Practical Rectennas : Far-Field RF Power Harvesting and Transport
Total Page:16
File Type:pdf, Size:1020Kb
Practical rectennas : far-field RF power harvesting and transport Citation for published version (APA): Keyrouz, S. (2014). Practical rectennas : far-field RF power harvesting and transport. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR774472 DOI: 10.6100/IR774472 Document status and date: Published: 01/01/2014 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 02. Oct. 2021 Practical Rectennas Far-Field RF Power Harvesting and Transport This research was financially supported by Holst Centre/imec the Netherlands. Practical Rectennas - Far-Field RF Power Harvesting and Transport / by S. Keyrouz { Eindhoven : Technische Universiteit Eindhoven, 2014 { Proefschrift A catalogue record is available from the Eindhoven University of Technology Library ISBN: 978-90-386-3639-9 NUR: 959 This thesis was prepared with the LATEX 2" documentation system Reproduction: TU/e print-service, Eindhoven, The Netherlands Copyright c 2014 by S. Keyrouz. All rights reserved. Practical Rectennas Far-Field RF Power Harvesting and Transport PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op donderdag 5 juni 2014 om 16.00 uur door Shady Keyrouz geboren te Bsharri, Libanon Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de pro- motiecommissie is als volgt: voorzitter: prof.dr.ir. P.P.J. van den Bosch 1e promotor: prof.dr.ir. H.J. Visser 2e promotor: prof.dr. A.G. Tijhuis leden: prof.dr.ir. P.G.M. Baltus prof.dr. E.A. Lomonova prof.dr.ir. G.A.E. Vandenbosch (Katholieke Univesiteit Leuven) prof.dr. C. Vollaire (Universit´eEcole Centrale de Lyon) dr. P. Mitcheson (Imperial London College) "It is only with the heart that one can see rightly, what is essential is invisible to the eye." Antoine de Saint-Exupry (1900-1944) Contents Summary xi 1 Introduction1 1.1 Introduction..................................1 1.1.1 Trends and Needs...........................2 1.2 Non-Radiative and Radiative RF Power Transfer.............3 1.2.1 Non-Radiative Transfer........................3 1.2.2 Radiative Transfer..........................4 1.3 Smart Building Initiative (SBI).......................5 1.4 Challenges...................................6 1.5 Organization of the Thesis and Original and Novel Contributions....7 1.6 Figure of Merit................................ 10 1.6.1 Power Wave Reflection Coefficient................. 10 1.6.2 Application of the Power Wave Reflection Coefficient as a Figure of Merit................................ 11 2 Rectifier Analysis for RF Energy Harvesting and Power Transport 13 2.1 Introduction.................................. 14 2.2 Schottky Diode Equivalent Circuit Model.................. 14 2.3 Measurement Setup and Measured Results................. 19 2.4 Output Voltage of the Rectifier Circuit................... 22 2.5 Investigation of the Diode Parameters on the Output Voltage...... 23 2.6 Voltage Multiplier.............................. 25 2.7 Rectenna Design............................... 26 2.7.1 Operating Frequency......................... 28 2.7.2 Expected Input Power Level..................... 29 2.8 Conclusion................................... 31 3 RF Power Transport Employing Rectennas Using Matching Networks 33 3.1 Introduction.................................. 34 vii viii Contents 3.2 Center-Fed and Step-Shaped-Fed Strip Dipoles............... 35 3.3 Printed Yagi-Uda Antenna and Parameter Optimization......... 37 3.3.1 Optimization of the Distance Between Feed and Director (D-D) and the Director Length (D-L)................... 38 3.3.2 Optimization of the Distance Between Feed and Reflector (R-D). 40 3.4 Modified Yagi-Uda antenna......................... 40 3.4.1 Modified-Yagi: Three Resonant Modes............... 42 3.4.2 Optimization of the Arm Width b .................. 43 3.4.3 Optimization of the Step Length t .................. 44 3.4.4 Fabricated Antenna.......................... 46 3.5 Triple-Band Modified Yagi-Uda Antenna.................. 48 3.6 Dual-Band Modified Yagi-Uda Antenna................... 51 3.7 RF Power Transport at 868 MHz...................... 53 3.7.1 Lumped-Element Matching Network................ 53 3.7.2 RF Power Transport Measurement Results............. 55 3.8 Conclusion................................... 59 4 Compact and Conjugate-Matched Antenna Design 61 4.1 Introduction.................................. 61 4.2 Strip Dipole Antenna............................. 62 4.2.1 Equivalent Radius of a Strip Dipole Antenna............ 63 4.2.2 Input Impedance of a Strip Dipole Antenna............ 64 4.2.3 Feeding Gap S Dependence..................... 67 4.2.4 Fabricated Antenna.......................... 69 4.3 Folded-Strip Dipole Antenna......................... 69 4.3.1 Input Impedance of a Strip Folded Dipole............. 71 4.3.2 Transmission Line Analytical Equations.............. 71 4.3.3 Validation of the New Analytical Procedures............ 72 4.4 Modified Rectangular Loop Antenna.................... 76 4.4.1 Impedance Tuning Capability.................... 78 4.4.2 Validation of the Simulation Results................ 80 4.4.3 Radiation Efficiency and Radiation Pattern............ 81 4.5 Conclusion................................... 85 5 RF Power Transport Using Conjugate-Matched Rectenna System 87 5.1 Introduction.................................. 88 5.2 Design Methodology............................. 88 5.2.1 Antenna Matched to the Rectifier................. 90 5.2.2 Maximizing the Output Voltage................... 91 5.3 Power Transport Using Commercially Available Diodes.......... 94 5.3.1 Rectenna Design........................... 94 Contents ix 5.3.2 RF Power Transport Measurement Results............. 97 5.4 Five Stage CMOS Rectifier with a Control Loop............. 101 5.4.1 Design and Implementation..................... 101 5.4.2 Antenna Optimization and Chip Integration............ 103 5.4.3 Measurement Results......................... 107 5.5 Conclusion................................... 109 6 RF Power Transfer - Complete Rectenna System 111 6.1 System Concept and Measurement Setup.................. 112 6.2 Measurement Results............................. 114 6.3 Conclusion................................... 118 7 A Frequency Selective Surface for RF Energy Harvesting 119 7.1 Introduction.................................. 120 7.2 Square Loop FSS............................... 123 7.2.1 Model Verification.......................... 124 7.2.2 Effect of the Supporting Dielectric Substrate............ 127 7.3 Gridded Square Loop FSS.......................... 129 7.3.1 Equivalent Circuit Model....................... 129 7.3.2 Model Verification and Waveguide Simulator Measurements... 130 7.4 Loaded Gridded Square-Loop FSS..................... 134 7.4.1 Equivalent Circuit Model....................... 134 7.4.2 FSS Loaded with Capacitors..................... 136 7.5 FSS Power Harvesting - Final Design.................... 138 7.5.1 FSS Current Density......................... 140 7.5.2 RF-Power Transport Measurement Results............. 142 7.6 Conclusions.................................. 144 8 Conclusions and Recommendations 145 8.1 Conclusions.................................. 146 8.2 Recommendations............................... 148 A King-Middleton Second Order Method Investigation 151 A.1 King-Middleton Second-Order Method................... 151 A.1.1 Verification of the King-Middleton Equations by the Finite Inte- grating Technique........................... 152 A.2 Modified King-Middleton Equations..................... 154 A.2.1 Modified King-Middleton Equations - Real Part.......... 154 A.2.2 Modified King-Middleton Equations - Imaginary Part....... 155 A.2.3 Comparison Between KM