Article in press - uncorrected proof BioMol Concepts, Vol. 2 (2011), pp. 79–94 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BMC.2011.007 Review Interactions of natural polyamines with mammalian proteins Inge Schuster1 and Rita Bernhardt2,* ecules, such as phospholipids or nucleotides, thereby mas- 1 Institute for Theoretical Chemistry, University Vienna, sively affecting their structures and functions (9, 10). A-1090 Vienna, Austria Accordingly, polyamines were found to modulate numerous 2 Institute of Biochemistry, Saarland University, Campus regulatory processes in model systems that range from cel- B2.2, D-66123 Saarbru¨cken, Germany lular signaling to the control of gene expression and trans- lation and offer explanations for the obvious involvement of * Corresponding author polyamines in the regulation of cell growth, differentiation, e-mail:
[email protected] and death wreviewed in (1, 11–14)x. The broad actions of polyamines on essential life functions are reflected by their effects on global gene expression. A recent study in a yeast Abstract mutant, an eukaryotic system comprising a three times small- er genome than mammalians, showed a significant regulation The ubiquitously expressed natural polyamines putrescine, of some 10% of the genome in (direct or indirect) response spermidine, and spermine are small, flexible cationic com- to spermidine or spermine (15). The essential requirement pounds that exert pleiotropic actions on various regulatory for polyamines and balanced levels of polyamines is under- systems and, accordingly, are essentially involved in diverse lined from studying knockouts that lack distinct genes life functions. These roles of polyamines result from their involved in polyamine synthesis and are not viable (10).