Guidance Framework for Testing the Sterile Insect Technique As a Vector Control Tool Against Aedes-Borne Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Guidance Framework for Testing the Sterile Insect Technique As a Vector Control Tool Against Aedes-Borne Diseases Guidance Framework for Testing the Sterile Insect Technique as a Vector Control Tool against Aedes-Borne Diseases WHO Technical Report.indd 1 24/01/2020 16:13 Guidance Framework fo r Testin g th e Steril e Inse ct Techniqu e a s a Vec t or Cont rol T o ol agai nst Aedes -Bo rne D iseases ISBN 978-92-4-000237-1 (electronic version) ISBN 978-92-4-000238-8 (print version) © World Health Organization 2020 Published under licence from the International Atomic Energy Agency. Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/IGO). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that IAEA or WHO endorse any specific organization, products or services. The use of IAEA or WHO logos is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the International Atomic Energy Agency (IAEA) or the World Health Organization (WHO). IAEA and WHO are not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.wipo.int/amc/en/mediation/rules). Suggested citation. WHO & IAEA. Guidance framework for testing the sterile insect technique as a vector control tool against Aedes-borne diseases. Geneva: World Health Organization and the International Atomic Energy Agency; 2020. Licence: CC BY-NC SA 3.0 IGO Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user. The views expressed herein do not necessarily reflect the views of the WHO, IAEA or their respective Member States. The use of particular designations of countries or territories does not imply any judgement by the WHO or IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of names of specific companies or of certain manufacturers’ products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation by the WHO or IAEA in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. Unless otherwise indicated the copyright lies with the WHO or IAEA or is published under licence, or with permission from the copyright owners. All reasonable precautions have been taken by the IAEA and WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the IAEA or WHO be liable for damages arising from its use. WHO Technical Report.indd 4 24/01/2020 16:13 Contributors IkeOluwapo Ajayi, Romeo Bellini, Pascal Boireau, Steven Bradbury, Salome A. Bukachi, Lee Ching Ng, Fang Jing, Pattamaporn Kittayapong, Pablo Liedo, Kenneth Linthicum, John Mumford, Manju Rahi, Matthew Thomas, Yesim Tozan, Alia Zayed ʴ˙Ё˟˜˔˧˜ˢˡ˦ IkeOluwapo O. Ajayi, Department of Epidemiology and Medical Statistics, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria Romeo Bellini, Centro Agricoltura Ambiente “G. Nicoli” IAEA Collaborating Centre, Via Sant’Agata 835, 40014 Crevalcore, Italy Pascal Boireau, ANSES, Animal Health Laboratory, Maisons Alfort and High Council for Biotechnology, Paris, France Steven Bradbury, Department of Entomology, Iowa State University, Ames, Iowa, 50011, USA Salome A. Bukachi, Institute of Anthropology, Gender and African Studies, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya Lee Ching Ng, Environmental Health Institute, National Environment Agency, Singapore Fang Jing, Institute for Health Sciences, Kunming Medical University, 1168# Chun Rong Xi Lu, Yuhua Jiedao, Cheng Gong Xinqu, Kunming City, 650500, Yunnan Province, P.R. China Pattamaporn Kittayapong, Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom 73170, Thailand Pablo Liedo, Departamento de Entomología, El Colegio de la Frontera Sur, Tapachula, Chiapas 30700, Mexico Kenneth Linthicum, USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA John Mumford, Imperial College London, Centre for Environmental Policy, Silwood Park Campus, Ascot, Berkshire, UK Manju Rahi, Scientist-F, Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India Matthew Thomas, Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA Yesim Tozan, New York University, College of Global Public Health, New York, NY 10012, USA Alia Zayed, Cairo University/U.S. Naval Medical Research Unit No. 3, Cairo Detachment, Cairo, Egypt WHO Technical Report.indd 2 24/01/2020 16:13 Reviewers Rafael Argiles Herrero, Livestock and Human Health Pests, Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (NAFA) | Department of Nuclear Application | International Atomic Energy Agency | Vienna International Centre, PO Box 100, 1400 Vienna, Austria Rui Cardoso Pereira, Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (NAFA) | Department of Nuclear Application | International Atomic Energy Agency | Vienna International Centre, PO Box 100, 1400 Vienna, Austria Lauren Carrington, Vector Ecology and Management, Department of Control of Neglected Tropical Diseases (CDS/NTD), World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland Walther R. Enkerlin Hoeflich, PPlant Pests, Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (NAFA) | Department of Nuclear Application | International Atomic Energy Agency | Vienna International Centre, PO Box 100, 1400 Vienna, Austria Elkhan Gasimov, Malaria, NTDs and other Vector-borne Diseases Division of Health Emergencies & Communicable Diseases, World Health Organization Regional Oªice for Europe, UN City, Marmorvej 51, 2100 Copenhagen, Denmark Tessa B. Knox, Malaria and other vector-borne and parasitic diseases, World Health Organization, Port Vila, Vanuatu Raman Velayudhan, Vector Ecology and Management, Department of Control of Neglected Tropical Diseases (CDS/NTD), World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland ˆ˘˖˥˘˧˔˥˜˔˧ Jérémy Bouyer, Human Disease Vectors | Insect Pest Control Laboratory | Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (NAFA) | Department of Nuclear Application | International Atomic Energy Agency | Vienna International Centre, PO Box 100, 1400 Vienna, Austria Anna Drexler, Western Pacific/Regional Oice/WHO Health Emergencies/Country health Emergency Preparedness (WP/RGO/WHE/CPI), Manila, Philippines Florence Fouque, UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) based at the World Health Organization, 20, avenue Appia, 1211 Geneva 27, Switzerland Patricia Godoy-Kain, Division for Latin America and Caribbean Technical Cooperation Department, International Atomic Energy Agency, Vienna International Centre, Wagramer Strasse 5, PO Box 100, 1400 Vienna, Austria !"#$%& Eva Ciabattoni WHO Technical Report.indd 3 24/01/2020 16:13 ʴ˖˞ˡˢ˪˟˘˗˚˘ˠ˘ˡ˧˦ The Secretariat thanks the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) based at the World Health Organization and its director, Dr John Reeder, as well the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and its director, Mr Qu Liang, and the Department of Technical Cooperation for Latin America and Caribbean of IAEA and its Section Head, Mr Raùl Ramirez Garcia, for having allowed the development of this work. The authors also express their sincere gratitude to Makiko Kitamura, Communication Oicer in TDR for the help in the design and layout of the final document, and to all collaborators from both agencies’ operational units and programmes for their feedback, support and advice. This document was developed through an extensive consultation process, including an advisory committee covering different disciplines. Declarations of interest were provided by all experts as required by WHO and no conflicts of interest were found. WHO Technical Report.indd 5 24/01/2020 16:13 WHO Technical
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Combating Zika
    PROJECT SUMMARIES VECTOR CONTROL Wolbachia-Infected Mosquitoes Scaled Deployment of Wolbachia-Infected Mosquitoes to Block Disease Transmission Organization: Eliminate Dengue Program, Monash University Location: Melbourne, Australia Problem: Dengue is estimated to threaten the health of almost 4 billion people living in tropical and subtropical regions of the world and Zika is currently exploding as an emerging global disease with major outbreaks underway throughout tropical South America. Solution: Infect mosquitoes with Wolbachia, a naturally occurring bacteria proven to block the transmission of dengue fever and Zika virus from mosquitoes to humans. The approach provides a natural, sustainable, cost-effective new tool for preventing transmission of a range of arboviruses including Zika, dengue and chikungunya. The project, which has been proven to work over long-term field tests, will now be tested in much larger populations in several Latin American communities. This method represents a paradigm shift in arboviral disease control. It's an innovative, cutting edge technology that provides a sustainable, long-term intervention for communities affected by arboviral diseases. Compared with conventional insecticide-based or genetic population suppression control methods that may provide limited, short-term reductions in the mosquito population, once Wolbachia has established in the local population, it persists without the need for continual reapplication or additional insecticide--based control methods while reducing the risk of infection with dengue, chikungunya and Zika viruses. In addition, residents are not required to change their behaviour or participate in ongoing activities after the mosquito releases are concluded. This research, which is the first of its kind in the world, could potentially benefit an estimated 2.5 billion people currently living in arboviral disease transmission areas worldwide.
    [Show full text]
  • A Review on the Progress of Sex-Separation Techniques For
    Mashatola et al. Parasites & Vectors 2018, 11(Suppl 2):646 https://doi.org/10.1186/s13071-018-3219-4 REVIEW Open Access A review on the progress of sex-separation techniques for sterile insect technique applications against Anopheles arabiensis Thabo Mashatola1,2,3, Cyrille Ndo4,5,6, Lizette L. Koekemoer1,2, Leonard C. Dandalo1,2, Oliver R. Wood1,2, Lerato Malakoane1,2, Yacouba Poumachu3,4,7, Leanne N. Lobb1,2, Maria Kaiser1,2, Kostas Bourtzis3 and Givemore Munhenga1,2* Abstract The feasibility of the sterile insect technique (SIT) as a malaria vector control strategy against Anopheles arabiensis has been under investigation over the past decade. One of the critical steps required for the application of this technique to mosquito control is the availability of an efficient and effective sex-separation system. Sex-separation systems eliminate female mosquitoes from the production line prior to irradiation and field release of sterile males. This is necessary because female mosquitoes can transmit pathogens such as malaria and, therefore, their release must be prevented. Sex separation also increases the efficiency of an SIT programme. Various sex-separation strategies have been explored including the exploitation of developmental and behavioural differences between male and female mosquitoes, and genetic approaches. Most of these are however species-specific and are not indicated for the major African malaria vectors such as An. arabiensis. As there is currently no reliable sex-separation method for An. arabiensis, various strategies were explored in an attempt to develop a robust system that can be applied on a mass- rearing scale. The progress and challenges faced during the development of a sexing system for future pilot and/or large-scale SIT release programmes against An.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Importance of Mosquitoes
    IMPORTANCE OF MOSQUITOES Portions of this chapter were obtained from the University of Florida and the American Mosquito Control Association Public Health Pest Control website at http://vector.ifas.ufl.edu. Introduction to Pests and Public Health: Arthropods are the most successful group of animals on Earth. They thrive in every habitat and in all regions of the world. A small number of species from this phylum have a great impact on humans, affecting us not only by damaging agriculture and horticultural crops but also through the diseases they can transmit to humans and our domestic animals. Insects can transmit disease (vectors), cause wounds, inject venom, or create nuisance, and have serious social and economic consequences. Arthropods can be indirect (mechanical carriers) or direct (biological carriers) transmitters of disease. As indirect agents they serve as simple mechanical carriers of various bacteria and fungi which may cause disease. As direct or biological agents they serve as vectors for disease­causing agents that require the insect as part of the life cycle. In considering transmission of disease­ causing organisms, it is important to understand the relationships among the vector (the disease­ transmitting organism, i.e. an insect), the disease pathogen (for example, a virus) and the host (humans or animals). The pathogen may or may not undergo different life stages while in the vector. Pathogens that undergo changes in life stages within the vector before being transmitted to a host require the vector—without the vector, the disease life cycle would be broken and the pathogen would die. In either case, the vector is the means for the pathogen to pass from one host to another.
    [Show full text]
  • Table of Contents
    Table of Contents Oral Presentation Abstracts ............................................................................................................................... 3 Plenary Session ............................................................................................................................................ 3 Adult Control I ............................................................................................................................................ 3 Mosquito Lightning Symposium ...................................................................................................................... 5 Student Paper Competition I .......................................................................................................................... 9 Post Regulatory approval SIT adoption ......................................................................................................... 10 16th Arthropod Vector Highlights Symposium ................................................................................................ 11 Adult Control II .......................................................................................................................................... 11 Management .............................................................................................................................................. 14 Student Paper Competition II ...................................................................................................................... 17 Trustee/Commissioner
    [Show full text]
  • Aedes (Stegomyia ) Polynesiensis Marks
    Aedes (Stegomyia) polynesiensis Marks Polynesian mosquito NZ Status: Not present –Unwanted Organisms © CINHP/G.MCCormaCk Vector and Pest Status Aedes polynesiensis is a veCtor of dengue, doG heartworm (Dirofilaria immitis) and filariasis (Wuchereria bancrofti) (Rosen, 1954; Lee et al., 1987). This speCies is also susceptible to infeCtion with Brugia pahangi and Brugia malayii (Trpis, 1981 in Lee et al., 1987). In the laboratory it has been shown to be Capable of transmitting Murray Valley enCephalitis (Rozeboom and MCLean, 1956 in Lee et al., 1987) Ross River virus (Gubler, 1981) and ChikunGunya (Richard, Paoaafaite and Cao-Lormeau, 2016a). The ability for Ae. polynesiensis to transmit Chikungunya is likely how the disease was able to spread rapidly thouGh areas where Ae. aegypti is sCarce or not present durinG an outbreak in FrenCh Polynesia in 2014-2015 (RiChard, Paoaafaite and Cao-Lormeau, 2016a). Aedes polynesiensis has also been found to be a veCtor for Zika virus, thouGh they had a low transmission rate (Calvez et al., 2018, Richard, Paoaafaite and Cao- Lormeau, 2016b) and while CompetenCe is poor they likely responsible for the spread of Zika virus where they are the predominate speCies (Richard, Paoaafaite and Cao-Lormeau, 2016b). Version 3: May 2019 Geographic Distribution Aedes polynesiensis is found only in the PaCific, in Fiji, Horne Islands, ElliCe Islands (Tuvalu), Tokelau Islands, Samoa, Northern and Southern Cook Islands, Marquesas Islands, SoCiety Islands, ManGarewa Islands, Alofi Island, Wallis and Futuna Island Austral Islands, Tuamotu ArChipelago and PitCairn Island (Lee et al., 1987). © 2006 M. Disbury SMS-NZB www.smsl.co.nz This map denotes only the Country or General areas where this speCies has been reCorded, not aCtual distribution Incursions and Interceptions Aedes polynesiensis has been interCepted on three ocCasions in New Zealand sinCe 2001.
    [Show full text]
  • Male Mating Competitiveness of a Wolbachia-Introgressed Aedes Polynesiensis Strain Under Semi-Field Conditions" (2011)
    University of Kentucky UKnowledge Entomology Faculty Publications Entomology 8-2-2011 Male mating competitiveness of a Wolbachia- introgressed Aedes polynesiensis strain under semi- field conditions Eric W. Chambers University of Kentucky Limb Hapairai Institut Louis Malardé, French Polynesia Bethany A. Peel University of Kentucky, [email protected] Hervé Bossin Institut Louis Malardé, French Polynesia Stephen L. Dobson University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Entomology Commons Repository Citation Chambers, Eric W.; Hapairai, Limb; Peel, Bethany A.; Bossin, Hervé; and Dobson, Stephen L., "Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions" (2011). Entomology Faculty Publications. 28. https://uknowledge.uky.edu/entomology_facpub/28 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions Notes/Citation Information Published in PLoS Neglected Tropical Diseases, v. 5, no. 8, e1271. © 2011 Chambers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Digital Object Identifier (DOI) http://dx.doi.org/10.1371/journal.pntd.0001271 This article is available at UKnowledge: https://uknowledge.uky.edu/entomology_facpub/28 Male Mating Competitiveness of a Wolbachia-Introgressed Aedes polynesiensis Strain under Semi-Field Conditions Eric W.
    [Show full text]
  • Survivorship in Aedes Polynesiensis with Artificial Wolbachia Infection Types
    Reactive Oxygen Species Production and Brugia pahangi Survivorship in Aedes polynesiensis with Artificial Wolbachia Infection Types Elizabeth S. Andrews1, Philip R. Crain1, Yuqing Fu1,2, Daniel K. Howe3, Stephen L. Dobson1* 1 Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America, 2 Tropical Research and Education Center, University of Florida, Homestead, Florida, United States of America, 3 Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America Abstract Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF) throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated ‘‘MTB’’) experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS) in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis.
    [Show full text]
  • 1020 1630 Chambers.Pdf
    Advances in Wolbachia-based biological control of mosquitoes: lessons learned from the South Pacific Eric W. Chambers Department of Biology Valdosta State University, Valdosta GA Outline of Presentation • What’s the problem? - Review of lymphatic filariasis • Aedes polynesiensis – A unique mosquito • Wolbachia based control of Aedes polynesiensis • Future research Lymphatic filariasis (LF) • Global Distribution-endemic in 83 countries – 120 million infected – 1 billion at risk Lymphatic filariasis in the Pacific Northern Marianas Guam Marshall Islands Federated States of Micronesia Palau Nauru Kiribati Kiribati Kiribati Papua New Guinea (Phoenix) (Line Tuvalu Islands) Periodic Tokelau Solomon Is Cook Wallis & Islands Futuna Samoa Fiji Am Vanuatu Samoa Subperiodic New Niue Caledonia Tonga French Polynesia Pitcairn Australia New Zealand Lymphatic filariasis vectors in the Pacific Vector Countries Where Found Aedes cooki Niue Aedes fijiensis Fiji Aedes horrensces Fiji Aedes kochi Papua New Guinea Aedes marshallensis Kiribati Aedes oceanicus Tonga Aedes polynesiensis Am Samoa, Samoa, Cook Islands, Tokelau, Tuvalu, French Polynesia, Wallis and Futuna, Fiji Aedes pseudoscutellaris Fiji Aedes rotumae Rotuma Island in Fiji Aedes samoanus Samoa Aedes tabu Tonga Aedes tutuilae Samoa Aedes upolenis Samoa Ochlerotatus vigilax New Caledonia, Fiji An punctulatus complex Papua New Guinea, Solomon Islands, Vanuatu Culex annulirostris Irian Jaya Culex quinquefasciatus Kiribati, Pelau, Fed States Micronesia, PNG, Fiji, etc Mansonia uniformis Papua New Guinea Aedes polynesiensis (Marks) Courtesy Renee Chambers • Found only on the islands of the South Pacific • Day-biting mosquito • Exophilic • Major vector of lymphatic filariasis (LF) French Polynesia Is MDA enough in the South Pacific? • Treatment with DEC since 1955 • Antigen prevalence of 4.6% • Mosquito infection rate of 1.4% Society islands – Marquesas = 12.3% Tahiti = 11.5% Australes-Tuamotu Gambier = 12.3% Slide credit: Herve Bossin What makes transmission of LF by Aedes polynesiensis in the South Pacific unique? 1.
    [Show full text]
  • North American Wetlands and Mosquito Control
    Int. J. Environ. Res. Public Health 2012, 9, 4537-4605; doi:10.3390/ijerph9124537 OPEN ACCESS International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph Article North American Wetlands and Mosquito Control Jorge R. Rey 1,*, William E. Walton 2, Roger J. Wolfe 3, C. Roxanne Connelly 1, Sheila M. O’Connell 1, Joe Berg 4, Gabrielle E. Sakolsky-Hoopes 5 and Aimlee D. Laderman 6 1 Florida Medical Entomology Laboratory and Department of Entomology and Nematology, University of Florida-IFAS, Vero Beach, FL 342962, USA; E-Mails: [email protected] (R.C.); [email protected] (S.M.O.C.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; E-Mail: [email protected] 3 Connecticut Department of Energy and Environmental Protection, Franklin, CT 06254, USA; E-Mail: [email protected] 4 Biohabitats, Inc., 2081 Clipper Park Road, Baltimore, MD 21211, USA; E-Mail: [email protected] 5 Cape Cod Mosquito Control Project, Yarmouth Port, MA 02675, USA; E-Mail: [email protected] 6 Marine Biological Laboratory, Woods Hole, MA 02543, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-772-778-7200 (ext. 136). Received: 11 September 2012; in revised form: 21 November 2012 / Accepted: 22 November 2012 / Published: 10 December 2012 Abstract: Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems.
    [Show full text]
  • The Impact of Releasing Sterile Mosquitoes on Malaria Transmission
    DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2018113 DYNAMICAL SYSTEMS SERIES B Volume 23, Number 9, November 2018 pp. 3837{3853 THE IMPACT OF RELEASING STERILE MOSQUITOES ON MALARIA TRANSMISSION Hongyan Yin School of Mathematics and Statistics Central China Normal University Wuhan 430079, China School of Mathematics and Statistics South-Central University for Nationalities Wuhan 430074, China Cuihong Yang∗ and Xin'an Zhang School of Mathematics and Statistics Central China Normal University Wuhan 430079, China Jia Li Department of Mathematical Science University of Alabama in Huntsville Huntsville AL 35899, USA (Communicated by Yuan Lou) Abstract. The sterile mosquitoes technique in which sterile mosquitoes are released to reduce or eradicate the wild mosquito population has been used in preventing the malaria transmission. To study the impact of releasing sterile mosquitoes on the malaria transmission, we first formulate a simple SEIR (susceptible-exposed-infected-recovered) malaria transmission model as our baseline model, derive a formula for the reproductive number of infection, and determine the existence of endemic equilibria. We then include sterile mosquitoes in the baseline model and consider the case of constant releases of sterile mosquitoes. We examine how the releases affect the reproductive numbers and endemic equilibria for the model with interactive mosquitoes and investigate the impact of releasing sterile mosquitoes on the malaria transmis- sion. 1. Introduction. Mosquito-borne diseases, such as malaria, transmitted between humans by mosquitoes, are big concerns for the public health. Malaria is the fifth cause of death from infectious diseases worldwide (after respiratory infections, HIV/AIDS, diarrheal diseases, and tuberculosis), and the second leading cause of death from infectious diseases in Africa after HIV/AIDS.
    [Show full text]