Effective Radiative Forcing in the Aerosol–Climate Model CAM5.3-MARC-ARG

Total Page:16

File Type:pdf, Size:1020Kb

Effective Radiative Forcing in the Aerosol–Climate Model CAM5.3-MARC-ARG Reprint 2018-15 Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG B.S. Grandey, D. Rothenberg, A. Avramov, Q. Jin, H. Lee, X. Liu, Z. Lu, S. Albani and C. Wang Reprinted with permission from Atmospheric Chemistry & Physics, 18: 15783–15810. © 2018 the authors The MIT Joint Program on the Science and Policy of Global Woods Hole and short- and long-term visitors—provide the united Change combines cutting-edge scientific research with independent vision needed to solve global challenges. policy analysis to provide a solid foundation for the public and At the heart of much of the program’s work lies MIT’s Integrated private decisions needed to mitigate and adapt to unavoidable global Global System Model. Through this integrated model, the program environmental changes. Being data-driven, the Joint Program uses seeks to discover new interactions among natural and human climate extensive Earth system and economic data and models to produce system components; objectively assess uncertainty in economic and quantitative analysis and predictions of the risks of climate change climate projections; critically and quantitatively analyze environmental and the challenges of limiting human influence on the environment— management and policy proposals; understand complex connections essential knowledge for the international dialogue toward a global among the many forces that will shape our future; and improve response to climate change. methods to model, monitor and verify greenhouse gas emissions and To this end, the Joint Program brings together an interdisciplinary climatic impacts. group from two established MIT research centers: the Center for This reprint is intended to communicate research results and improve Global Change Science (CGCS) and the Center for Energy and public understanding of global environment and energy challenges, Environmental Policy Research (CEEPR). These two centers—along thereby contributing to informed debate about climate change and the with collaborators from the Marine Biology Laboratory (MBL) at economic and social implications of policy alternatives. —Ronald G. Prinn and John M. Reilly, Joint Program Co-Directors MIT Joint Program on the Science and Policy Massachusetts Institute of Technology T (617) 253-7492 F (617) 253-9845 of Global Change 77 Massachusetts Ave., E19-411 [email protected] Cambridge MA 02139-4307 (USA) http://globalchange.mit.edu Atmos. Chem. Phys., 18, 15783–15810, 2018 https://doi.org/10.5194/acp-18-15783-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG Benjamin S. Grandey1, Daniel Rothenberg2, Alexander Avramov2,3, Qinjian Jin2, Hsiang-He Lee1, Xiaohong Liu4, Zheng Lu4, Samuel Albani5,6, and Chien Wang2,1 1Center for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore 2Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 3Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA 4Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming, USA 5Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Gif-sur-Yvette, France Correspondence: Benjamin S. Grandey ([email protected]) Received: 1 February 2018 – Discussion started: 2 May 2018 Revised: 19 October 2018 – Accepted: 21 October 2018 – Published: 2 November 2018 Abstract. We quantify the effective radiative forcing (ERF) 0:04 W m−2 produced by MAM3 and −1:53 ± 0:04 W m−2 of anthropogenic aerosols modelled by the aerosol–climate produced by MAM7. The regional distribution of ERF also model CAM5.3-MARC-ARG. CAM5.3-MARC-ARG is a differs between MARC and MAM3, largely due to differ- new configuration of the Community Atmosphere Model ences in the regional distribution of the shortwave cloud ra- version 5.3 (CAM5.3) in which the default aerosol mod- diative effect. We conclude that the specific representation of ule has been replaced by the two-Moment, Multi-Modal, aerosols in global climate models, including aerosol mixing Mixing-state-resolving Aerosol model for Research of state, has important implications for climate modelling. Climate (MARC). CAM5.3-MARC-ARG uses the ARG aerosol-activation scheme, consistent with the default con- figuration of CAM5.3. We compute differences between sim- ulations using year-1850 aerosol emissions and simulations 1 Introduction using year-2000 aerosol emissions in order to assess the ra- diative effects of anthropogenic aerosols. We compare the Aerosol particles influence the earth’s climate system by aerosol lifetimes, aerosol column burdens, cloud properties, perturbing its radiation budget. There are three primary and radiative effects produced by CAM5.3-MARC-ARG mechanisms by which aerosols interact with radiation. First, with those produced by the default configuration of CAM5.3, aerosols interact directly with radiation by scattering and ab- which uses the modal aerosol module with three log-normal sorbing solar and thermal infrared radiation (Haywood and modes (MAM3), and a configuration using the modal aerosol Boucher, 2000). Second, aerosols interact indirectly with ra- module with seven log-normal modes (MAM7). Compared diation by perturbing clouds, acting as the cloud condensa- with MAM3 and MAM7, we find that MARC produces tion nuclei on which cloud droplets form and the ice nuclei stronger cooling via the direct radiative effect, the short- that facilitate freezing of cloud droplets (Fan et al., 2016; wave cloud radiative effect, and the surface albedo radia- Rosenfeld et al., 2014); for example, an aerosol-induced in- tive effect; similarly, MARC produces stronger warming crease in cloud cover would lead to increased scattering via the longwave cloud radiative effect. Overall, MARC of “shortwave” solar radiation and increased absorption of produces a global mean net ERF of − 1:79 ± 0:03 W m−2, “longwave” thermal infrared radiation. Third, aerosols can which is stronger than the global mean net ERF of −1:57 ± influence the albedo of the earth’s surface; for example, the deposition of absorbing aerosol on snow reduces the albedo Published by Copernicus Publications on behalf of the European Geosciences Union. 15784 B. S. Grandey et al.: Effective radiative forcing in the model CAM5.3-MARC-ARG of the snow, causing more solar radiation to be absorbed at the aerosol radiative effects produced by a new configu- the earth’s surface (Jiao et al., 2014). ration of the Community Atmosphere Model version 5.3 The “effective radiative forcing” (ERF) of anthropogenic (CAM5.3). In this new configuration – CAM5.3-MARC- aerosols, defined as the top-of-atmosphere radiative effect ARG – the default modal aerosol module has been replaced caused by anthropogenic emissions of aerosols and aerosol with the two-Moment, Multi-Modal, Mixing-state-resolving precursors, is often used to quantify the radiative effects of Aerosol model for Research of Climate (MARC). We com- aerosols (Boucher et al., 2013). In contrast to instantaneous pare the aerosol fields and aerosol radiative effects produced radiative forcing, ERF allows rapid adjustments – including by CAM5.3-MARC-ARG with those produced by the default changes to clouds – to occur (Sherwood et al., 2015). The an- modal aerosol module in CAM5.3. thropogenic aerosol ERF is approximately equivalent to “the radiative flux perturbation associated with a change from preindustrial to present-day [aerosol emissions], calculated 2 Methodology in a global climate model using fixed sea surface tempera- ture” (Haywood et al., 2009). This approach “allows clouds 2.1 Modal aerosol modules (MAM3 and MAM7) to respond to the aerosol while [sea] surface temperature is prescribed” (Ghan, 2013). The Community Earth System Model version 1.2.2 The primary tools available for investigating the anthro- (CESM 1.2.2) contains the Community Atmosphere Model pogenic aerosol ERF are state-of-the-art global climate mod- version 5.3 (CAM5.3). Within CAM5.3, the default aerosol els. However, there is widespread disagreement among these module is a modal aerosol module that parameterises the models, especially regarding the magnitude of anthropogenic aerosol size distribution using three log-normal modes aerosol ERF (Quaas et al., 2009; Shindell et al., 2013). (MAM3), each assuming a total internal mixture of a set of The magnitude of the ERF of anthropogenic aerosols is fixed chemical species (Liu et al., 2012). Optionally, a more highly uncertain; estimates of the global mean anthropogenic detailed modal aerosol module with seven log-normal modes aerosol ERF range from −1:9 to −0:1 W m−2 (Boucher et (MAM7; Liu et al., 2012) can be used instead of MAM3. al., 2013). Much of this uncertainty can be attributed to More recently, a version containing four modes (MAM4; Liu uncertainty in pre-industrial aerosol emissions (Carslaw et et al., 2016) has also been coupled to CAM5.3, but we do not al., 2013). Model parameterisations constitute another large consider MAM4 in this study. source of uncertainty. Of particular importance are model pa- The seven modes included in MAM7 are Aitken, accumu- rameterisations relating to aerosol–cloud interactions, such lation, primary carbon, fine soil dust, fine sea salt, coarse soil as the aerosol-activation scheme (Rothenberg et al., 2018), dust, and coarse sea salt.
Recommended publications
  • Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS
    atmosphere Article Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS-FGOALS-f3-L Climate Model Hao Wang 1,2,3, Tie Dai 1,2,* , Min Zhao 1,2,3, Daisuke Goto 4, Qing Bao 1, Toshihiko Takemura 5 , Teruyuki Nakajima 4 and Guangyu Shi 1,2,3 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; [email protected] (H.W.); [email protected] (M.Z.); [email protected] (Q.B.); [email protected] (G.S.) 2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China 3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100029, China 4 National Institute for Environmental Studies, Tsukuba 305-8506, Japan; [email protected] (D.G.); [email protected] (T.N.) 5 Research Institute for Applied Mechanics, Kyushu University, Fukuoka 819-0395, Japan; [email protected] * Correspondence: [email protected]; Tel.: +86-10-8299-5452 Received: 21 September 2020; Accepted: 14 October 2020; Published: 17 October 2020 Abstract: The effective radiative forcing (ERF) of anthropogenic aerosol can be more representative of the eventual climate response than other radiative forcing. We incorporate aerosol–cloud interaction into the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System (CAS-FGOALS-f3-L) by coupling an existing aerosol module named the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) and quantified the ERF and its primary components (i.e., effective radiative forcing of aerosol-radiation interactions (ERFari) and aerosol-cloud interactions (ERFaci)) based on the protocol of current Coupled Model Intercomparison Project phase 6 (CMIP6).
    [Show full text]
  • Aerosols, Their Direct and Indirect Effects
    5 Aerosols, their Direct and Indirect Effects Co-ordinating Lead Author J.E. Penner Lead Authors M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, G. Pitari Contributing Authors A. Ackerman, P. Adams, P. Austin, R. Boers, O. Boucher, M. Chin, C. Chuang, B. Collins, W. Cooke, P. DeMott, Y. Feng, H. Fischer, I. Fung, S. Ghan, P. Ginoux, S.-L. Gong, A. Guenther, M. Herzog, A. Higurashi, Y. Kaufman, A. Kettle, J. Kiehl, D. Koch, G. Lammel, C. Land, U. Lohmann, S. Madronich, E. Mancini, M. Mishchenko, T. Nakajima, P. Quinn, P. Rasch, D.L. Roberts, D. Savoie, S. Schwartz, J. Seinfeld, B. Soden, D. Tanré, K. Taylor, I. Tegen, X. Tie, G. Vali, R. Van Dingenen, M. van Weele, Y. Zhang Review Editors B. Nyenzi, J. Prospero Contents Executive Summary 291 5.4.1 Summary of Current Model Capabilities 313 5.4.1.1 Comparison of large-scale sulphate 5.1 Introduction 293 models (COSAM) 313 5.1.1 Advances since the Second Assessment 5.4.1.2 The IPCC model comparison Report 293 workshop: sulphate, organic carbon, 5.1.2 Aerosol Properties Relevant to Radiative black carbon, dust, and sea salt 314 Forcing 293 5.4.1.3 Comparison of modelled and observed aerosol concentrations 314 5.2 Sources and Production Mechanisms of 5.4.1.4 Comparison of modelled and satellite- Atmospheric Aerosols 295 derived aerosol optical depth 318 5.2.1 Introduction 295 5.4.2 Overall Uncertainty in Direct Forcing 5.2.2 Primary and Secondary Sources of Aerosols 296 Estimates 322 5.2.2.1 Soil dust 296 5.4.3 Modelling the Indirect
    [Show full text]
  • Shortwave Radiative Forcing
    International Journal of Environmental Science and Development, Vol. 4, No. 2, April 2013 Sea Salt Aerosols: Shortwave Radiative Forcing Winai Meesang, Surat Bualert, and Pantipa Wonglakorn (AOD) (Haywood et al. 1999).Sea salt aerosols play a dual Abstract—Effect of sea salt aerosol on short wave spectrum role in affecting the atmospheric radiative balance. Directly, energy is the study of solar reduction and the reduction sea salt particles interact with the incoming solar radiation percentage due to sea salt aerosol. The research measured short and the outgoing terrestrial radiation. Unlike the more wave radiation from the sun by using spectroradiometer, model hydrophobic soil dust aerosol, sea salt particles uptake water MS700. The spectroraiometers were installed at two levels: the first level was set at 10 meters height from ground that called readily and, hence, are highly scattered at shortwave (SW; “control unit” representing the rays of the sun directly (direct solar) wavelengths with virtually no absorption (e.g., Incoming) and the second level was set at one meter height that Takemura et al. 2002). Sea salt aerosol is not absorptive of called “blank unit” measuring radiation from the sun passed solar radiation; it causes similar direct radiative perturbations through the blank chamber (Representing a decrease in solar at the surface and at the top of the atmosphere (TOA). In radiation on Chamber / blank) and “laboratory unit” was a addition, sea salt aerosol can influence the formation and chamber with dry sea salt aerosol (Representing a decrease of the radiation from the sun and dried sea salt), then the study lifetime of clouds by acting as cloud condensation nuclei would find the percent reduction of solar radiation.
    [Show full text]
  • Sea Spray Aerosol Concentration Modulated by Sea Surface Temperature
    Sea spray aerosol concentration modulated by sea surface temperature Shang Liua,b,1,2,3, Cheng-Cheng Liuc,1, Karl D. Froyda,b, Gregory P. Schilla,b, Daniel M. Murphyb, T. Paul Buid, Jonathan M. Dean-Daye, Bernadett Weinzierlf, Maximilian Dollnerf, Glenn S. Disking, Gao Cheng, and Ru-Shan Gaob aCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; bNOAA Chemical Sciences Laboratory, Boulder, CO 80305; cSchool of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; dAtmospheric Science Branch, NASA Ames Research Center, Moffett Field, CA 94035; eBay Area Environmental Research Institute, Moffett Field, CA 94035; fUniversity of Vienna, Faculty of Physics, Aerosol Physics and Environmental Physics, 1090 Vienna, Austria; and gChemistry and Dynamics Branch, Science Directorate, NASA Langley Research Center, Hampton, VA 23681 Edited by John H. Seinfeld, California Institute of Technology, Pasadena, CA, and approved December 29, 2020 (received for review October 1, 2020) Natural aerosols in pristine regions form the baseline used to evaluate other laboratory (12, 21–23) and field measurements (3, 5) the impact of anthropogenic aerosols on climate. Sea spray aerosol suggest that SSA production increases monotonically with water (SSA) is a major component of natural aerosols. Despite its impor- temperature. Furthermore, recent observations in the remote tance, the abundance of SSA is poorly constrained. It is generally Atlantic Ocean shows that increasing SST enhances the modal accepted that wind-driven wave breaking is the principle governing mean diameter of SSA (24). On the other hand, model simula- SSA production. This mechanism alone, however, is insufficient to tions have demonstrated that incorporating SST into SSA source explain the variability of SSA concentration at given wind speed.
    [Show full text]
  • First Direct Observation of Sea Salt Aerosol Production from Blowing Snow Above Sea Ice
    Atmos. Chem. Phys., 20, 2549–2578, 2020 https://doi.org/10.5194/acp-20-2549-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. First direct observation of sea salt aerosol production from blowing snow above sea ice Markus M. Frey1, Sarah J. Norris2, Ian M. Brooks2, Philip S. Anderson3, Kouichi Nishimura4, Xin Yang1, Anna E. Jones1, Michelle G. Nerentorp Mastromonaco5, David H. Jones1,a, and Eric W. Wolff6 1Natural Environment Research Council, British Antarctic Survey, Cambridge, UK 2School of Earth and Environment, University of Leeds, Leeds, UK 3Scottish Association for Marine Science, Oban, UK 4Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan 5IVL Swedish Environmental Institute, Stockholm, Sweden 6Department of Earth Sciences, University of Cambridge, Cambridge, UK anow at: Neptec, UK Ltd., Oxford, UK Correspondence: Markus M. Frey ([email protected]) Received: 18 March 2019 – Discussion started: 3 April 2019 Revised: 8 January 2020 – Accepted: 21 January 2020 – Published: 2 March 2020 Abstract. Two consecutive cruises in the Weddell Sea, crease in aerosol concentrations with wind speed was much Antarctica, in winter 2013 provided the first direct obser- larger above sea ice than above the open ocean, highlighting vations of sea salt aerosol (SSA) production from blowing the importance of a sea ice source in winter and early spring snow above sea ice, thereby validating a model hypothesis to for the aerosol burden above sea ice. Comparison of absolute account for winter time SSA maxima in the Antarctic. Blow- increases in aerosol concentrations during storms suggests ing or drifting snow often leads to increases in SSA during that to a first order corresponding aerosol fluxes above sea and after storms.
    [Show full text]
  • The Sensitivity of Southern Ocean Aerosols and Cloud Microphysics to Sea Spray and Sulfate Aerosol Production in the Hadgem3-GA7.1 Chemistry-Climate Model Laura E
    https://doi.org/10.5194/acp-2019-629 Preprint. Discussion started: 15 August 2019 c Author(s) 2019. CC BY 4.0 License. The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry-climate model Laura E. Revell1, Stefanie Kremser2, Sean Hartery1, Mike Harvey3, Jane P. Mulcahy4, Jonny Williams3, Olaf Morgenstern3, Adrian J. McDonald1, Vidya Varma3, Leroy Bird2, and Alex Schuddeboom1 1School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand 2Bodeker Scientific, Alexandra, New Zealand 3National Institute of Water and Atmospheric Research, Wellington, New Zealand 4Met Office, Exeter, United Kingdom Correspondence: Laura Revell ([email protected]) Abstract. With low concentrations of tropospheric aerosol, the Southern Ocean offers a ‘natural laboratory’ for studies of aerosol-cloud interactions. Aerosols over the Southern Ocean are produced from biogenic activity in the ocean, which generates sulfate aerosol via dimethylsulfide (DMS) oxidation, and from strong winds and waves that lead to bubble bursting and sea- spray emission. Here we evaluate the representation of Southern Ocean aerosols in the HadGEM3-GA7.1 chemistry-climate 5 model. Compared with aerosol optical depth (AOD) observations from two satellite instruments (the Moderate Resolution Imaging Spectroradiometer, MODIS-Aqua c6.1 and the Multi-angle Imaging Spectroradiometer, MISR), the model simulates too-high AOD during winter and too-low AOD during summer. By switching off DMS emission in the model, we show that sea spray aerosol is the dominant contributor to AOD during winter. In turn, the simulated sea spray aerosol flux depends on near- surface wind speed.
    [Show full text]
  • Salt Aerosols in the Atmosphere: 1. Model Development
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D3, PAGES 3805-3818, FEBRUARY 20, 1997 Modeling sea-salt aerosols in the atmosphere 1. Model development S. L. Gong and L. A. Bartie AtmosphericEnvironment Service, Downsview, Ontario, Canada J.-P. Blanchet Earth SciencesDepartment, University of Quebec at Montreal, Canada Abstract. A simulationof the processesof sea-saltaerosol generation, diffusive transport, transformation,and removal as a function of particle size is incorporatedinto a one- dimensionalversion of the Canadiangeneral climate model (GCMII). This model was then run in the North Atlantic betweenIceland and Ireland during the period of January- March. Model predictionsare comparedto observationsof sea-saltaerosols selected from a review of availablestudies that were subjectedto strict screeningcriteria to ensure their representativeness.The number and masssize distributionand the wind dependencyof total sea-saltaerosol mass concentrations predicted by the model comparewell with observations.The modeled dependenceof sea-saltaerosol concentration in the surface layer(X,/xg m -3) on 10-mwind speed (U•0, m s-•) is givenby X = beaU•ø.Simulations showthat both a and b changewith location.The value a and b range from 0.20 and 3.1 for Mace Head, Ireland to 0.26, and 1.4 for Heimaey, Iceland. The dependenceof X on surfacewind speedis weaker for smallerparticles and for particlesat higher altitudes.The residencetime of sea-saltaerosols in the first atmosphericlayer (0-166 m) rangesfrom 30 min for large particles(r = 4-8/xm) to -60 hoursfor smallparticles (r = 0.13-0.25/xm). Although somerefinements are required for the model, it forms the basisfor comparing the simulationswith long-term atmosphericsea-salt measurements made at marine baselineobservatories around the world and for a more comprehensivethree-dimensional modelingof atmosphericsea-salt aerosols.
    [Show full text]
  • Ocean-Derived Aerosol and Its Climate Impacts PK Quinn and TS Bates, NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA
    5.12 Ocean-Derived Aerosol and Its Climate Impacts PK Quinn and TS Bates, NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA Published by Elsevier Ltd. 5.12.1 Introduction 317 5.12.2 Ocean-Derived Aerosol Production Mechanisms 317 5.12.3 Radiative Effects of Ocean-Derived Aerosol 319 5.12.3.1 Aerosol Direct Effects 319 5.12.3.2 Aerosol–Cloud Interactions 319 5.12.4 Sources and Composition of Ocean-Derived CCN 320 5.12.4.1 The Dimethylsulfide Source of Ocean-Derived CCN 320 5.12.4.1.1 Production of DMS-derived CCN 321 5.12.4.2 The Sea Spray Source of Ocean-Derived CCN 322 5.12.4.2.1 Sea salt aerosol 322 5.12.4.2.2 Organic aerosol 322 5.12.5 The MBL CCN Budget 325 5.12.5.1 Production Fluxes of Sea Spray Aerosol 325 5.12.6 The CLAW Hypothesis 327 5.12.7 Concluding Comments 328 Acknowledgments 328 References 328 5.12.1 Introduction 5.12.2 Ocean-Derived Aerosol Production Mechanisms Atmospheric aerosols observed over the ocean are derived from continental and marine sources. Aerosols emitted from conti- Bubble bursting at the ocean surface results in the production nental sources (fossil fuel combustion, biomass burning, dust, of sea spray particles composed of inorganic sea salt and and biogenic emissions) can be transported across ocean organic matter. This process of wind-driven particle produc- basins since aerosol lifetimes and atmospheric transport tion is one of the largest global sources of primary atmospheric times often are similar.
    [Show full text]
  • Size Distribution Measurements and Chemical Analysis of Aerosol Components
    FINNISH METEOROLOGICAL INSTITUTE CONTRIBUTIONS No. 15 SIZE DISTRIBUTION MEASUREMENTS AND CHEMICAL ANALYSIS OF AEROSOL COMPONENTS Tuomo A. Pakkanen DISSERTATION To be presented, with the permission of the Faculty of Science of the University of Helsinki for public criticism in main Auditorium of the Department of Chemistry on June 19, 1995, at 12 o'clock noon. Finnish Meteorological Institute Helsinki 1995 ISBN 951-697-433-3 ISSN 0782-6117 Yliopistopaino Helsinki 1995 Published by Series title, number and report code of publication Finnish Meteorological Institute Contributions No. 15, FMI-CONT-15 P.O. Box 503 FIN-00101 HELSINKI Date Finland June 1995 Name of project Tuomo Pakkanen Comissioned by Title Size distribution measurements and chemical analysis of aerosol components Abstract The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subseguent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 pm of equivalent aerodynamic particle diameter (BAD). Furthermore, it turned out that a substantial amount of analytes associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process.
    [Show full text]
  • Atmospheric Aerosol Properties and Climate Impacts
    Atmospheric Aerosol Properties and Climate Impacts U.S. Climate Change Science Program Synthesis and Assessment Product 2.3 January 2009 FEDERAL EXECUTIVE TEAM Director, Climate Change Science Program: ................................William J. Brennan Director, Climate Change Science Program Office: .....................Peter A. Schultz Lead Agency Principal Representative to CCSP, Associate Director for Research, Earth Science Division, National Aeronautics and Space Administration: .........................Jack Kaye Lead Agency Point of Contact, Earth Science Division, National Aeronautics and Space Administration: ...........................Hal Maring Product Lead, Laboratory for Atmospheres, Earth Science Division, Goddard Space Flight Center, National Aeronautics and Space Administration: ..........................Mian Chin Chair, Synthesis and Assessment Product Advisory Group Associate Director, National Center for Environmental Assessment, U.S. Environmental Protection Agency: ....................Michael W. Slimak Synthesis and Assessment Product Coordinator, Climate Change Science Program Office: ......................................Fabien J.G. Laurier EDITORIAL AND PRODUCTION TEAM Editors: ..........................................................................................Mian Chin, NASA ..........................................................................................Ralph A. Kahn, NASA ..........................................................................................Stephen E. Schwartz, DOE Graphic Design:
    [Show full text]
  • Global Simulation of Nitrate and Ammonium Aerosols and Their Radiative Effects and Comparison of Satellite-Based and Modeled Aerosol Indirect Forcing
    GLOBAL SIMULATION OF NITRATE AND AMMONIUM AEROSOLS AND THEIR RADIATIVE EFFECTS AND COMPARISON OF SATELLITE-BASED AND MODELED AEROSOL INDIRECT FORCING by Li Xu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric and Space Sciences) in The University of Michigan 2012 Doctoral Committee: Professor Joyce E. Penner, Co-Chair Assistant Professor Xianglei Huang, Co-Chair Associate Professor Christopher J. Poulsen Assistant Professor Derek J. Posselt © Li Xu 2012 ACKNOWLEDGEMENTS I wish to express my sincere gratitude to my advisor, Professor Joyce Penner, for her insightful guidance and continuous encouragement, which motivate and inspire me to conduct and finish this research work. I felt very fortunate just to be around her all these years, observing how she thinks, how she approaches the problem and solves it, and how she dedicates to science. It really helps me grow intellectually. I am sure I am going to benefit from this in my future career. I would like to thank my co-advisor, Assistant Professor Xianglei Huang, for sharing his own research experience and for his numerous help and enthusiastic encouragements towards the completion of this dissertation. I also wish to thank all committee members, collaborators, group members, and friends who helped me and encouraged me during the accomplishment of this dissertation. Finally, I am grateful of countless support from my family. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ……………………………………………………………..ii LIST OF FIGURES …………………………………………………………………....vi
    [Show full text]
  • Effects of Atmospheric Dry Deposition on External Nitrogen Supply and New Production in the Northern South China Sea
    Article Effects of Atmospheric Dry Deposition on External Nitrogen Supply and New Production in the Northern South China Sea Hung-Yu Chen 1,2,* and Shih-Zhe Huang 1 1 Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan; [email protected] 2 Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan * Correspondence: [email protected] Received: 27 August 2018; Accepted: 1 October 2018; Published: 3 October 2018 Abstract: The South China Sea (SCS) is one of the world’s largest oligotrophic marginal seas. Increases in biomass and primary production in the surface layer of the northern SCS are affected by anthropogenic aerosol use among north Asian peoples. The seasonal variation of dry deposition and its contribution to new production in the ocean are vital to determining the effect that such dry deposition has on the biogeochemical cycle of the SCS. This study collected 240 samples of total suspended particles at Dongsha Island in the northern SCS from April 2007 to March 2009; the major ions and water-soluble nitrogen species in the samples were analyzed. The analysis results indicated that the concentration distributions of major water-soluble ions and nitrogen species in total suspended particles exhibited significant seasonal (source) variation. The north-east monsoon seasons (autumn to spring) brought relatively high concentrations because most air masses during this period arrived from the northern continental region. We found that the concentration of nitrogen species shows a latitude distribution, gradually decreasing from north to south. In addition, this study also discovered that the ratio of organic nitrogen to total dissolved or water- soluble nitrogen also varies in a similar manner, resulting in a concentration of <20% for locations north of 30° N and >30% for those south of 30° N.
    [Show full text]