
    [Show full text]
  • Rep. Lundy Fld. Soc., 31 (1981) the MARINE FAUNA of LUNDY CRUSTACEA: EUPHAUSIACEA and DECAPODA R
    Rep. Lundy Fld. Soc., 31 (1981) THE MARINE FAUNA OF LUNDY CRUSTACEA: EUPHAUSIACEA and DECAPODA R. J. A. ATKINSON and P. J. SCHEMBRI* University Marine Biological Station, Millport, Isle of Cumbrae Scotland. KA28 OEG INTRODUCTION Only two species of euphausids, Nyctiphanes couchii and Meganyctiphanes norvegica are recorded from Lundy though the plankton has not been thoroughly sampled in these studies. These species and one other are recorded in both the Plymouth Marine Fauna (Marine Biological Association, 1957) and the Dale Fort Marine Fauna (Crothers, 1966). Harvey (1950) recorded at Lundy only M. norvegica which has not been recorded since. Its occurrence was atypical, being littoral - Hydrological conditions and other details are unknown. Information on Lundy decapods has been slow to accumulate and compari­ sons with the Plymouth Marine Fauna (Marine Biological Association, 1957) and Dale Fort Marine Fauna (Crothers, 1966) indicate that an extension of the list is to be expected (see below). Of the 21 species identified at Lundy by Harvey (1950, 1951), 4 have not been recorded since (Palaemon elegans, Athanas nitescens, Xantho pilipes, Xantho incisus). Restricted collections and observations have been made almost annually since the late 1960's (see name list for those involved) and by the end of 1979, 49 species had been recorded plus a Processa zoea not identified to species. Intensive collections in June and July 1980 yielded 40 species including many previously reported but unsupported by preserved specimens and the list is now extended to 53 species including the processid. Two of the species collected in 1980 had not been reported since Harvey's spring and summer investgations mainly between 1948 and 1950 (Porcellanaplatycheles and Hyas coarctatus).
    [Show full text]
  • 5.5. Biodiversity and Biogeography of Decapods Crustaceans in the Canary Current Large Marine Ecosystem the R
    Biodiversity and biogeography of decapods crustaceans in the Canary Current Large Marine Ecosystem Item Type Report Section Authors García-Isarch, Eva; Muñoz, Isabel Publisher IOC-UNESCO Download date 25/09/2021 02:39:01 Link to Item http://hdl.handle.net/1834/9193 5.5. Biodiversity and biogeography of decapods crustaceans in the Canary Current Large Marine Ecosystem For bibliographic purposes, this article should be cited as: García‐Isarch, E. and Muñoz, I. 2015. Biodiversity and biogeography of decapods crustaceans in the Canary Current Large Marine Ecosystem. In: Oceanographic and biological features in the Canary Current Large Marine Ecosystem. Valdés, L. and Déniz‐González, I. (eds). IOC‐ UNESCO, Paris. IOC Technical Series, No. 115, pp. 257‐271. URI: http://hdl.handle.net/1834/9193. The publication should be cited as follows: Valdés, L. and Déniz‐González, I. (eds). 2015. Oceanographic and biological features in the Canary Current Large Marine Ecosystem. IOC‐UNESCO, Paris. IOC Technical Series, No. 115: 383 pp. URI: http://hdl.handle.net/1834/9135. The report Oceanographic and biological features in the Canary Current Large Marine Ecosystem and its separate parts are available on‐line at: http://www.unesco.org/new/en/ioc/ts115. The bibliography of the entire publication is listed in alphabetical order on pages 351‐379. The bibliography cited in this particular article was extracted from the full bibliography and is listed in alphabetical order at the end of this offprint, in unnumbered pages. ABSTRACT Decapods constitute the dominant benthic group in the Canary Current Large Marine Ecosystem (CCLME). An inventory of the decapod species in this area was made based on the information compiled from surveys and biological collections of the Instituto Español de Oceanografía.
    [Show full text]
  • Morphology of First Zoea (Crustacea: Portunidae: Polybiinae) Hatched In
    JOURNAL OF PLANKTON RESEARCH VOLUME 2 6 NUMBER I PAGES 5 - 1 0 2 0 0 4 Morphology of Coenophtha first zoea (Crustacea: Portunidae: Polybiinae) hatched in the laboratory EDUARDO D. SPIVAK* AND TOMÁS A. LUPPI1 DEPARTAMENTO DE BIOLOGÍA, FACULTAD DE CIENCIAS EXACTAS Y NATURALES, UNIVERSIDAD NACIONAL DE MAR DEL PLATA, CASILLA DE CORREOS 12 4 5 , 7 6 0 0 MAR DEL PLATA AND ‘CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS DE LA REPÚBLICA ARGENTINA • corresponding a u t h o r : espivak@ ,mdp.edu.ar The swimming crab Coenophthalmus tridentatus A. Aíilne Edwards, 1879 (Decapoda, Portuni­ daej is an endemic species of the Southwestern Atlantic, from southern Brazil to northern Patagonia (Argentina). Larvae o f C. tridentatusfrom one female collected on beds of oysters and mussels at 50 m depth in the Argentine continental shelf (38°21'S, 57°38'W ) were hatched in the laboratory, foea I morphology is describedfor the first time and compared with known zoeae of other portunid species. INTRODUCTION Universidad de Mar del Plata, and maintained in an aquarium containing natural sea water until the eggs The swimming crab Coenophthalmus tridentatus A. Milne hatched (20 November 2000). Edwards, 1879 (Decapoda, Portunidae: Polybiinae) is a Measurements and drawings were made using an shallow-water (10-40 m deep) species distributed along Olympus CH30 compound microscope equipped with the Southwestern Atlantic shores, from Rio de Janeiro a camera lucida. The following measurements were (Brazil) to Comodoro Rivadavia (Argentina) (Boschi made with a micrometer eyepiece (x40): rostro-dorsal eta!., 1992; Melo, 1996; Spivak, 1998). The morphology length (RDL), from the tip of the rostral spine to the tip of C.
    [Show full text]
  • Decapod Crustacea of the Central Paratethyan Ottnangian Stage (Middle Burdigalian): Implications for Systematics and Biogeography
    GEOLOGICA CARPATHICA, JUNE 2015, 66, 3, 217—233 doi: 10.1515/geoca-2015-0021 Decapod Crustacea of the Central Paratethyan Ottnangian Stage (middle Burdigalian): implications for systematics and biogeography MATÚŠ HYŽNÝ1,2!, MATHIAS HARZHAUSER1 and WOLFGANG DANNINGER3 1Geological-paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; [email protected]; [email protected] 2Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovak Republic 3Hauptstrasse 83, 4794 Kopfing, Austria; [email protected] (Manuscript received November 4, 2014; accepted in revised form March 12, 2015) Abstract: Decapod crustaceans from the Ottnangian (middle Burdigalian, Lower Miocene) of the Western and Central Paratethys remain poorly known. In this study, we review and re-describe mud shrimps (Jaxea kuemeli), ghost shrimps (Gourretia sp., Calliax michelottii) and brachyuran crabs of the families Leucosiidae, Polybiidae and Portunidae. A dorsal carapace of the genus Calliax is reported for the first time in the fossil record. Re-examination of the type material of Randallia strouhali (Leucosiidae) and Geryon ottnangensis (Geryonidae) resulted in a transfer of these species into Palaeomyra (Leucosiidae) and Liocarcinus (Polybiidae), respectively. Achelous vindobonensis, originally described as a chela of a portunid crab, probably belongs to a member of Polybiidae and is provisionally treated as Liocarcinus sp. Only two species, J. kuemeli and C. michelottii, are also known from the Karpatian, the succeeding Paratethyan stage. In most cases, the decapod assemblages of the Ottnangian consist of rather shallow-water taxa whereas the assemblages of the Karpatian consist of deep-water taxa from the middle and outer shelf.
    [Show full text]
  • North Sea Ecosystem Change from Swimming Crabs to Seagulls
    Biol. Lett. (2012) 8, 821–824 whether long-term changes in sea surface temperature doi:10.1098/rsbl.2012.0474 (SST) and abundances in larval and adult swimming Published online 4 July 2012 crabs are related to changes in the breeding colonies Marine biology of L. fuscus graelsii in Northern France and Belgium. Second, we examine how changes in adult swimming crabs between 2000 and 1986 are correlated with the North Sea ecosystem population growth rate of the 21 major North Sea change from swimming colonies of lesser black-backed gulls. crabs to seagulls 2. MATERIAL AND METHODS C. Luczak1, G. Beaugrand1, J. A. Lindley2, (a) North Sea surface temperature 1 1 3, SST data for the period 1978–2009 in the area 518 N–608 N, J-M. Dewarumez , P. J. Dubois and R. R. Kirby * 48 W–108 E were obtained from the ERSST_V3 dataset (28 latitude 1Centre National de la Recherche Scientifique, LOG UMR 8187, 28 longitude) [7] and transformed as monthly anomalies by subtracting Universite´ Lille 1, France the long-term average of the corresponding month mean. 2Sir Alister Hardy Foundation for Ocean Science, Plymouth, UK 3 Marine Institute, Plymouth University, Plymouth PL4 8AA, UK (b) Adult swimming crabs *Author for correspondence ([email protected]). Data on adult swimming crabs were collected by the North Sea benthos survey in 1986 and 2000 [8], and on four to six occasions A recent increase in sea temperature has estab- a year at Gravelines (Northern France), southern North Sea lished a new ecosystem dynamic regime in the (518010 40 N, 2804035 E) [5] from 1978 to 2009.
    [Show full text]
  • Crustacea: Decapoda) of the Iberian Peninsula (SW Europe)
    SCIENTIA M ARINA 79(2) June 2015, 243-256, Barcelona (Spain) ISSN-L: 0214-8358 doi: http://dx.doi.org/10.3989/scimar.04161.27A Annotated checklist of brachyuran crabs (Crustacea: Decapoda) of the Iberian Peninsula (SW Europe) Elena Marco-Herrero 1 , Pere Abelló 2 , Pilar Drake 1 , Jose Enrique García-Raso 3 , Juan Ignacio González-Gordillo 4 , Guillermo Guerao 5 , Ferran Palero 6 , Jose A. Cuesta 1 1 Instituto de Ciencias Marinas de Andalucía, CSIC, Campus de Excelencia Internacional del Mar, Avda. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. E-mail: [email protected] 2 Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain. 3 Universidad de Málaga, Departamento de Biología Animal, Facultad de Ciencias, Campus de Excelencia Internacional del Mar, Campus de Teatinos s/n, 29071 Málaga, Spain. 4 CACYTMAR, Campus de Excelencia Internacional del Mar, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. 5 Passeig Fabra i Puig 344, 08031 Barcelona, Spain. 6 INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France. Summary : Almost 50 years have passed since a group of reputed carcinologists ( viz . Lipke B. Holthuis, Isabella Gordon and Jacques Forest) finished the posthumous work of Ricardo Zariquiey Álvarez (1968) on decapod crustaceans of the Iberian Peninsula. No lists of decapod fauna specifically covering this area have been published since then, and an update is needed. The current list of brachyuran crabs of the Iberian Peninsula comprises 140 species, which is 35 species more than the 105 valid species listed in Zariquiey Álvarez (1968).
    [Show full text]
  • Part 1 Part 2
    CENTRE FOR ENVIRONMENT, FISHERIES AND AQUACULTURE SCIENCE LOWESTOFT LABORATORY, LOWESTOFT, SUFFOLK NR33 0HT 2014 RESEARCH VESSEL PROGRAMME PROGRAMME: RV CEFAS ENDEAVOUR: 04/14 STAFF: Part 1 Part 2 S Kupschus (SIC) G Burt S Kupschus (SIC) P Nelson B Harley (2IC) C Garcia S McCully (2IC) R Ayers I Holmes R Beckett A Tidd R Bush J Silva M Parker-Humphreys J Ellis M Eade M Whybrow K Douggan M Nicolaus P Bouch S Davies J Pettigrew S Ware R Masefield P Whomersley M Whybrow DURATION: 11 February – 10 March LOCATION: Western Channel (ICES area VIIE, VIIF, VIIG, VIIH, VIIJ) NARRATIVE: The advanced party arrived in Portland to join the Endeavour on 8 February to set up the EDC and the flowcytometer before being joined by the rest of the planned cruise staffing on 10 February ready for the planned sailing the next day. However exceptionally poor weather delayed sailing for 5 days. To try to make up time in the remaining survey two further staff were drafted and joined the ship on 15 February before departure at 0600h on Sunday 16 February. The plan had been to complete the Western Channel part of the survey by the mid cruise changeover which given the 5 day delay was impossible. Sampling commenced at around 0900h to the east of Portland Bill with a further 3 stations sampled in stratum 6 and 2 in stratum 9. Due to the significant reduction in available survey time it was decided to reduce the number of samples in each stratum and although this does reduce time requirements it is not proportional to the reduction in the number of stations.
    [Show full text]
  • TYPE-LOCALITY.—Annobon Island, 01°25'S, 05°38'E, Gulf of Guinea. D
    72 SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY TYPE-LOCALITY.—Annobon Island, 01°25'S, far north as 17°S. No representatives of the family 05°38'E, Gulf of Guinea. were taken by the Pillsbury. DISPOSITION OF TYPES.—The holotype (Crust. Corysles cassivelaunus (Pennant, \111). Southern D. 31543), a male specimen with carapace length Norway and Sweden southward to Gibraltar and and width 2.6 mm, is in the Rijksmuseum van the Mediterranean, in depths between 7 and 90 Natuurlijke Historic, Leiden. Two paratypes, a m; both Zariquiey Alvarez (1968) and Christian­ male and a female, also are in that collection and sen (1969) gave accounts of this species. a male and two female paratypes (USNM 169534) are in the National Museum of Natural Genus Nautilocorystes H. Milne Edwards, 1837 History, Smithsonian Institution, Washington, Dicera de Haan, 1833:14 [invalid junior homonym oi Diem D. C. Germar, 1817 (Hymenoptera); type-species: Corysles [Di­ ETYMOLOGY.—It is a great pleasure to dedicate cera) octodenlata de Haan, 1833, a subjectivejuniorsynonym this new species to Dr. Isabella Gordon, British of Corysles ocellalus Gray, 1831, by monotypy; gender- feminine]. Museum (Natural History), who was the first to Naulilocorysles H. Milne Edwards,, 1837:149 [type-species: make the existence of the genus Sirpus known to Naulilocorysles ocellalus H. Milne Edwards, 1837, an invalid the world and who exhaustively treated the first junior homonym of Corysles ocellalus Gray, 1831, by two species assigned to it. monotypy; gender: masculine], DISTRIBUTION.—Our material of Sirpus gordonae Alyples Gistel, 1848:ix [substitute name for Dicera de Haan, 1833; type-species: Corysles {Dicera) octodentala de Haan, was obtained at Annobon during a fish poison 1833, a subjectivejunior synonym of Corysles ocellalus Gray, station at a sandy beach in a rocky cove.
    [Show full text]
  • NEW RECORD of LIOCARCINUS MCLEAYI (BARNARD, 1947), NEW COMBINATION (DEC APOD A, BRACHYURA, PORTUNIDAE) from SOUTH EUROPE The
    NEW RECORD OF LIOCARCINUS MCLEAYI (BARNARD, 1947), NEW COMBINATION (DEC APOD A, BRACHYURA, PORTUNIDAE) FROM SOUTH EUROPE BY J. ENRIQUE GARCIA RASO and E. MANJON-CABEZA Departamento de Biologia Animal (Zoologia), Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga, Spain ABSTRACT Four specimens of the brachyuran crab Liocarcinus mcleayi (Barnard, 1947) (new combination), were captured from the Cadiz littoral (southern Spain) on a substratum of coarse sand and fine gravel under bottom currents at depths of 13 to 24 m. These captures represent a new record of this species from Iberian and European waters and support the known African influence in the Spanish littoral of Cadiz. Based on an anatomical study, a new combination is proposed for the name of the species. RESUMEN Cuatro ejemplares pertenecientes a la especie Liocarcinus mcleayi (Barnard, 1947) (nueva combi­ nation) han sido capturados en aguas del litoral de Cadiz, a 13-24 metros, en fondos de arenas gruesas y gravas finas con corrientes de fondo. Estas capturas representan la primera cita de la especie para aguas ibericas y europeas, y ratifica la ya conocida influencia africana en la composition faunistica del litoral espanol de Cadiz. Por otro lado, basandose en un estudio anatomico, se propone una nueva combination para la especie. INTRODUCTION The Crustacea Decapoda from Spanish waters are, in general, well known. However, the infralittoral zone (0 to 20 m) of the Gulf of Cadiz, in spite of its interesting zoogeographical position (Buen, 1887; Holthuis, 1977), is the worst known Iberian area (see Zariquiey, 1968; Gonzalez-Gordillo et al., 1990). The geographical location of this area, between Africa and Europe, and the Atlantic water circulation, favour the presence of African species which show a rather extensive distribution along the west African littoral, but are not found in other European areas.
    [Show full text]