Classical and Alternative Complement Activation on Photoreceptor Outer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
How Macrophages Deal with Death
REVIEWS CELL DEATH AND IMMUNITY How macrophages deal with death Greg Lemke Abstract | Tissue macrophages rapidly recognize and engulf apoptotic cells. These events require the display of so- called eat-me signals on the apoptotic cell surface, the most fundamental of which is phosphatidylserine (PtdSer). Externalization of this phospholipid is catalysed by scramblase enzymes, several of which are activated by caspase cleavage. PtdSer is detected both by macrophage receptors that bind to this phospholipid directly and by receptors that bind to a soluble bridging protein that is independently bound to PtdSer. Prominent among the latter receptors are the MER and AXL receptor tyrosine kinases. Eat-me signals also trigger macrophages to engulf virus- infected or metabolically traumatized, but still living, cells, and this ‘murder by phagocytosis’ may be a common phenomenon. Finally , the localized presentation of PtdSer and other eat- me signals on delimited cell surface domains may enable the phagocytic pruning of these ‘locally dead’ domains by macrophages, most notably by microglia of the central nervous system. In long- lived organisms, abundant cell types are often process. Efferocytosis is a remarkably efficient business: short- lived. In the human body, for example, the macrophages can engulf apoptotic cells in less than lifespan of many white blood cells — including neutro- 10 minutes, and it is therefore difficult experimentally to phils, eosinophils and platelets — is less than 2 weeks. detect free apoptotic cells in vivo, even in tissues where For normal healthy humans, a direct consequence of large numbers are generated7. Many of the molecules this turnover is the routine generation of more than that macrophages and other phagocytes use to recognize 100 billion dead cells each and every day of life1,2. -
Complement Component 4 Genes Contribute Sex-Specific Vulnerability in Diverse Illnesses
bioRxiv preprint doi: https://doi.org/10.1101/761718; this version posted September 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Complement component 4 genes contribute sex-specific vulnerability in diverse illnesses Nolan Kamitaki1,2, Aswin Sekar1,2, Robert E. Handsaker1,2, Heather de Rivera1,2, Katherine Tooley1,2, David L. Morris3, Kimberly E. Taylor4, Christopher W. Whelan1,2, Philip Tombleson3, Loes M. Olde Loohuis5,6, Schizophrenia Working Group of the Psychiatric Genomics Consortium7, Michael Boehnke8, Robert P. Kimberly9, Kenneth M. Kaufman10, John B. Harley10, Carl D. Langefeld11, Christine E. Seidman1,12,13, Michele T. Pato14, Carlos N. Pato14, Roel A. Ophoff5,6, Robert R. Graham15, Lindsey A. Criswell4, Timothy J. Vyse3, Steven A. McCarroll1,2 1 Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA 2 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA 3 Department of Medical and Molecular Genetics, King’s College London, London WC2R 2LS, UK 4 Rosalind Russell / Ephraim P Engleman Rheumatology Research Center, Division of Rheumatology, UCSF School of Medicine, San Francisco, California 94143, USA 5 Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA 6 Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA 7 A full list of collaborators is in Supplementary Information. -
Investigation of Candidate Genes and Mechanisms Underlying Obesity
Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between -
Appendix Table A.2.3.1 Full Table of All Chicken Proteins and Human Orthologs Pool Accession Human Human Protein Human Product Cell Angios Log2( Endo Gene Comp
Appendix table A.2.3.1 Full table of all chicken proteins and human orthologs Pool Accession Human Human Protein Human Product Cell AngioS log2( Endo Gene comp. core FC) Specific CIKL F1NWM6 KDR NP_002244 kinase insert domain receptor (a type III receptor tyrosine M 94 4 kinase) CWT Q8AYD0 CDH5 NP_001786 cadherin 5, type 2 (vascular endothelium) M 90 8.45 specific CWT Q8AYD0 CDH5 NP_001786 cadherin 5, type 2 (vascular endothelium) M 90 8.45 specific CIKL F1P1Y9 CDH5 NP_001786 cadherin 5, type 2 (vascular endothelium) M 90 8.45 specific CIKL F1P1Y9 CDH5 NP_001786 cadherin 5, type 2 (vascular endothelium) M 90 8.45 specific CIKL F1N871 FLT4 NP_891555 fms-related tyrosine kinase 4 M 86 -1.71 CWT O73739 EDNRA NP_001948 endothelin receptor type A M 81 -8 CIKL O73739 EDNRA NP_001948 endothelin receptor type A M 81 -8 CWT Q4ADW2 PROCR NP_006395 protein C receptor, endothelial M 80 -0.36 CIKL Q4ADW2 PROCR NP_006395 protein C receptor, endothelial M 80 -0.36 CIKL F1NFQ9 TEK NP_000450 TEK tyrosine kinase, endothelial M 77 7.3 specific CWT Q9DGN6 ECE1 NP_001106819 endothelin converting enzyme 1 M 74 -0.31 CIKL Q9DGN6 ECE1 NP_001106819 endothelin converting enzyme 1 M 74 -0.31 CWT F1NIF0 CA9 NP_001207 carbonic anhydrase IX I 74 CIKL F1NIF0 CA9 NP_001207 carbonic anhydrase IX I 74 CWT E1BZU7 AOC3 NP_003725 amine oxidase, copper containing 3 (vascular adhesion protein M 70 1) CIKL E1BZU7 AOC3 NP_003725 amine oxidase, copper containing 3 (vascular adhesion protein M 70 1) CWT O93419 COL18A1 NP_569712 collagen, type XVIII, alpha 1 E 70 -2.13 CIKL O93419 -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
CD90 Expression Controls Migration and Predicts Dasatinib Response In
Published OnlineFirst September 22, 2017; DOI: 10.1158/1078-0432.CCR-17-1549 Biology of Human Tumors Clinical Cancer Research CD90 Expression Controls Migration and Predicts Dasatinib Response in Glioblastoma Tony Avril1,2, Amandine Etcheverry3, Raphael€ Pineau1, Joanna Obacz1, Gwena ele€ Jegou1,2, Florence Jouan1, Pierre-Jean Le Reste1,4, Masumeh Hatami5, Rivka R. Colen5,6, Brett L. Carlson7, Paul A. Decker7, Jann N. Sarkaria7, Elodie Vauleon 1,2,3, Dan Cristian Chiforeanu8, Anne Clavreul9, Jean Mosser3, Eric Chevet1,2, and Veronique Quillien1,2,3 Abstract Purpose: CD90 (Thy-1) is a glycophosphatidylinositol- migration gene signature and with invasive tumor features. Mod- anchored glycoprotein considered as a surrogate marker for a ulation of CD90 expression in GBM cells dramatically affected variety of stem cells, including glioblastoma (GBM) stem cells their adhesion and migration properties. Moreover, orthotopic (GSC). However, the molecular and cellular functions of CD90 xenografts revealed that CD90 expression induced invasive phe- remain unclear. notypes in vivo. Indeed, CD90 expression led to enhanced SRC and Experimental Design: The function of CD90 in GBM was FAK signaling in our GBM cellular models and GBM patients' addressed using cellular models from immortalized and primary specimens. Pharmacologic inhibition of these signaling nodes GBM lines, in vivo orthotopic mouse models, and GBM specimens' blunted adhesion and migration in CD90-positive cells. Remark- transcriptome associated with MRI features from GBM patients. ably, dasatinib blunted CD90-dependent GBM cell invasion CD90 expression was silenced in U251 and GBM primary cells in vivo and killed CD90high primary GSC lines. and complemented in CD90-negative U87 cells. -
Detection of Cytogenetic Aberrations Both in CD90 (Thy-1)-Positive And
Leukemia (1999) 13, 1770–1775 1999 Stockton Press All rights reserved 0887-6924/99 $15.00 http://www.stockton-press.co.uk/leu Detection of cytogenetic aberrations both in CD90 (Thy-1)-positive and (Thy-1)- negative stem cell (CD34) subfractions of patients with acute and chronic myeloid leukemias C Brendel1, B Mohr1, C Schimmelpfennig1,JMu¨ller1, M Bornha¨user1, M Schmidt1, M Ritter1, G Ehninger1 and A Neubauer2 1Universita¨tsklinikum Carl Gustav Carus, Medizinische Klinik I, Dresden; and 2Universita¨tsklinikum der Philipps-Universita¨t Marburg, Abt. fu¨r Ha¨matologie, Onkologie und Immunologie, Zentrum fu¨r Innere Medizin, Marburg, Germany Acute myeloid leukemia (AML) and chronic myeloid leukemia early stem cells from malignant progenitor cells via distinct (CML) are thought to arise from malignant hematopoietic pro- surface marker molecules is a challenging perspective, since genitor cells representing early and undifferentiated stem cell various improved cell selection methods have been recently clones. In CML there is evidence for a progenitor cell subset 4 free of leukemic clones, depending on the course of the dis- applied. ease. Additionally, it has been suggested that in AML, the early Acute myeloid leukemia is also considered to be an early stem cell compartment (CD34+/90+) does not harbor the malig- stem cell disease with fulminant lethal course if untreated. nant clone. We analyzed white blood cells from leukemia Since only a minority of patients achieve long-term complete patients for the presence of aberrant cells in stem cell subfrac- remission, bone marrow or stem cell transplantation is still the tions. Sixteen patients with CML, six patients with AML, two patients with acute lymphatic leukemia (ALL) and one with treatment of choice if appropriate donor cells are available. -
Common Differentially Expressed Genes and Pathways Correlating Both Coronary Artery Disease and Atrial Fibrillation
EXCLI Journal 2021;20:126-141– ISSN 1611-2156 Received: December 08, 2020, accepted: January 11, 2021, published: January 18, 2021 Supplementary material to: Original article: COMMON DIFFERENTIALLY EXPRESSED GENES AND PATHWAYS CORRELATING BOTH CORONARY ARTERY DISEASE AND ATRIAL FIBRILLATION Youjing Zheng, Jia-Qiang He* Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA * Corresponding author: Jia-Qiang He, Department of Biomedical Sciences and Pathobiology, Virginia Tech, Phase II, Room 252B, Blacksburg, VA 24061, USA. Tel: 1-540-231-2032. E-mail: [email protected] https://orcid.org/0000-0002-4825-7046 Youjing Zheng https://orcid.org/0000-0002-0640-5960 Jia-Qiang He http://dx.doi.org/10.17179/excli2020-3262 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). Supplemental Table 1: Abbreviations used in the paper Abbreviation Full name ABCA5 ATP binding cassette subfamily A member 5 ABCB6 ATP binding cassette subfamily B member 6 (Langereis blood group) ABCB9 ATP binding cassette subfamily B member 9 ABCC10 ATP binding cassette subfamily C member 10 ABCC13 ATP binding cassette subfamily C member 13 (pseudogene) ABCC5 ATP binding cassette subfamily C member 5 ABCD3 ATP binding cassette subfamily D member 3 ABCE1 ATP binding cassette subfamily E member 1 ABCG1 ATP binding cassette subfamily G member 1 ABCG4 ATP binding cassette subfamily G member 4 ABHD18 Abhydrolase domain -
CD90 Serves As Differential Modulator of Subcutaneous and Visceral
Pan et al. Stem Cell Research & Therapy (2019) 10:355 https://doi.org/10.1186/s13287-019-1459-7 RESEARCH Open Access CD90 serves as differential modulator of subcutaneous and visceral adipose-derived stem cells by regulating AKT activation that influences adipose tissue and metabolic homeostasis Zhenzhen Pan1†, Zixin Zhou1†, Huiying Zhang1, Hui Zhao1,2, Peixuan Song3, Di Wang1, Jilong Yin1, Wanyi Zhao1, Zhaoxiang Xie1, Fuwu Wang4, Yan Li5, Chun Guo1, Faliang Zhu1, Lining Zhang1 and Qun Wang1* Abstract Background: White adipose tissue includes subcutaneous and visceral adipose tissue (SAT and VAT) with different metabolic features. SAT protects from metabolic disorders, while VAT promotes them. The proliferative and adipogenic potentials of adipose-derived stem cells (ADSCs) are critical for maintaining adipose tissue homeostasis through driving adipocyte hyperplasia and inhibiting pathological hypertrophy. However, it remains to be elucidated the critical molecules that regulate different potentials of subcutaneous and visceral ADSCs (S-ADSCs, V- ADSCs) and mediate distinct metabolic properties of SAT and VAT. CD90 is a glycosylphosphatidylinositol-anchored protein on various cells, which is also expressed on ADSCs. However, its expression patterns and differential regulation on S-ADSCs and V-ADSCs remain unclear. Methods: S-ADSCs and V-ADSCs were detected for CD90 expression. Proliferation, colony formation, cell cycle, mitotic clonal expansion, and adipogenic differentiation were assayed in S-ADSCs, V-ADSCs, or CD90-silenced S-ADSCs. Glucose tolerance test and adipocyte hypertrophy were examined in mice after silencing of CD90 in SAT. CD90 expression and its association with CyclinD1 and Leptin were analyzed in adipose tissue from mice and humans. -
T Cells Into Heart +CD8 Expression Reduces Migration of Pathogenic
Abrogation of Functional Selectin-Ligand Expression Reduces Migration of Pathogenic CD8+ T Cells into Heart This information is current as Yi Hong Cai, Angeles Alvarez, Pilar Alcaide, Paurene of September 24, 2021. Duramad, Yaw-Chin Lim, Petr Jarolim, John B. Lowe, Francis W. Luscinskas and Andrew H. Lichtman J Immunol 2006; 176:6568-6575; ; doi: 10.4049/jimmunol.176.11.6568 http://www.jimmunol.org/content/176/11/6568 Downloaded from References This article cites 32 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/176/11/6568.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Abrogation of Functional Selectin-Ligand Expression Reduces Migration of Pathogenic CD8؉ T Cells into Heart1 Yi Hong Cai,* Angeles Alvarez,* Pilar Alcaide,* Paurene Duramad,* Yaw-Chin Lim,‡ Petr Jarolim,† John B. -
©Ferrata Storti Foundation
Acute Leukemias original paper haematologica 2001; 86:154-161 Impact of CD133 (AC133) and CD90 http://www.haematologica.it/2001_02/0154.htm expression analysis for acute leukemia immunophenotyping CHRISTIAN WUCHTER,* RICHARD RATEI,* GÜNTHER SPAHN,* CLAUDIA SCHOCH,° JOCHEN HARBOTT,# SUSANNE SCHNITTGER,° TORSTEN HAFERLACH,° URSULA CREUTZIG,@ CHRISTIAN SPERLING,* LEONID KARAWAJEW,* WOLF-DIETER LUDWIG* *Dept. of Hematology, Oncology and Tumor Immunology, Robert- Rössle-Clinic, Charité, Humboldt-University of Berlin, °Dept. of Internal Medicine III, Ludwig-Maximilians-University of München, Correspondence: Christian Wuchter, M.D., Robert-Rössle-Clinic, Charité, #Oncogenetic Laboratory, Children’s Hospital, Justus-Liebig-Uni- Humboldt University of Berlin, Lindenberger Weg 80, 13125 Berlin, Ger- versity of Gießen, @Dept. of Hematology-Oncology, University Chil- many. Phone: international +0049-30-94171362 - Fax: international +0049-30-94171308 - E-mail: [email protected] dren's Hospital, Münster, Germany Background and Objectives. AC133 is a novel monoclonal cute leukemias derive from either malignant, antibody (Moab) reacting with a population of imma- transformed, uncommitted multipotent stem cells ture/primitive or granulo-monocytic committed CD34+ve Aor lineage-restricted progenitor cells.1-3 So far, cells. Up to now, only few studies with small numbers of cas- CD34 is the most commonly used antigen to define es have examined AC133 (recently designated CD133) immature hematopoietic progenitor cells.4 In acute expression in acute leukemia. To determine the value of this leukemia immunophenotyping, CD34 is not lineage- Moab for acute leukemia immunophenotyping, we investi- restricted and thus not useful for distinguishing acute gated a large series of leukemic cell samples for their reac- myeloid leukemia (AML) from acute lymphoblastic tivity with Moab AC133.