Growth and Yield Models for Balsa Wood Plantations in the Coastal Lowlands of Ecuador

Total Page:16

File Type:pdf, Size:1020Kb

Growth and Yield Models for Balsa Wood Plantations in the Coastal Lowlands of Ecuador Article Growth and Yield Models for Balsa Wood Plantations in the Coastal Lowlands of Ecuador Álvaro Cañadas-López 1,2, Diana Rade-Loor 3, Marianna Siegmund-Schultze 4, Geovanny Moreira-Muñoz 1, J. Jesús Vargas-Hernández 5 and Christian Wehenkel 6,* 1 Carrera Ingeniería Agropecuaria, Facultad de Ingeniería Agropecuaria, Universidad Laica Eloy Alfaro de Manabí, C.P.130301 Av. Eloy Alfaro, Chone, Ecuador 2 Programa de Forestaría, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Estación Experimental Tropical Pichilingue, C.P. 120501 Km 5 vía Quevedo—El Empalme, Pichilingue, Ecuador 3 Centro de Investigación de las Carreras de la ESPAM-MFL (CICEM), Escuela Superior Politécnica de Manabí (ESPAM-MFL), Campus Politécnico Calceta, C.P. 130250 Sitio El Limón, Calceta, Ecuador 4 Environmental Assessment and Planning Research Group, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany 5 Posgrado en Ciencias Forestales, Colegio de Postgraduados, Montecillo, Texcoco C.P. 56230, México 6 Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Boulevard Guadiana #501, Ciudad Universitaria, Torre de Investigación, Durango C.P. 34120, México * Correspondence: [email protected] Received: 2 July 2019; Accepted: 20 August 2019; Published: 26 August 2019 Abstract: Balsa trees are native to neotropical forests and frequently grow on fallow, degraded land. Balsa can be used for economic and ecological rehabilitation of farmland with the aim of restoring native forest ecosystems. Although Ecuador is the world’s largest producer of balsa, there is a lack of knowledge about production indicators for management of balsa stands in the country. The aim of this study was to develop growth and yield models (i.e., site index (SI) curves and stem volume models) for balsa plantations in the coastal lowlands of Ecuador. Balsa trees growing in 2161 plots in seven provinces were sampled. Here we present the first growth and yield models for the native, although underutilized, balsa tree. Three curve models were fitted to determine SI for balsa stands, differentiating five site quality classes. Eight volume models were compared to identify the best fit model for balsa stands. The mean annual increment was used to assess balsa production. The generalized algebraic difference approach (GADA) equation yielded one of the best results for the height–age and diameter–age models. The Newnham model was the best volume model for balsa in this comparative study. The maximum annual increment (i.e., for the best stand index) was reached in the second year of plantation. The fitted models can be used to support management decisions regarding balsa plantations. However, the models are preliminary and must be validated with independent samples. Nevertheless, the very fast development of the native balsa tree is particularly promising and should attract more attention from forest owners and politicians. Keywords: mean annual increment; stand density index; site index; silvicultural models; volume; native tree; underutilized tree 1. Introduction Many non-native tree species have been used around the world for productive plantations, ornamental purposes and for rehabilitation of degraded land, eventually contributing to the homogenization of landscapes, reducing native diversity, and with mixed effects on ecosystem services [1]. Rehabilitation of degraded land is a worldwide necessity and is increasingly gaining political attention. In the context of climate change and biodiversity loss, locally-adapted solutions Forests 2019, 10, 733; doi:10.3390/f10090733 www.mdpi.com/journal/forests Forests 2019, 10, 733 2 of 16 are needed. The balsa tree, Ochroma pyramidale (Cav. Ex Lam), is native to the neotropical forests and frequently grows on fallow and degraded land. It can be used for economic, ecological rehabilitation of farmland with the aim of restoring native forest ecosystems [2,3]. In 2008, Ecuador was the world’s top producer of balsa wood, producing 89% of the balsa sold worldwide, followed by Papua New Guinea with 8%. The global trade in sawn kiln-dried balsa wood and semi-finished wood products (155,000 m3) was worth an estimated US $71 million [4]. According to Cañadas [5], the economic value of potential forestlands could be increased by using light-demanding trees such as balsa to establish plantations and agroforestry systems. Balsa has considerable potential in secondary forests and on abandoned agricultural land: It grows rapidly, the wood quality meets the requirements of the industry, and the species appears suitable for plantations and agroforestry systems. It could meet increased future requirements of the industry, as production costs are low [6,7]. Balsa is known as a “frame species” because of the following properties: (1) Good survival and high growth rates in degraded conditions; (2) rapid canopy development, which suppresses highly competitive heliophilous weeds; and (3) it provides food and perches that attract seed dispersal fauna [8]. These characteristics are associated with improved soil fertility [9], rehabilitation of degraded areas, and forest restoration [2]. Balsa plantations are deemed an economic alternative for the Ecuadorian coastal region because of the very light wood and versatility for adaptation to the needs of local small producers and timber exportation [10]. These characteristics contribute to the diversification of forestry production in smallholder farming systems [11]. The main components that influence the quality of plantation sites are climate and soil. In forest studies, site quality has been evaluated with the help of different indices. In even-aged stands, site index (SI) is the most popular means of assessing site quality and is also used to evaluate tree growth and yield potential. SI relates tree height or diameter of a species to tree age. However, SI and height growth are sensitive to incidents in the stand history [12,13]. Finally, measuring volume production of trees is a difficult task, and easier methods are desirable [14–17]. In 2016, the Ecuadorian Forest Incentives Program (PROFORESTAL), implemented by the Ministry of Agriculture, Livestock, and Aquaculture (MAGAP), recorded a total of 48,533 ha of forest plantations with the following species: teak (Tectona grandis L.), 19,602 ha; melina (Gmelina arborea Roxb.), 10,467 ha; balsa, 8518 ha; pine, 4733 ha; and other species, in the remaining 5213 ha [18]. Growth models predicting balsa stand development would be useful to estimate the stand dynamics and thus sustain decision making in stand management. Nevertheless, management of balsa stands suffers from a lack of reliable quantitative tools for simulating stand dynamics [19]. In addition, little research has addressed production, silvicultural, and management aspects of balsa, such as SI, stand density, growth rate, and soil fertility [19], except for a previous study in which we modelled the SI of Ecuadorian balsa for both height and diameter on the basis of the Chapman-Richards model [7]. However, there are wide array of growth and yield models, each with advantages and disadvantages. These models differ in the type of data used and the method of construction [20]. The aim of this study was to develop the first growth and yield models, including SI curves and volume models, for balsa plantations in the coastal region of Ecuador, thus contributing to the development of further silvicultural and economic studies. 2. Materials and Methods 2.1. Study Area Balsa plantations were evaluated in seven provinces in the coastal region of Ecuador (Figure1). Forests 2019, 10, 733 3 of 16 Forests 2019, 10, x FOR PEER REVIEW 3 of 16 Figure 1. Spatial distribution of the balsa sampling plots in the coastal lowland provinces in Ecuador. Figure 1. Spatial distribution of the balsa sampling plots in the coastal lowland provinces in Ecuador. The climate data for the period 2009–2013 was taken from the Instituto Nacional de Meteorología The climate data for the period 2009–2013 was taken from the Instituto Nacional de Meteorología e Hidrología (INAMHI) [21] meteorological yearbook. The number of plots sampled in each site was e Hidrología (INAMHI) [21] meteorological yearbook. The number of plots sampled in each site was proportional to the surface area of each Balsa plantation. Table1 shows the basic stand attributes of proportional to the surface area of each Balsa plantation. Table 1 shows the basic stand attributes of balsa plantations in the research region. Table2 summarizes the annual precipitation, mean annual balsa plantations in the research region. Table 2 summarizes the annual precipitation, mean annual temperature, elevation, and the number of plots sampled by province and life zone, defined as temperature, elevation, and the number of plots sampled by province and life zone, defined as evapotranspiration potential. evapotranspiration potential. Forests 2019, 10, 733 4 of 16 Table 1. Mean stand characteristics of the Balsa plantations by province in the coastal region of Ecuador. Density of Diameter at Total Mean Annual Basal Area Province Plantation Age (Year) Breast Height Height 2 1 Increment * 1 (m ha− ) 3 1 (Trees ha− ) (cm) (m) (m ha− ) Average 334.4 4.4 22.4 22.4 13.0 29.2 Maximum 1506.0 10.9 44.1 40.6 26.0 228.1 Los Ríos Minimum 90.0 1.1 2.9 2.5 0.3 2.2 Stand Err 712.5 0.1 1.1 1.3 0.6 5.1 ± ± ± ± ± ± Average 343.2 4.1 22.5 22.7 14.1 33.0 Santo Domingo Maximum 856.0 9.4 44.6 35.0 26.9 198.4 de los Tsáchilas Minimum 100.0 1.3 3.8 7.4 2.0 2.3 Stand Err
Recommended publications
  • Variant Overview Agriculture Forest Vegetation Simulator Forest Service Forest Management Service Center Fort Collins, CO 2008 Revised: June 2021
    United States Department of Tetons (TT) Variant Overview Agriculture Forest Vegetation Simulator Forest Service Forest Management Service Center Fort Collins, CO 2008 Revised: June 2021 Spread Creek, Bridger-Teton National Forest (Liz Davy, FS-R4) ii Tetons (TT) Variant Overview Forest Vegetation Simulator Authors and Contributors: The FVS staff has maintained model documentation for this variant in the form of a variant overview since its release in 1982. The original author was Gary Dixon. In 2008, the previous document was replaced with an updated variant overview. Gary Dixon, Christopher Dixon, Robert Havis, Chad Keyser, Stephanie Rebain, Erin Smith-Mateja, and Don Vandendriesche were involved with that update. Don Vandendriesche cross-checked the information contained in that variant overview update with the FVS source code. In 2010, Gary Dixon expanded the species list and made significant updates to this variant overview. FVS Staff. 2008 (revised June 28, 2021). Tetons (TT) Variant Overview – Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 56p. iii Table of Contents 1.0 Introduction................................................................................................................................ 1 2.0 Geographic Range ....................................................................................................................... 2 3.0 Control Variables .......................................................................................................................
    [Show full text]
  • Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607)
    Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607) by Nancy Ross Preface Since it was published in 1984, Tropical Timbers of the World has proven to be an extremely valuable reference to the properties and uses of tropical woods. It has been particularly valuable for the selection of species for specific products and as a reference for properties information that is important to effective pro- cessing and utilization of several hundred of the most commercially important tropical wood timbers. If a user of the book has only a common or trade name for a species and wishes to know its properties, the user must use the index of common names beginning on page 451. However, most tropical timbers have numerous common or trade names, depending upon the major region or local area of growth; furthermore, different species may be know by the same common name. Herein lies a minor weakness in Tropical Timbers of the World. The index generally contains only the one or two most frequently used common or trade names. If the common name known to the user is not one of those listed in the index, finding the species in the text is impossible other than by searching the book page by page. This process is too laborious to be practical because some species have 20 or more common names. This supplement provides a complete index of common or trade names. This index will prevent a user from erroneously concluding that the book does not contain a specific species because the common name known to the user does not happen to be in the existing index.
    [Show full text]
  • Stand Density Management for Optimal Volume Production
    Stand Density Management for Optimal Volume Production Micky Gale Allen II Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Forestry Harold E. Burkhart, Chair Philip J. Radtke Thomas R. Fox Inyoung Kim March 25, 2016 Blacksburg, Virginia Keywords: growth-density relationship, periodic annual increment, Langsaeter’s hypothesis, planting density, thinning intensity, loblolly pine Copyright 2011, Micky Gale Allen II Stand Density Management for Optimal Volume Production Micky Gale Allen II ABSTRACT The relationship between volume production and stand density, often termed the “growth-density relationship”, has been studied since the beginnings of forestry and yet no conclusive evidence about a general pattern has been established. Throughout the literature claims and counterclaims concerning the growth-density relationship can be found. Different conclusions have been attributed to the diverse range of definitions of volume and stand density among problems with study design and other pitfalls. Using data from two thinning studies representing non-intensively and intensively managed plantations, one spacing trial, and one thinning experiment a comprehensive analysis was performed to examine the growth-density relationship in loblolly pine. Volume production was defined as either gross or net periodic annual increment of total, pulpwood, or sawtimber volume. These definitions of volume production were then related to seven measures of stand density including the number of stems per hectare, basal area per hectare, two measures of relative spacing and three measures of stand density index. A generalized exponential and power type function was used to test the hypothesis that volume production follows either an increasing or unimodal pattern with stand density.
    [Show full text]
  • Mechanical Stress in the Inner Bark of 15 Tropical Tree Species and The
    Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras To cite this version: Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure. Botany / Botanique, NRC Research Press, 2019, 10.1139/cjb-2018-0224. hal-02368075 HAL Id: hal-02368075 https://hal.archives-ouvertes.fr/hal-02368075 Submitted on 18 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure1 Romain Lehnebach, Léopold Doumerc, Bruno Clair, and Tancrède Alméras Abstract: Recent studies have shown that the inner bark is implicated in the postural control of inclined tree stems through the interaction between wood radial growth and tangential expansion of a trellis fiber network in bark. Assessing the taxonomic extent of this mechanism requires a screening of the diversity in bark anatomy and mechanical stress. The mechanical state of bark was measured in 15 tropical tree species from various botanical families on vertical mature trees, and related to the anatomical structure of the bark.
    [Show full text]
  • Developing Optimal Commercial Thinning Prescriptions: a New Graphical Approach
    Developing Optimal Commercial Thinning Prescriptions: A New Graphical Approach KaDonna C. Randolph, USDA Forest Service Forest Inventory and Analysis, Knoxville, TN 37919; and Robert S. Seymour and Robert G. Wagner, Department of Forest Ecosystem Science, University of Maine, Orono, ME 04469. ABSTRACT: We describe an alternative approach to the traditional stand-density management diagrams and stocking guides for determining optimum commercial thinning prescriptions. Predictions from a stand-growth simulator are incorporated into multiple nomograms that graphically display postthinning responses of various financial and biological response variables (mean annual increment, piece size, final harvest cost, total wood cost, and net present value). A customized ArcView GIS computer interface (ThinME) displays multiple nomograms and serves as a tool for forest managers to balance a variety of competing objectives when developing commercial thinning prescriptions. ThinME provides a means to evaluate simultaneously three key questions about commercial thinning: (1) When should thinning occur? (2) How much should be removed? and (3) When should the final harvest occur, to satisfy a given set of management objectives? North. J. Appl. For. 22(3):170–174. Key Words: Nomogram, silvicultural system, financial analysis, FVS, simulation. Careful regulation of stand density through thinning North America in the late 1970s (Drew and Flewelling arguably distinguishes truly intensive management above 1979, Newton 1997a). SDMDs graphically depict the rela- all other silvicultural treatments (Smith et al. 1997), and in tionship between stand density and average tree size (either every important forest region, rigorously derived thinning quadratic mean dbh or stemwood volume, and frequently schedules are crucial in meeting production objectives. Typ- supplementary isolines depicting tree height; Newton ically thinnings are prescribed using stocking guides or 1997b, Wilson et al.
    [Show full text]
  • Comparing MODIS Net Primary Production Estimates with Terrestrial National Forest Inventory Data in Austria
    Remote Sens. 2015, 7, 3878-3906; doi:10.3390/rs70403878 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Comparing MODIS Net Primary Production Estimates with Terrestrial National Forest Inventory Data in Austria Mathias Neumann 1,*, Maosheng Zhao 2, Georg Kindermann 3 and Hubert Hasenauer 1 1 Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Str. 82, A-1190 Vienna, Austria; E-Mail: [email protected] 2 Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA; E-Mail: [email protected] 3 Natural Hazards and Landscape, Department of Forest Growth and Silviculture, Federal Research and Training Centre for Forests, Vienna, Seckendorff-Gudent-Weg 8, A-1130 Vienna, Austria; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +43-1-47654-4078; Fax: +43-1-47654-4092. Academic Editors: Randolph H. Wynne and Prasad S. Thenkabail Received: 11 December 2014 / Accepted: 17 March 2015 / Published: 1 April 2015 Abstract: The mission of this study is to compare Net Primary Productivity (NPP) estimates using (i) forest inventory data and (ii) spatio-temporally continuous MODIS (MODerate resolution Imaging Spectroradiometer) remote sensing data for Austria. While forest inventories assess the change in forest growth based on repeated individual tree measurements (DBH, height etc.), the MODIS NPP estimates are based on ecophysiological processes such as photosynthesis, respiration and carbon allocation. We obtained repeated national forest inventory data from Austria, calculated a “ground-based” NPP estimate and compared the results with “space-based” MODIS NPP estimates using different daily climate data.
    [Show full text]
  • Wood Preservation Manual Wood Preservation Manual
    Wood preservation manual Wood preservation manual Mechanical Wood Products Branch Forest I ndustries Division FAD Forestry Department The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-34 ISBN 92-5-102470-7 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy. © FAD 1986 - i - CONTENTS Page CHAPTER 1 INTRODUCTION 1 Background and the purpose of the manual CHAPTER 2 WHAT IS PRESERVATION? 2 Importance, benefits and economics of wood preservation, protective measures, protection by specification, protection by design detailing CHAPTER 3 NATURE OF WOOD 13 Wood structure, classes of wood, moisture content and natural durability CHAPTER 4 DECAY HAZARDS 21 Fungi, insects, borers, weathering, fire CHAPTER 5 WOOD PRESERVATIVES 32 Properties, ideal preservative, types of preservatives, tar oils,
    [Show full text]
  • Development of a Stand Density Management Diagram for Teak Forests in Southern India
    Regular Article pISSN: 2288-9744, eISSN: 2288-9752 J F E S Journal of Forest and Environmental Science Journal of Forest and Vol. 30, No. 3, pp. 259-266, August, 2014 Environmental Science http://dx.doi.org/10.7747/JFS.2014.30.3.259 Development of a Stand Density Management Diagram for Teak Forests in Southern India Vindhya Prasad Tewari1,* and Juan Gabriel Álvarez-Gonz2 1Institute of Wood Science and Technology, Bangalore 560003, India 2Universidad de Santiago de Compostela, Lugo 27002, Spain Abstract Stand Density Diagrams (SDD) are average stand-level models which graphically illustrate the relationship between yield, density and mortality throughout the various stages of forest development. These are useful tools for designing, displaying and evaluating alternative density regimes in even-aged forest ecosystems to achieve a desired future condition. This contribution presents an example of a SDD that has been constructed for teak forests of Karnataka in southern India. The relationship between stand density, dominant height, quadratic mean diameter, relative spacing and stand volume is represented in one graph. The relative spacing index was used to characterize the population density. Two equations were fitted simultaneously to the data collected from 27 sample plots measured annually for three years: one relates quadratic mean diameter with stand density and dominant height while the other relates total stand volume with quadratic mean diameter, stand density and dominant height. Key Words: stand density diagram, yield, relative
    [Show full text]
  • Reineke's Stand Density Index
    Reineke’s Stand Density Index: Where Are We and Where Do We Go From Here? John D. Shaw USDA Forest Service, Rocky Mountain Research Station 507 25th Street, Ogden, UT 84401 [email protected] Citation: Shaw, J.D. 2006. Reineke’s Stand Density Index: Where are we and where do we go from here? Proceedings: Society of American Foresters 2005 National Convention. October 19-23, 2005, Ft. Worth, TX. [published on CD-ROM]: Society of American Foresters, Bethesda, MD. REINEKE’S STAND DENSITY INDEX: WHERE ARE WE AND WHERE DO WE GO FROM HERE? John D. Shaw USDA Forest Service Rocky Mountain Research Station Forest Inventory and Analysis 507 25th Street Ogden, UT 84401 Email: [email protected] Abstract: In recent years there has been renewed interest in Reineke’s Stand Density Index (SDI). Although originally described as a measurement of relative density in single-species, even-aged stands, it has since been generalized for use in uneven-aged stands and its use in multi-species stands is an active area of investigation. Some investigators use a strict definition of SDI and consider indicies developed for mixed and irregularly structured stands to be distinct from Reineke’s. In addition, there is ongoing debate over the use of standard or variable exponents to describe the self-thinning relationship that is integral to SDI. This paper describes the history and characteristics of SDI, its use in silvicultural applications, and extensions to the concept. Keywords: Stand Density Index, self-thinning, density management diagrams, silviculture, stand dynamics INTRODUCTION Silviculturists have long sought, and continue to seek, simple and effective indicies of competition in forest stands.
    [Show full text]
  • Mechanical Properties of Wood
    Mechanical Properties of Wood Course No: S04-004 Credit: 4 PDH Gilbert Gedeon, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 [email protected] Abstract Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses. Keywords: wood structure, physical properties (wood), mechanical properties (wood), lumber, wood-based composites, plywood, panel products, design, fastenings, wood moisture, drying, gluing, fire resistance, finishing, decay, sandwich construction, preservation, and wood- based products On the cover: (Left to right, top to bottom) 1. Research at the Forest Products Laboratory, Madison, Wisconsin, contributes to maximizing benefits of the Nation’s timber resource. 2. Testing the behavior of wood in fire helps enhance fire safety. 3. The all-wood, 162-m (530-ft ) clear-span Tacoma Dome exemplifies the structural and esthetic potential of wood construction (photo courtesy of Western Wood Structures, Inc., Tualatin, Oregon). 4. Bending tests are commonly used to determine the engineering properties of wood. 5. Engineered wood trusses exemplify research that has led to more efficient use of wood. 6. The Teal River stress-laminated deck bridge is March 1999 located in Sawyer County, Wisconsin. 7. Kiln drying of wood is an important procedure Forest Products Laboratory. 1999. Wood handbook—Wood as an during lumber manufacturing. engineering material. Gen. Tech. Rep. FPL–GTR–113. Madison, WI: 8. Legging adhesive (photo courtesy of Air Products U.S.
    [Show full text]
  • Downloaded from Brill.Com10/07/2021 08:53:11AM Via Free Access 130 IAWA Journal, Vol
    IAWA Journal, Vol. 27 (2), 2006: 129–136 WOOD ANATOMY OF CRAIGIA (MALVALES) FROM SOUTHEASTERN YUNNAN, CHINA Steven R. Manchester1, Zhiduan Chen2 and Zhekun Zhou3 SUMMARY Wood anatomy of Craigia W.W. Sm. & W.E. Evans (Malvaceae s.l.), a tree endemic to China and Vietnam, is described in order to provide new characters for assessing its affinities relative to other malvalean genera. Craigia has very low-density wood, with abundant diffuse-in-aggre- gate axial parenchyma and tile cells of the Pterospermum type in the multiseriate rays. Although Craigia is distinct from Tilia by the pres- ence of tile cells, they share the feature of helically thickened vessels – supportive of the sister group status suggested for these two genera by other morphological characters and preliminary molecular data. Although Craigia is well represented in the fossil record based on fruits, we were unable to locate fossil woods corresponding in anatomy to that of the extant genus. Key words: Craigia, Tilia, Malvaceae, wood anatomy, tile cells. INTRODUCTION The genus Craigia is endemic to eastern Asia today, with two species in southern China, one of which also extends into northern Vietnam and southeastern Tibet. The genus was initially placed in Sterculiaceae (Smith & Evans 1921; Hsue 1975), then Tiliaceae (Ren 1989; Ying et al. 1993), and more recently in the broadly circumscribed Malvaceae s.l. (including Sterculiaceae, Tiliaceae, and Bombacaceae) (Judd & Manchester 1997; Alverson et al. 1999; Kubitzki & Bayer 2003). Similarities in pollen morphology and staminodes (Judd & Manchester 1997), and chloroplast gene sequence data (Alverson et al. 1999) have suggested a sister relationship to Tilia.
    [Show full text]
  • Dry Kiln Operator's Manual
    United States Department of Agriculture Dry Kiln Forest Service Operator's Forest Products Laboratory Manual Madison, Wisconsin Agriculture Handbook No. 188 Dry Kiln Operator’s Manual Edited by William T. Simpson, Research Forest Products Technologist United States Department of Agriculture Forest Service Forest Products Laboratory 1 Madison, Wisconsin Revised August 1991 Agriculture Handbook 188 1The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION, Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife-if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides aand pesticide containers. Preface Acknowledgments The purpose of this manual is to describe both the ba- Many people helped in the revision. We visited many sic and practical aspects of kiln drying lumber. The mills to make sure we understood current and develop- manual is intended for several types of audiences. ing kiln-drying technology as practiced in industry, and First and foremost, it is a practical guide for the kiln we thank all the people who allowed us to visit. Pro- operator-a reference manual to turn to when questions fessor John L. Hill of the University of New Hampshire arise. It is also intended for mill managers, so that they provided the background for the section of chapter 6 can see the importance and complexity of lumber dry- on the statistical basis for kiln samples.
    [Show full text]