Size Distribution Measurements and Chemical Analysis of Aerosol Components
Total Page:16
File Type:pdf, Size:1020Kb
FINNISH METEOROLOGICAL INSTITUTE CONTRIBUTIONS No. 15 SIZE DISTRIBUTION MEASUREMENTS AND CHEMICAL ANALYSIS OF AEROSOL COMPONENTS Tuomo A. Pakkanen DISSERTATION To be presented, with the permission of the Faculty of Science of the University of Helsinki for public criticism in main Auditorium of the Department of Chemistry on June 19, 1995, at 12 o'clock noon. Finnish Meteorological Institute Helsinki 1995 ISBN 951-697-433-3 ISSN 0782-6117 Yliopistopaino Helsinki 1995 Published by Series title, number and report code of publication Finnish Meteorological Institute Contributions No. 15, FMI-CONT-15 P.O. Box 503 FIN-00101 HELSINKI Date Finland June 1995 Name of project Tuomo Pakkanen Comissioned by Title Size distribution measurements and chemical analysis of aerosol components Abstract The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subseguent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 pm of equivalent aerodynamic particle diameter (BAD). Furthermore, it turned out that a substantial amount of analytes associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occured. Chloride was depleted when acidic species reacted with atmospheric sea salt particles. The chloride loss was found to decrease with increasing particle size suggesting that surface reaction mechanisms were important. Overall, the results obtained in this work describe the present methods used in all steps of accurate size distribution measurements of aerosol components and demonstrate the usefulness and possibilities of size distribution measurements in various scientific studies. Publishing unit Finnish Meterorological Institute,Air Quality Department Classification (UDC) Key words 504.064.2, 541.182.2/.3 aerosol, atmosphere, in-stack, impactor, Berner impactor, 543.2 dissolution, analysis, spectroscopy, GFAAS, ETAAS, particle, particle size, size distribution, element, air pollution 551.510.42 ISSN and series title ISSN 0782-6117 Finnish Meteorological Institute Contributions Language ISBN English 951-697-433-3 Sold by Pages Price 157 Note Julkaisija Julkaisun saija, numeroja raporttikoodi llmatieteen laitos Contribution No 15, FMI-CONT-15 Vuorikatu 24 PL 503 Julkaisuaika 00101 HELSINKI Kesakuu 1995 Teklja(t) Projektin nimi Tuomo Pakkanen Toimeksiantaja i Nlmlke Aerosolikomponenttien kokojakaumamittauksetja kemiallinen analyysi i i TllvIstelmS Taman tyon tarkoituksena oli kehittaa aerosolien kokojakaumamittauksissa kaytettavia menetelmia i seka kayttaa ilmakehasta ja savupiipuista mitattuja aerosolikomponenttien kokojakaumia aerosolien i kemiallistenja fysikaalisten ominaisuuksien tutkimiseen. Laimeaan typpihappoon liuotetuista, halkaisijaltaan alle 2 pm Mukkasista pystyttiin analysoimaan useita metalleja grafiittiuuniatomiabsorptiomenetelmalla. Liuotusmenetelmaa kaytettaessa nollanay- tearvot olivat pienia ja liukenemattomat hiukkaset muodostivat suspension, mika mahdollisti pienten j pitoisuuksien seka liukenemattoman materiaalin analysoinnin. i Savupiipuista keratyissa naytteissa olivat useat aerosolikomponentit jakautuneet kahteen moodiin. Pienempien hiukkasten (halkaisijaltaan noin 0.05 - 0.2 pm) moodin ilmeneminen voidaan selittaa siten, etta komponentti ensin hoyrystyy palamisprosessissa ja sitten nukleoituu. Etela-Norjassa oli ilmakehan aerosolikomponenteilla tavallisesti yksi tai kaksi moodia pienissa (halkaisija < 2 pm) hiukkasissa ja yksi tai kaksi moodia suurissa (halkaisija > 2 pm) hiukkasissa. Ilmakehan suhteellisen kosteuden ollessa yli 80% kasvoi pisaramoodin hiukkaskoko. Etela-Noijassa havaittiin olevan paikallisia ja/tai alueellisia eri alkuaineiden paastdlahteita. Nama paastdlahteet i vaikuttivat mitattuihin kokojakaumiin, mita kaytettiin hyvaksi kehitettaessa uutta kokojakamniin perustuvaa paastolahteiden paikallistamismenetelmaa. Suomen etelarannikolla muodostui nitraattia ilmakehan suuriin hiukkasiin paaasiassa typpihapon reagoidessa suurten merisuolahiukkasten kanssa, seka pienemmassa maarin typpihapon ja suurten maaperahiukkasten vuorovaikutuksesta. Kloridi vaheni merisuolahiukkasista kun happamat aineet reagoivat merisuolan kanssa. Kloridin vaheneminen oli pienempaa suuremmilla hiukkasilla, mika viittaa pintareaktiomekanismeihin. Tassa tyossa kuvataan aerosolikomponenttien kokojakaumamittauksien eri vaiheissa kaytettavia menetelmia seka esitellaan kokojakaumamittauksien kayttomahdollisuuksia erilaisissa tutkimuksissa. Julkalsljayksikko llmatieteen laitos, Ilmanlaatuosasto t Luokitus (DDK) Asiasanat 504.062.2, 541.182.2/.3 aerosolit, ilmakeha, paastot, naytteenotto, impak- i 543.2 torit, liuotus, analyysimenetelmat, spektroskopia, 551.510.42 hiukkaskoko, alkuaineet, ilmanlaatu ISSN Ja avalnnlmlke ISSN 0782-6117 Finnish Meteorological Institute Contributions Kiel! ISBN i Suomi 951-697-433-3 Myynti Sivumaard Hinta llmatieteen laitos, Kirjasto 157 PL 503 Lisatietoja 00101 Helsinki 'Y. ACKNOWLEDGEMENTS The work described in this thesis was carried out at the Finnish Meteorological Institute and at the University of Ghent, Belgium. The directors of these institutes are acknowledged for providing the research environment needed in this work. The encouragement and comments of Prof. Lauri Halonen are acknowledged. I thank Prof. Maija-Liisa Riekkola and Doc. Erkki Hasanen for their constructive and valuable comments about the manuscript. I am deeply indebted to Dr. Risto Hillamo for his continuing co-operation, ideas and encouragement and to Dr. Esko Kauppinen and Dr. Willy Maenhaut for their extensive co operation concerning aerosol sampling and analysis and preparation of the manuscripts. I thank Mr. Petri Keronen, Dr. Geert Ducastel and Dr. Jozef Pacyna for their co-operation and help in performing the PIXE analysis and inversions of the size distribution data. I thank also Doc. Yqo Viisanen, Dr. Philippe Comille, Dr. Geert Hebbrecht and Mr. Veli-Matti Kerminen for their useful comments and help and Mr. Arto Jappinen, Mr. Jan Cafmeyer, Mr. Kari Markkanen, Mr. Juha Hatakka, Mr. Jukka Kiiski and Mrs. Helena Saari for their assistance during this work. The members of the aerosol research group and the laboratory group at the Finnish Meteorological Institute are acknowledged for their help and support. Special thanks are given to Doc. Sylvain Joffre for his guidance and help in getting financial support for this work. The Academy of Finland, the Maj and Tor Nessling Foundation and the Nordic Council of Ministers are acknowledged for their financial help. Finally, I thank my wife Eija for her understanding and support during this work. May 1995 Tuomo Pakkanen NOMENCLATURE The following abbreviations are used in the text most frequently. Abbreviation Meaning BLPI Berner low-pressure impactor BAD equivalent aerodynamic particle diameter FAAS flame atomic absorption spectrometry GFAAS graphite furnace atomic absorption spectrometry IC ion chromatography ICP-AES inductively coupled plasma atomic emission spectrometry ICP-MS inductively coupled plasma - mass spectrometry INAA instrumental neutron activation analysis Milli-Q water distilled, deionized water MOUDI micro-orifice uniform deposit impactor NIST National Institute of Standards and Technology PIXE particle induced X-ray emission RSD-method relative size distributions method SDI small deposit area low-pressure impactor SFU stacked filter unit (=two stage filter sampler) SRM standard reference material STPF-method stabilized temperature platform furnace method XRF X-ray fluorescence CONTENTS LIST OF PUBLICATIONS 6 1. INTRODUCTION 7 2. GENERAL BACKGROUND 9 3. A REVIEW FOR SIZE DISTRIBUTION MEASUREMENTS 14 3.1. Background 14 3.2. Features of some experimental details of the papers reviewed 15 3.3. Applications of size distribution measurements 15 4. CONTAMINATION CONTROL 16 4.1. Choosing collection substrate materials 16 4.2. Preparation and storage of polycarbonate substrates 17 4.3. Reagents and cleaning the equipment 17 4.4. Washing and storage of Berner low-pressure