Flower Development in Abrus Precatorius (Leguminosae: Papilionoideae: Abreae) and a Review of Androecial Characters in Papilionoideae

Total Page:16

File Type:pdf, Size:1020Kb

Flower Development in Abrus Precatorius (Leguminosae: Papilionoideae: Abreae) and a Review of Androecial Characters in Papilionoideae SAJB-00958; No of Pages 9 South African Journal of Botany xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Flower development in Abrus precatorius (Leguminosae: Papilionoideae: Abreae) and a review of androecial characters in Papilionoideae G. Prenner ⁎ Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, Kew, TW9 3DS, UK article info abstract Available online xxxx The jequirity bean (Abrus precatorius) is well known because of its shiny black and red coloured seeds and be- cause of the poison (abrin) it contains. The genus Abrus is placed in a monogeneric tribe Abreae which is placed Edited by B-E Van Wyk in a relatively isolated systematic position at the base of Millettieae. To contribute to a better understanding of this taxon, a detailed ontogenetic and morphologic analysis of its flowers is presented. Floral primordia are Keywords: subtended by an abaxial bract and preceded by two lateral bracteoles which are formed in short succession. Abreae Sepal formation is unidirectional starting abaxially. All petals are formed simultaneously. The carpel is formed Abrus precatorius Androecium concomitantly with the outer (antesepalous) stamen whorl, which arises unidirectionally, starting in an abaxial fi Flower position. In the inner, antepetalous stamen whorl two abaxial stamens are formed rst, followed by two lateral Leguminosae stamen primordia. The adaxial, antepetalous position remains organ free (i.e. this stamen is lost). Later in devel- Ontogeny opment the nine stamen filaments fuse to form an adaxially open sheath. The filament bases of the two adaxial outer-whorl stamens grow inwards, possibly to provide stability and to compensate for the lost stamen. In the mature flower a basal outgrowth can be found in the position of the lost stamen. However this is more likely to be an outgrowth of the filament sheath rather than a remnant of the lost stamen. These ontogenetic patterns match in parts those found in other Millettieae (unidirectional formation of sepals and stamens, simul- taneous petal formation). In contrast, the complete loss of a stamen is rather unusual and supports the isolated position of Abreae and probably justifies (among other characters) its tribal status. A review of androecial char- acters shows that androecial merosity is on the one hand extremely variable among Leguminosae, varying from asinglestamenperflower to more than 500. On the other hand it is noteworthy that the number of stamens becomes stabilised in more derived Papilionoideae such as the large non-protein-amino-acid-accumulating clade (NPAAA clade). This indicates that the androecium has played an important role in the success of a major part of Leguminosae. © 2013 SAAB. Published by Elsevier B.V. All rights reserved. 1. Introduction tract due to their hard shell (see also Van Wyk et al., 2002; Botha and Penrith, 2008). The genus Abrus Adans. consists of ca 17 species found in Africa, For a long time the systematic position of the genus Abrus was Madagascar, India and Indo-China (Schrire, 2005). Among them, uncertain and its tribal placement problematic (see Polhill, 1981). In the jequirity bean (Abrus precatorius L.) is probably the best and more recent molecular studies the genus is consistently placed near widest known species. It is a weed found throughout the tropics and the base of a clade comprising the core Millettieae sensu Hu et al. neotropics. Some of its many common names such as Bead Vine, (2000, 2002) and various elements excluded from Phaseoleae sensu Black-Eyed Susan or Coral Bead Plant point to the use of its hard, lato (see Wojciechowski et al., 2004; Schrire, 2005). Schrire (2005) ar- shiny black and red seeds for stringing into necklaces and rosaries in gues for the maintenance of the monogeneric tribe Abreae because of India and other tropical countries. The seeds are also well known be- its basal branching position together with the unusual combination of cause of their highly poisonous protein abrin, a plant lectin, related to paripinnate leaves, nine stamens and a chemical profile of tryptophan- ricin, which inhibits cellular protein synthesis (Nelson et al., 2007). derived and pyridine-based alkaloids. Jang et al. (2010) report that even though abrin has an estimated fatal The androecium and the inflorescence are among the most inter- dose of 0.1–1 μg/kg, most cases of Abrus seed ingestions are without esting morpho-anatomical features of the genus. The androecium con- clinical findings, because the seeds pass through the gastrointestinal sists of only nine stamens whereas in most other papilionoid legumes, ten stamens in two whorls of five are found. In legumes both organ sup- ⁎ Tel.: +44 20 8332 5316; fax: +44 20 8332 5310. pression and organ loss occur (e.g. Tucker, 1988a, 1990; Prenner, 2004a; E-mail address: [email protected]. Prenner and Klitgaard, 2008). Therefore it is important to determine 0254-6299/$ – see front matter © 2013 SAAB. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.sajb.2013.06.008 Please cite this article as: Prenner, G., Flower development in Abrus precatorius (Leguminosae: Papilionoideae: Abreae) and a review of androecial characters in Papilionoideae, South African Journal of Botany (2013), http://dx.doi.org/10.1016/j.sajb.2013.06.008 2 G. Prenner / South African Journal of Botany xxx (2013) xxx–xxx whether the tenth stamen is completely lost (i.e. a stamen primordium by the two lateral primordia (Fig. 1J–K). The adaxial stamen position is no longer formed) or whether it is initiated but then suppressed early. remains organ free (Figs. 1L, 2A–C). The Abrus inflorescence is another remarkable feature which was briefly described by Tucker (1987b). It was recently studied in more 3.2. Later floral development (Figs. 2–4) detail by Prenner (in press) who showed that the axis of partial inflo- rescences of A. precatorius is reduced to a nodose structure. Further- While sepal growth is quick (see above), petal development is dis- more the meristem of partial inflorescences is relocated towards tinctly delayed and the antesepalous stamens and the carpel in the the main inflorescence axis and individual flowers are formed in a centre of the flower soon become bigger than the petals (Fig. 1L). peculiar pendulum pattern. Each flower is subtended by a bract and The petals remain smaller than the antesepalous stamens and the all flowers are formed in a basipetal continuum. Because of this, carpel until later in development (Fig. 2A, B, E). The characteristic Prenner (in press) argued that the inflorescence in A. precatorius is a papilionoid corolla which consists of an adaxial vexillum (or standard compound raceme rather than a pseudoraceme sensu Tucker (1987b). petal), two lateral wing petals and two abaxial keel petals differenti- Based on a detailed analysis of the floral development the present ates only very late in ontogeny (Fig. 3A, C). study aims to answer the following questions: (1) What is the gener- The inner, antepetalous stamen whorl also lags behind the outer al pattern of organ formation in A. precatorius? (2) Is the adaxial stamen whorl (Fig. 2B) and the stamens in this whorl are still small antepetalous (i.e. inner whorl) stamen reduced (i.e. initiated but and undifferentiated when anther formation is already well advanced not further developed) or is it completely lost (i.e. no initial in the outer whorl (Fig. 2B). Eventually anthers are also formed in the formed)? (3) How do the present findings relate to existing ontoge- inner whorl and the filaments of both whorls fuse to form an adaxially netic data in Millettieae (Teixeira et al., 2009; Naghiloo and Dadpour, open filament sheath (Figs. 2G, 3D). Early in development the filament 2010) and in other papilionoid legumes? (4) How do the results bases of the two adaxial antesepalous stamens begin to grow inwards relate to recent molecular phylogenetic hypotheses? Taking the in- towards the position of the tenth stamen which is missing (Fig. 2C–G). teresting structure of the androecium of A. precatorius as a starting The carpel develops quickly and its growth rate is about the same point, I finally present a brief review of androecial characters in or somewhat faster than that of the outer stamen whorl (Fig. 2A). The Papilionoideae. adaxial carpel cleft soon closes and hairs are starting to form on the abaxial side. Formation of the stigma sets in fairly early when the carpel 2. Material and methods begins to bend in the adaxial direction (Fig. 2D–E). Later on, the carpel is covered with a dense indumentum (Figs. 2D–H, 3A, D) and within the Inflorescences of various sizes and ages of A. precatorius were carpel four ovules are formed (Fig. 2H–I). In the androecium the adaxial collected at the Botanic Garden Graz (Teppner H., s.n., Karl Franzens position remains organ-free (Fig. 2A–G) and only in mature flowers can University Graz, Austria) and immediately fixed in 70% ethanol. For a meristematic outgrowth be found in this position (Fig. 3A, B, D–H). scanning electron microscopy (SEM) the material was dissected in Mature anthers are monomorphic and basifixed with stomata on 70% ethanol, dehydrated to 100% ethanol and critical point dried their connectives (Fig. 4A–B). The papillate stigma is surrounded by using an Autosamdri-815B critical-point dryer. The dried material hairs (Fig. 4C). Pollen is tricolporate with a coarsely reticulate tectum was mounted onto aluminium stubs with clear nail polish and coated which becomes finer towards the poles and towards the margins of with platinum in an Emitech K550a sputter coater. SEM images were the colpi (Fig. 4D–F). taken with a Hitachi S-4700-II cold field emission SEM.
Recommended publications
  • Final Report Template
    Native Legumes as a Grain Crop for Diversification in Australia RIRDC Publication No. 10/223 RIRDCInnovation for rural Australia Native Legumes as a Grain Crop for Diversification in Australia by Megan Ryan, Lindsay Bell, Richard Bennett, Margaret Collins and Heather Clarke October 2011 RIRDC Publication No. 10/223 RIRDC Project No. PRJ-000356 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-188-4 ISSN 1440-6845 Native Legumes as a Grain Crop for Diversification in Australia Publication No. 10/223 Project No. PRJ-000356 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Diversification History of Adesmia Ser. Psoraleoides
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 89 (2013) 257–264 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Diversification history of Adesmia ser. psoraleoides (Leguminosae): Evolutionary processes and the colonization of the southern Brazilian highland grasslands J.R.V. Iganci a,⁎, S.T.S. Miotto b, T.T. Souza-Chies b, T.E. Särkinen c, B.B. Simpson d, M.F. Simon e, R.T. Pennington f a Universidade Federal de Santa Catarina, Campus Universitário de Curitibanos, Caixa Postal 101, Rod. Ulysses Gaboardi, Km 3, 89520-000 Curitibanos, SC, Brazil b Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves, 9500, Prédio 43433, Bloco 4, Sala 214, Campus do Vale, Porto Alegre, RS 91501-970, Brazil c Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK d Department of Botany, University of Texas, Austin, TX 78713, United States e Embrapa Recursos Genéticos e Biotecnologia, PqEB, Caixa Postal 02372, 70770-917 Brasília, DF, Brazil f Royal Botanic Garden Edinburgh, Tropical Diversity Section, 20a Inverleith Row, Edinburgh EH3 5LR, UK article info abstract Available online 22 July 2013 A molecular phylogeny is used to analyze the diversification history of Adesmia ser. psoraleoides, and its implica- tions for understanding the historical assembly of the grasslands in the highlands of southern Brazil. All species of Edited by B-E Van Wyk A. ser. psoraleoides were sampled, including multiple accessions for each species, plus representative species of the rest of Adesmia covering its geographic distribution.
    [Show full text]
  • A Chronology of Middle Missouri Plains Village Sites
    Smithsonian Institution Scholarly Press smithsonian contributions to botany • n u m b e r 9 2 Smithsonian Institution Scholarly Press TaxonomicA Chronology Revision of of the MiddleChiliotrichum Missouri Group Plains Villagesensu stricto Sites (Compositae: Astereae) By Craig M. Johnson Joséwith Mauricio contributions Bonifacino by Stanley A. Ahler, Herbert Haas, and Georges Bonani SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions in History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Institution publishes small papers and full-scale monographs that report on the research and collections of its various museums and bureaus. The Smithsonian Contributions Series are distributed via mailing lists to libraries, universities, and similar institu- tions throughout the world. Manuscripts submitted for series publication are received by the Smithsonian Institution Scholarly Press from authors with direct affilia- tion with the various Smithsonian museums or bureaus and are subject to peer review and review for compliance with manuscript preparation guidelines.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Adesmia Muricata LC Taxonomic Authority: (Jacq.) DC
    Adesmia muricata LC Taxonomic Authority: (Jacq.) DC. Global Assessment Regional Assessment Region: Global Endemic to region Synonyms Common Names Adesmia affinis Hook. f. Adesmia dentata (Lag.) DC. Adesmia gilliesii Hook. & Arn. Adesmia hedysaroide (Schrank) Hauman Adesmia muricata Gillies ex Hook. & Arn. Adesmia muricata Bertero ex Steud. Adesmia muricata va (Hook. f.) Burkart Adesmia muricata va Arechav. Adesmia muricata va Burkart Aeschynomene dent Lag. Hedysarum muricatu Jacq. Hedysarum pimpinelli Poir. Patagonium grandide Rusby Patagonium hedysar Schrank Patagonium muricatu (Jacq.) Kuntze Upper Level Taxonomy Kingdom: PLANTAE Phylum: TRACHEOPHYTA Class: MAGNOLIOPSIDA Order: FABALES Family: LEGUMINOSAE Lower Level Taxonomy Rank: Infra- rank name: Plant Hybrid Subpopulation: Authority: General Information Distribution Adesmia muricata has been collected from Argentina, Bolivia, Uruguay, Peru, Chile and Brazil. Range Size Elevation Biogeographic Realm Area of Occupancy: Upper limit: 1400 Afrotropical Extent of Occurrence: Lower limit: 0 Antarctic Map Status: Depth Australasian Upper limit: Neotropical Lower limit: Oceanian Depth Zones Palearctic Shallow photic Bathyl Hadal Indomalayan Photic Abyssal Nearctic Population There is currently no data available relating to the population size of this taxon. Total Population Size Minimum Population Size: Maximum Population Size: Habitat and Ecology This taxon has been found on sandy soils and beaches. System Movement pattern Crop Wild Relative Terrestrial Freshwater Nomadic Congregatory/Dispersive Is the species a wild relative of a crop? Marine Migratory Altitudinally migrant Growth From Definition Forb or Herb Biennial or perennial herbacaeous plant, also termed a Hemicryptophyte Threats This taxon is not considered to be subject to any major threats at present. Past Present Future 13 None Conservation Measures There are a number of protected areas within the species range, but seeds are yet to be collected and stored by a seed bank as a method of ex-situ conservation.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Structural Botany / Botánica Estructural
    Botanical Sciences 99(3): 588-598. 2021 Received: October 15, 2020, Accepted: December 1, 2020 DOI: 10.17129/botsci.2776 AcaciaOn linecornigera first: April 15, 2021 Structural Botany / Botánica Estructural FLORAL DEVELOPMENT OF THE MYRMECOPHYTIC ACACIA CORNIGERA (LEGUMINOSAE) DESARROLLO FLORAL DE LA MIRMECÓFITA ACACIA CORNIGERA (LEGUMINOSAE) SANDRA LUZ GÓMEZ-ACEVEDO1,2 1 Unidad de Morfología y Función. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México. 2 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, México. Author for correspondence: [email protected] Abstract Background: The Neotropical ant-acacias show morphological variations in their vegetative characteristics as a consequence of their relation- ship with ants. However, there is no information regarding whether floral organs have also undergone any modification that prevents resident ants from approaching the inflorescences in anthesis. Questions: Are the patterns of floral development affected by the relationship with ants? Is there any floral organ or structure involved in avoid- ing the presence of ants during the flowering period? At what stage of development do these modifications arise, if at all? Studied species: Acacia cornigera (L.) Willd. Study site: Santiago Pinotepa Nacional, Oaxaca and Los Tuxtlas, Veracruz. March and May 2015. Methods: Dissections of inflorescences in every developmental stage from two populations, were examined using scanning electron micros- copy. Results: The inception patterns of the calyx (irregular), corolla (simultaneous), androecium (acropetally in alternate sectors) and gynoecium (precocious) agree with previous reports for non-myrmecophyic species of the Acacia genus. In mature stages, the presence of stomata is char- acteristic of bracts and petals.
    [Show full text]
  • Ontogenia Floral De Discolobium Pulchellum E Riedeliella Graciliflora (Leguminosae: Papilionoideae: Dalbergieae)
    JOÃO PEDRO SILVÉRIO PENA BENTO Papilionada Versus Não Papilionada: Ontogenia floral de Discolobium pulchellum e Riedeliella graciliflora (Leguminosae: Papilionoideae: Dalbergieae) Campo Grande – MS Abril – 2020 1 JOÃO PEDRO SILVÉRIO PENA BENTO Papilionada Versus Não Papilionada: Ontogenia floral de Discolobium pulchellum e Riedeliella graciliflora (Leguminosae: Papilionoideae: Dalbergieae) Dissertação apresentada ao programa de Pós-Graduação em Biologia Vegetal (PPGBV) da Universidade Federal de Mato Grosso do Sul, como requisito para a obtenção de grau de mestre em Biologia Vegetal Orientadora: Ângela Lúcia Bagnatori Sartori Campo Grande – MS Abril – 2020 2 Ficha Catalográfica Bento, João Pedro Silvério Pena Papilionada Versus Não Papilionada: Ontogenia floral de Discolobium pulchellum e Riedeliella graciliflora (Leguminosae: Papilionoideae: Dalbergieae). Dissertação (Mestrado) – Instituto de Biociências da Universidade Federal de Mato Grosso do Sul. 1. Anatomia floral, 2. Clado Pterocarpus, 3. Desenvolvimento floral, 4. Estruturas secretoras, 5. Simetria floral Universidade Federal de Mato Grosso do Sul Instituto de Biociências 3 Agradecimentos À Coordenação de Aperfeiçoamento de Pessoa de Nível Superior (Capes) pela concessão de bolsa de estudo. À minha orientadora Profª. Drª. Ângela Lúcia Bagnatori Sartori, que aceitou a me acompanhar nessa etapa. Agradeço pelas suas correções, por me ensinar como conduzir as pesquisas, por sempre me receber em sua sala mesmo estando ocupada e por seu respeito e carinho de orientadora. À Drª. Elidiene Priscila Seleme Rocha, Drª. Flavia Maria Leme, Profª. Drª. Juliana Villela Paulino, Profª. Drª. Rosani do Carmo de Oliveira Arruda e a Profª. Drª. Viviane Gonçalves Leite, por aceitar compor a minha banca de avaliação final de dissertação. Aos professores que me avaliaram em bancas anteriores e contribuíram para melhorias do projeto.
    [Show full text]
  • Beijing Olympic Mascots
    LEVEL – Lower primary FLORAL EMBLEMS DESCRIPTION In these activities, students learn about the floral emblems of Great Britain. They discuss their own responses to the emblems and explore design elements and features including colours, shapes, lines and their purpose before colouring a picture. These cross-curriculum activities contribute to the achievement of the following: Creative and visual arts • Selects, combines and manipulates images, shapes and forms using a range of skills, techniques and processes. English • Interprets and discusses some relationships between ideas, information and events in visual texts for general viewing. SUGGESTED TIME approximately 15-30 minutes for each activity (this may be customised accordingly) WHAT YOU NEED • photographs or actual samples of the floral emblem for your state or territory http://www.anbg.gov.au/emblems/index.html • photographs or actual samples of the floral emblems of Great Britain – Rose (England), Shamrock (Ireland), Thistle (Scotland) and Daffodil (Wales) o http://www.flickr.com/groups/roses/ o http://www.flickr.com/photos/tags/shamrock/clusters/green-irish-stpatricksday/ o http://www.flickr.com/search/?q=Thistle+ o http://www.flickr.com/groups/daffodilworld/ • copies of Student handout • paint, brushes, markers, crayons, glitter and other art materials ACTIVITIES The following activities may be completed independently or combined as part of a more comprehensive learning sequence, lesson or educational program. Please refer to your own state or territory syllabus for more explicit guidelines. Australia’s floral emblems 1. Show the class a picture or sample of Golden Wattle, along with the floral emblem for your state or territory. Ask the class if anyone has these flowers growing in their garden or local area.
    [Show full text]
  • A Conserved Role for the NAM/Mir164 Developmental
    ORIGINAL RESEARCH published: 13 January 2016 doi: 10.3389/fpls.2015.01239 AConservedRoleforthe NAM/miR164 Developmental Module Reveals a Common Mechanism Underlying Carpel Margin Fusion in Monocarpous and Syncarpous Eurosids Aurélie C. M. Vialette-Guiraud1, Aurélie Chauvet1, Juliana Gutierrez-Mazariegos1, Alexis Eschstruth2, Pascal Ratet2 and Charles P. Scutt1* 1 Laboratoire de Reproduction et Développement des Plantes, UMR 5667, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique – Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France, 2 Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique – Université de Paris Sud, Orsay, France The majority of angiosperms are syncarpous- their gynoecium is composed of two or more fused carpels. In Arabidopsis thaliana, this fusion is regulated through the Edited by: balance of expression between CUP SHAPED COTYLEDON (CUC) genes, which are Rainer Melzer, University College Dublin, Ireland orthologs of the Petunia hybrida transcription factor NO APICAL MERISTEM (NAM), and Reviewed by: their post-transcriptional regulator miR164. Accordingly, the expression of a miR164- Stefan De Folter, insensitive form of A. thaliana CUC2 causes a radical breakdown of carpel fusion. Centro de Investigación y de Estudios Here, we investigate the role of the NAM/miR164 genetic module in carpel closure Avanzados del Instituto Politécnico Nacional, Mexico in monocarpous plants. We show that the disruption of this module in monocarpous Barbara Ambrose, flowers of A. thaliana aux1-22 mutants causes a failure of carpel closure, similar The New York Botanical Garden, USA to the failure of carpel fusion observed in the wild-type genetic background.
    [Show full text]
  • Red Hill Quarry Screening Plan
    Red Hill Quarry Assessment of Rehabilitation, Southern Face December 2013 Contents 1.0 Background 1 2.0 Methods Used 2 3.0 Soil Conditions 2 4.0 Natural Vegetation Communities 3 5.0 Rehabilitation 4 6.0 Results 5 7.0 Future Rehabilitation 14 8.0 Recommendations 16 Tables Table 1A – 1C Species Observed in the Rehabilitation 8 Table 2A – 2C Percentage Vegetation Cover 11 Table 3 Suitability of Species for Visual Management 20 Prepared by Lindsay Stephens BSc , MSc, MAGS, MEIANZ, FIQA LANDFORM RESEARCH Review of Rehabilitation Southern Faces – Hanson Red Hill Quarry – December 2013 ASSESSMENT OF REHABILITATION ON THE SOUTHERN FACES 1.0 Background The assessment of the rehabilitation on the batter faces at the southern end of the pit was reviewed in December 2013. That rehabilitation seeks to provide visual management of he completed and backfilled faces when viewed from outside the pit and from longer distance. 2.0 Methods used There are difficulties in assessing the vegetation on the batters and slopes. The slopes are at the angle of repose for the dumped materials such as overburden. As such the hardened surface can be slippery and present a hazard to walking on the slopes in a number of locations, but particularly where the slopes are high or are above drops of the face of the quarry. The slopes were not walked on, on safety grounds but the vegetation was assessed by walking along the upper or lower edge of the rehabilitation and reviewing it from the edges. As such the data provides a guide and is close to the true values but is not to the same accuracy as using measuring tapes.
    [Show full text]
  • Australian Flor Foundation Final Report S Acanthos
    AUSTRALIAN FLORA FOUNDATION- Final Report Establishment of an ex-situ collection and seed orchard for the endangered Grampians Globe-pea. N. Reiter1, 2 1Royal Botanic Gardens Victoria, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC 3977, Australia 2Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia Project Duration: Dec 2014-Feb-2018 Total Grant Requested: $14,500 Introduction The Grampians Globe-pea Sphaerolobium acanthos (Crisp, 1994) is endemic to the Grampians National Park in the state of Victoria, Australia. It was known from three small populations within the park and the global population was believed to be 26 plants. Past herbarium records indicate that this species was once more widespread through the Park (SAC, 2014). Recent searches of previous localities suggest that the species no longer occurs at these sites. Sphaerolobium acanthos was shown to be susceptible to P. cinnamomi, which occurs near three of the populations (Reiter et al. 2004), and is predicted to be at moderate risk to extinction due to P. cinnamomi. The plant has been listed under the Flora and Fauna Guarantee Act 1988 and in 2016 was listed as federally endangered under the Environment Protection Biodiversity and Conservation Act 1999. This species has recently been assessed as critically endangered under the IUCN criteria (David Cameron pers.com). Without the establishment of an ex-situ population, propagation, and conservation translocation S. acanthos is likely to become extinct in our lifetime. Ex-situ conservation methods for Fabaceae, using both seed germination techniques (Roche et al, 1997; Loyd et al, 2000 and Offord and Meagher, 2009), and micro propagation in Fabaceae and physiologically similar species (Rout, 2005; Cenkci et al, 2008; Toth et al, 2004 and Anthony et al, 2000), offer a sound basis for exploring methods for the ex-situ conservation of Sphaerolobium acanthos.
    [Show full text]