Dbx1b Defines the Dorsal Habenular Progenitor Domain in the Zebrafish Epithalamus Benjamin J Dean2, Begum Erdogan1, Joshua T Gamse1,2 and Shu-Yu Wu1*

Total Page:16

File Type:pdf, Size:1020Kb

Dbx1b Defines the Dorsal Habenular Progenitor Domain in the Zebrafish Epithalamus Benjamin J Dean2, Begum Erdogan1, Joshua T Gamse1,2 and Shu-Yu Wu1* Dean et al. Neural Development 2014, 9:20 http://www.neuraldevelopment.com/content/9/1/20 RESEARCH ARTICLE Open Access Dbx1b defines the dorsal habenular progenitor domain in the zebrafish epithalamus Benjamin J Dean2, Begum Erdogan1, Joshua T Gamse1,2 and Shu-Yu Wu1* Abstract Background: The conserved habenular nuclei function as a relay system connecting the forebrain with the brain stem. They play crucial roles in various cognitive behaviors by modulating cholinergic, dopaminergic and serotonergic activities. Despite the renewed interest in this conserved forebrain region because of its importance in regulating aversion and reward behaviors, the formation of the habenular nuclei during embryogenesis is poorly understood due to their small size and deep location in the brain, as well as the lack of known markers for habenular progenitors. In zebrafish, the bilateral habenular nuclei are subdivided into dorsal and ventral compartments, are particularly large and found on the dorsal surface of the brain, which facilitates the study of their development. Results: Here we examine the expression of a homeodomain transcription factor, dbx1b, and its potential to serve as an early molecular marker of dorsal habenular progenitors. Detailed spatiotemporal expression profiles demonstrate that the expression domain of dbx1b correlates with the presumptive habenular region, and dbx1b-expressing cells are proliferative along the ventricle. A lineage-tracing experiment using the Cre-lox system confirms that all or almost all dorsal habenular neurons are derived from dbx1b-expressing cells. In addition, mutant analysis and pharmacological treatments demonstrate that both initiation and maintenance of dbx1b expression requires precise regulation by fibroblast growth factor (FGF) signaling. Conclusions: We provide clear evidence in support of dbx1b marking the progenitor populations that give rise to the dorsal habenulae. In addition, the expression of dbx1b in the dorsal diencephalon is tightly controlled by FGF signaling. Background Recent study of the habenulae has largely focused on the The habenular nuclei (habenulae) develop in the dorsal ventral habenulae, but interest in the dorsal habenulae is diencephalon of vertebrates. These bilaterally paired nu- increasing [2]. Alterations in dorsal habenular structure clei receive inputs from the limbic system and basal and function during development have been linked to ganglia and send outputs to dopaminergic and seroto- dopamine receptor expression as well as impulsivity, at- nergic centers. Despite their small size, these nuclei play tention, aversion and spatial memory endophenotypes in crucial roles in regulating aversion and reward behaviors rodents [3,4]. In zebrafish, the dorsal habenulae regulate [1]. Moreover, the fact that the habenulae are a nexus fear and aversion [5,6]. Together these studies implicate for monoamine circuits highlights the importance of the dorsal habenulae as a possible mediator of attention this brain region for studies of neuromodulation and multi- deficit hyperactivity disorder (ADHD), depression and circuit integration. anxiety [2]. Interestingly, the dorsal habenulae are also The habenular nuclei can be divided into two function- sites of intense acetylcholine receptor and transporter ally distinct subnuclei alternately referred to as medial and expression and control nicotine intake [7-9]. This raises lateral (mammals) or dorsal and ventral (zebrafish) subnuclei. the possibility of targeting the habenulae as a therapeutic intervention to nicotine addiction. Beyond translational research, the zebrafish habenulae also serve as an excellent * Correspondence: [email protected] 1Department of Biological Sciences, Vanderbilt University, Box 351634 Station model to study the basic mechanisms underlying the B, Nashville, TN 37235-1634, USA development of left-right brain asymmetry. Unlike the Full list of author information is available at the end of the article © 2014 Dean et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Dean et al. Neural Development 2014, 9:20 Page 2 of 9 http://www.neuraldevelopment.com/content/9/1/20 mammalian habenulae, teleost dorsal habenulae are ro- (Additional file 1, panel C). These data suggested that bustly asymmetric in anatomy, gene expression and func- dbx1b could be an early molecular marker for the pre- tional connectivity [10]. sumptive habenulae. Interest in how the dorsal habenulae integrate into cho- Next, we closely examined the expression of dbx1b at linergic and monoaminergic circuitry has put pressure on different developmental stages (Figure 1). At 22 hpf, ex- researchers to understand dorsal habenular development. pression of dbx1b was not yet present in the presumptive Indeed, Beretta et al. [11] have shown that dorsal and ven- habenular region, although the prethalamic and midbrain tral habenular neurons arise from distinct progenitor pop- regions showed strong expression (Figure 1A,B). By 24 hpf, ulations. While progress has been made in describing habenular dbx1b expression appeared (Figure 1C,D) and habenular neurogenesis, differentiation and elaboration of was maintained through at least 96 hpf (Figure 1E-J and processes, there are no known markers for habenular pro- data not shown). Moreover, dbx1b expression remained genitors [12-16]. Therefore, finding marker genes that highest adjacent to the third ventricle of the brain, and label dorsal habenular progenitors will be fundamental to was absent from regions distal to the ventricle by 48 studying how the diverse set of dorsal habenular neurons hpf (Figure 1H and 1J; dorsal views). Because neuronal are generated and integrated into neural circuits under- progenitors are often found in regions adjacent to the pinning aversive behavior as well as pathological addictive ventricle in the developing brain, these data led us to and depressive behaviors. speculate that the dbx1b expression pattern includes The dbx homeodomain transcription factors play a cen- the progenitors of habenular neurons. tral role in regulating progenitor status in several regions in the developing central nervous system, including the Dbx1b labels dorsal habenular progenitors spinal cord [17,18]. However, the upstream regulatory To support the hypothesis that dbx1b-expressing cells pathways that regulate dbx gene-family expression are represent habenular progenitors, we examined if these notknown.Herewereportthatinzebrafish,dbx1b is cells are proliferative. Indeed, as shown by phospho-histone expressed in the dorsal diencephalon where it marks H3 staining at 32 hpf, the dbx1b-positive cells close to the dorsal habenular progenitors, and further, that dorsal ventricular surface were proliferative, which was consist- diencephalic expression of dbx1b is controlled by fibro- ent with progenitor cell identity (Figure 2A-D). To see if blastgrowthfactor(FGF)signaling. dbx1b expression is restricted to progenitors we compared the expression of previously described precursor and Results and discussion neuronal habenular markers. Cxcr4b has been proposed Dbx1b is expressed in the presumptive habenulae as a marker of progenitors as well as post-mitotic habenu- During our ongoing efforts to characterize transcription lar precursors [12]. At 36 hpf, a subset of dbx1b-expressing factors (TFs) that are expressed in the dorsal diencephalic cells co-expressed cxcr4b. Specifically, cxcr4b expression region between 24 and 48 hours post-fertilization (hpf), was restricted to the dorsal half of the dbx1b expression we focused on a family of homeodomain-containing TFs domain leaving a ventral region of dbx1b-only expression encoded by the dbx genes because of their known roles in along the ventricle (Figure 2E-F). At 48 hpf, Elavl3 (also neural progenitors. There are three dbx genes in the zeb- known as HuC) marks post-mitotic neurons. Expression rafish genome, and we carefully examined the expression of Elavl3 and dbx1b was more distinct than cxcr4b and pattern of the two dbx1 paralogs, dbx1a and dbx1b.We dbx1b, with Elavl3 expressed dorsally and laterally while excluded dbx2 from our study because its expression has dbx1b was present medially and ventrally along the ven- been detailed previously [19]. At 28 hpf, dbx1a and dbx1b tricle (Figure 2G-H). Kctd12.1 and Kctd12.2 mark dif- showed similar yet distinct expression patterns (Additional ferent populations of differentiated habenular neurons. file 1). As shown previously [20], dbx1a was expressed in At 72 hpf, neither showed any overlap with dbx1b expres- sharply restricted domains in the diencephalon with sion (Figure 2I-L). Similar results were observed with an- prominent expression in the prethalamus and thalamus other habenular differentiation marker, pou4f1 (or brn3a) (Additional file 1: panel A). Expression of dbx1a and (data not shown). Together these results indicated that dbx1b was similar in the prethalamic region, but in the dbx1b expression is maintained in a proliferative popu- thalamic region dbx1b was expressed at a much lower lation of habenular progenitor cells that reside along the level than
Recommended publications
  • The Connexions of the Amygdala
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method.
    [Show full text]
  • Anatomical Specificity of Septal Projections in Active and Passive Avoidance Behavior in Rats
    MATOMICAL SPECIFICITY OF SEPTAL PROJECTIONS IN ACTIVE AND PASSIVE AVOIDANCE BEHAVIOR IN RATS by GARY W. VAN HOESEN B. A., Humboldt State College 1965 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Psychology KANSAS STATE UNIVERSITY Manhattan, Kansas 1968 Approved by: Ma/or Professor 7'/ 'VS^^^ 1'^^^ 0^ CONTENTS ACKNOWLEDGEMENTS iii INTRODUCTION 1 METHOD 2 Subjects 2 Apparatus 2 Surgery and Histology 3 Procedure Passive Avoidance I4 Active Avoidance 5 Retention 5 Massed Extinction 5 RESULTS 5 Histology 5 Passive Avoidance 20 Active Avoidance Retention Massed Extinction 28 DISCUSSION 21 BIBLIOGRAPHY 28 Ill ACraOVJLEDGEMNTS This research was conducted while the author was a National Aeronautics and Space Administration Pre-Doctorate Trainee. Additional support was pro- vided by an NIGMS Training Grant, GM I362 awarded to the Kansas State Univer- sity Departments of Psychology, Zoology, and Physiology. I thank Dr. James C. Mitchell for his generous contributions of his time and guidance in the preparation of this work, and Dr. Charles P. Thompson and Dr. Robert C. Haygood for their interest and helpful criticisms. Additionally I would like to thank Mr. Jim MacDougall for his aid in the execution and prepara- tion of this research. The beha.vicral effects of septal lesions have been intensely investigated in recent years. Experiments encompassing wide ranges of test conditions and laboratory species have implicated the septum in a broad spectrum of psycho- logical and physiological phenomena. The lesion induced effects, as reviewed by KcCleary (1966), incl.ude hyperirritabllity or hypersensitivity, enhanced performance on active avoidance, and decrements on passive avoidance, timdng, alternation, and position reversal.
    [Show full text]
  • Agmatine Modulates Spontaneous Activity in Neurons of the Rat Medial
    Weiss et al. Translational Psychiatry (2018) 8:201 DOI 10.1038/s41398-018-0254-z Translational Psychiatry ARTICLE Open Access Agmatine modulates spontaneous activity in neurons of the rat medial habenular complex—a relevant mechanism in the pathophysiology and treatment of depression? Torsten Weiss1,RenéBernard2, Hans-Gert Bernstein3,RüdigerW.Veh1 and Gregor Laube1 Abstract The dorsal diencephalic conduction system connects limbic forebrain structures to monaminergic mesencephalic nuclei via a distinct relay station, the habenular complexes. Both habenular nuclei, the lateral as well as the medial nucleus, are considered to play a prominent role in mental disorders like major depression. Herein, we investigate the effect of the polyamine agmatine on the electrical activity of neurons within the medial habenula in rat. We present evidence that agmatine strongly decreases spontaneous action potential firing of medial habenular neurons by activating I1-type imidazoline receptors. Additionally, we compare the expression patterns of agmatinase, an enzyme capable of inactivating agmatine, in rat and human habenula. In the medial habenula of both species, agmatinase is similarly distributed and observed in neurons and, in particular, in distinct neuropil areas. The putative relevance of 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; these findings in the context of depression is discussed. It is concluded that increased activity of the agmatinergic system in the medial habenula may strengthen midbrain dopaminergic activity. Consequently,
    [Show full text]
  • Non-Neoplastic Lesions and Interpretive Perspectives. (Emphasizing Examples from the NTP CNS/PNS Non-Neoplastic Atlas)
    Non-neoplastic lesions and Interpretive perspectives. (Emphasizing examples from the NTP CNS/PNS Non-neoplastic Atlas) P.B. Little, EPL Neuropathology Consultant [40 minutes] Some of the most important work we do as industrial veterinary pathologists is protecting the intellectual heritage of our society. Which of these children received the neural developmental opportunity to succeed in life? Let’s not forget the retiree and lasting mental integrity! • International efforts in diagnostic harmonization has been very active the past year with development of rodent CNS Atlas materials both in Europe and at the NIEHS/NTP • The CNS neoplastic and non-neoplastic European collection is referenced on-line at goRENI. Global Open Registry Nomenclature Information System and published as: • Proliferative and nonproliferative lesions of the rat and mouse central and peripheral nervous systems. Toxicol Pathol 40 (4): 87S–157S Kaufmann W, Bolon B, Bradley A, Butt M, Czasch S, Garman RH, George C, Gröters S, Krinke G, Little P, McKay J, Narama I, Rao D, Shibutani M, Sills R (2012) doi:10.1177/0192623312439125 • The NTP rodent non-neoplastic Atlas is close to completion and will be published on- line and available to everyone. • Following are selected NTP archived examples of rodent CNS lesions with interpretive perspectives relevant to NTP studies. As emphasized by Dr. Rao knowledge of the normal features & functions of brain regions is an important study prerequisite • Hippocampal dysplasia • Normal hippocampal structure Dentate gyrus Sciatic nerve neuronal ectopia Although neuronal ectopia is seldom recognized as a treatment-related effect in general toxicity studies, the advent of generational studies underscore the importance of recognition of various aberrations of neural development.
    [Show full text]
  • Diencephalon and Hypothalamus
    Diencephalon and Hypothalamus Objectives: 1) To become familiar with the four major divisions of the diencephalon 2) To understand the major anatomical divisions and functions of the hypothalamus. 3) To appreciate the relationship of the hypothalamus to the pituitary gland Four Subdivisions of the Diencephalon: Epithalamus, Subthalamus Thalamus & Hypothalamus Epithalamus 1. Epithalamus — (“epi” means upon) the most dorsal part of the diencephalon; it forms a caplike covering over the thalamus. a. The smallest and oldest part of the diencephalon b. Composed of: pineal body, habenular nuclei and the caudal commissure c. Function: It is functionally and anatomically linked to the limbic system; implicated in a number of autonomic (ie. respiratory, cardio- vascular), endocrine (thyroid function) and reproductive (mating behavior; responsible for postpartum maternal behavior) functions. Melatonin is secreted by the pineal gland at night and is concerned with biological timing including sleep induction. 2. Subthalamus — (“sub” = below), located ventral to the thalamus and lateral to the hypothalamus (only present in mammals). a. Plays a role in the generation of rhythmic movements b. Recent work indicates that stimulation of the subthalamus in cats inhibits the micturition reflex and thus this nucleus may also be involved in neural control of micturition. c. Stimulation of the subthalamus provides the most effective treatment for late-stage Parkinson’s disease in humans. Subthalamus 3. Thalamus — largest component of the diencephalon a. comprised of a large number of nuclei; -->lateral geniculate (vision) and the medial geniculate (hearing). b. serves as the great sensory receiving area (receives sensory input from all sensory pathways except olfaction) and relays sensory information to the cerebral cortex.
    [Show full text]
  • Anatomy of the Opioid-Systems of the Brain Karl M
    THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES SPECIAL FEATURE Anatomy of the Opioid-Systems of the Brain Karl M. Knigge and Shirley A. Joseph This paper was presented in May 1983 at the Centennial Neurosciences Symposium of the Department of Anatomy, University of Manitoba, at which Dr. Knigge was a keynote speaker. Can. J. Neurol. Sci. 1984; 11:14-23 In 1969, Roger Guillemin and Andrew Schally independently subpopulations: a hypothalamic arcuate opiocortin system, a reported the isolation and identification of the first hypothalamic brainstem medullary opiocortin pool of neurons, and a hypo­ neuropeptide, thyrotropin releasing factor (TRF). Following thalamic alpha MSH-specific system. In the present report we this landmark event in neuroendocrinology the ensuing years will review our anatomical studies on only the opiocortin division have witnessed a cascade of isolations of new neuropeptides of the brain opioids. Unless specifically noted, our descriptions and a virtual revolution in neurobiology. The discipline of relate to the brain of the rat. neuroendocrinology has been remarkably impacted by the The arcuate opiocortin system consists of a pool or "bed nucleus" evidence that all of the "hypophysiotrophic" releasing factors of perikarya located in the arcuate and periarcuate regions of presently identified are distributed widely throughout the brain the hypothalamus (Fig. 1). In species we have examined, including with neurotransmitter or neuromodulator roles quite different rat, mouse, hamster, guinea pig, dog, horse, primate and human, from their actions of regulating the secretion of pituitary hormones. this pool of neuron cell bodies extends the entire antero-posterior The study of these neuropeptide systems in activity of the distance of the hypothalamus.
    [Show full text]
  • Origins of R2 Orientation Dependence in Gray and White Matter
    R* PNAS PLUS Origins of 2 orientation dependence in gray and white matter David A. Rudkoa,b, L. Martyn Klassenb, Sonali N. de Chickerac, Joseph S. Gatib, Gregory A. Dekabanc,d, and Ravi S. Menona,b,1 aDepartment of Physics and Astronomy, University of Western Ontario, London, ON, Canada N6A 3K7; bCenter for Functional and Metabolic Mapping and cMolecular Brain Research Group, Robarts Research Institute, London, ON, Canada N6A 5B7; and dDepartment of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1 Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved November 27, 2013 (received for review April 5, 2013) R* Estimates of the apparent transverse relaxation rate ( 2) can be orientations and (ii) magnitude-regularized dipole inversion (14). used to quantify important properties of biological tissue. Surpris- The difference between these two estimates represents the local R* ingly, the mechanism of 2 dependence on tissue orientation is not frequency shift due to a cylindrical, axon geometry and is a marker well understood. The primary goal of this paper was to character- of axonal integrity. R* ize orientation dependence of 2 in gray and white matter and Having modeled the orientation dependence, we next exam- relate it to independent measurements of two other susceptibility ined the effect of myelin and iron on both Rp and Δχ.We f 2 based parameters: the local Larmor frequency shift ( L) and quan- demonstrated a linear correlation between these quantities and titative volume magnetic susceptibility (Δχ). Through this compar- R′ optical density (OD) derived from diaminobenzidine (DAB)- ative analysis we calculated scaling relations quantifying 2 (reversible contribution to the transverse relaxation rate from lo- enhanced Perls stain (sensitive to ferritin-based iron) for cortical cal field inhomogeneities) in a voxel given measurements of the gray matter.
    [Show full text]
  • The Role of Habenular Nuclei in the Selection of Behavioral Strategies
    Physiological Psychology 1982, Vol. 10 (3), 361-367 The role of habenular nuclei in the selection ofbehavioral strategies E. W. THORNTON and J. C. EVANS University ofLiverpool, Liverpool, England Bilateral lesions of the habenular nucleiin male Wistar rats werefound to affect the selection of motor activities under stress. Specifically,in the absence of an available escape strategy dur­ ing a forced swimming test, animals with habenular lesions demonstrated fewer categories of intrinsically generated motor activities and fewer changes of strategy. In addition, when given the opportunity to escape, such animals seemed unable to utilize the extrinsic cue provided. These changes in behavior did not seem to be related to any gross alteration of motor and pos­ tural capacities or to a general decrease in motor activity and exploratory tendencies. It is sug­ gested that the habenula is critically involved in the relay and integration of information from limbic structures and the striatum and that a component of the changed behavior may be a re­ sult of disruption in dopaminergic function. Although considerable evidence describes the The importance of the basal ganglia in movement neural mechanisms involved in both "motivational" is well documented, with support for a primary role processes and the control of movement, little is in the temporal patterning of both complex learned known about how the limbic processes involved in the motor responses and spontaneous behavior (Cools, former gain access to action and the motor system 1980; Cools & Van den Bercken, 1977; Wilburn & (Mogenson, Jones, & Vim, 1980). Few structures are Kesner, 1974). Cools (1980) has demonstrated that, well placed to serve such a function, and , although under stress, manipulation of striatal dopamine sys­ the nucleus accumbens has been implicated as a likely tems affects the procedure for selecting an optimal key structure (Graybiel, 1976), recent anatomical behavioral strategy by changing the ability to switch studies suggest that the habenular nuclei might intrinsically generated motor programs.
    [Show full text]
  • A STUDY of the ANURAN DIENCEPHALON the Group Of
    A STUDY OF THE ANURAN DIENCEPHALON JOSE GUILLERMO FRONTERA Laboratory of Comparative Neurology, Department of Anatomy, University of Michigan, Ann Arbor, and Department of Anatomy, School of Medicine, San Juan, Puerto Icico TWENTY FIGURES The group of vertebrates on which the present study is based has profoundly influenced, directly or indirectly, the prbgress of the biological sciences. The word-wide distribu- tion and abundance of the group, and the ease with which its members are managed, have made these animals especially useful as laboratory specimens. The present research deals primarily with the diencephalon. Even in such a rather limited area the intricacies of the cellu- lar pattern and fiber connections make it extremely hazardous to reach definite, undisputed conclusions. This paper would not be complete without an expression of the heartfelt gratitude of the author for the patient guid- ance, constant encouragement and assistance given to him by Professor E. C. Crosby. To the University of Puerto Rico and to the Horace H. Rackharn School of Graduate Studies, the author will be ever grateful for the financial aid which permitted the completion of this study. MATERIALS The author has been very fortunate to have at his disposal all the amphibian material contained in the extremely valu- able Huber Neurological Collection of the University of Michi- A dissertation submitted in partial fulfillment of the requirements for the de- gree of Doctor of Philosophy in the University of Michigan. At present t5e author is associated with the Department of Anatomy, School of Medicine, San Juan, Puerto Rico. 1 THB JOURNAL OF OOlfPARgTIVE N&IIIROLOGY, VOL.
    [Show full text]
  • A Gabaergic Cell Type in the Lateral Habenula
    Zhang et al. Translational Psychiatry (2018) 8:50 DOI 10.1038/s41398-018-0099-5 Translational Psychiatry ARTICLE Open Access A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling Limei Zhang 1,2,VitoS.Hernández1,JeromeD.Swinny3,AnilK.Verma1, Torsten Giesecke4, Andrew C. Emery 2, Kerim Mutig4, Luis M. Garcia-Segura5,6 and Lee E. Eiden2 Abstract The lateral habenula (LHb) has a key role in integrating a variety of neural circuits associated with reward and aversive behaviors. There is limited information about how the different cell types and neuronal circuits within the LHb coordinate physiological and motivational states. Here, we report a cell type in the medial division of the LHb (LHbM) in male rats that is distinguished by: (1) a molecular signature for GABAergic neurotransmission (Slc32a1/VGAT) and estrogen receptor (Esr1/ERα) expression, at both mRNA and protein levels, as well as the mRNA for vesicular glutamate transporter Slc17a6/VGLUT2, which we term the GABAergic estrogen-receptive neuron (GERN); (2) its axonal projection patterns, identified by in vivo juxtacellular labeling, to both local LHb and to midbrain modulatory systems; and (3) its somatic expression of receptors for vasopressin, serotonin and dopamine, and mRNA for orexin receptor 2. This cell type is anatomically located to receive afferents from midbrain reward (dopamine and serotonin) and hypothalamic 1234567890():,; 1234567890():,; water and energy homeostasis (vasopressin and orexin) circuits. These afferents shared the expression of estrogen synthase (aromatase) and VGLUT2, both in their somata and axon terminals. We demonstrate dynamic changes in LHbM VGAT+ cell density, dependent upon gonadal functional status, that closely correlate with motivational behavior in response to predator and forced swim stressors.
    [Show full text]
  • Ongoing Habenular Activity Is Driven by Forebrain Networks And
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431141; this version posted February 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Ongoing habenular activity is driven by forebrain networks and modulated by olfactory stimuli Ewelina Magdalena Bartoszek1, Suresh Kumar Jetti2, Khac Thanh Phong Chau1, Emre Yaksi1* 1Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway. 2Neuro-Electronics Research Flanders, 3001 Leuven, Belgium. * Corresponding authors: [email protected] SUMMARY dopamine, acetylcholine, and serotonin [40, 44, 45, Ongoing neural activity, which represents internal 59-69]. Previous studies established a direct role for brain states, is constantly modulated by the sensory the habenula in adaptive behaviors [8, 64, 65, 70- information that is generated by the environment. In 74], learning [45, 47, 64, 73, 75, 76] and prediction this study, we show that the habenular circuits act as of outcomes [45, 71, 75, 77, 78]. Not surprisingly, a major brain hub integrating the structured ongoing habenular dysfunction is closely linked to several activity of the limbic forebrain circuitry and the neurological conditions and mood disorders including olfactory information. We demonstrate that ancestral depression [54, 79]. Based on molecular profiles [80- homologs of amygdala and hippocampus in zebrafish 85], anatomical landmarks [64, 73, 76, 86], and neural forebrain are the major drivers of ongoing habenular activity [52, 53, 64, 87], habenula is divided into activity.
    [Show full text]
  • Cholinergic Systems in the Rat Brain: II. Projections to the Interpeduncular Nucleus
    Bruin Research Buiiefi~, Vol. 14, pp. 63-83, 1985. 0 Ankho International Inc. Printed in the U.S.A. 0361-9230185 $3.00 + .OO Cholinergic Systems in the Rat Brain: II. Projections to the Interpeduncular Nucleus NANCY J. WOOLF AND LARRY L. BUTCHER Department of Psychology and Brain Research institute, University of California 405 Hilgard Avenue, Los Angeles, CA 90024 Received 9 October 1984 WOOLF, N. J. AND L. L. BUTCHER. Cholinergic systems in the rut brcrin: II. Projections to the ittterpcdtmcular nudrus. BRAIN RES BULL 14(l) 63-83, 1985.-The cholinergic innervation of the interpeduncular nucleus was investigated by use of ffuorescent tracer histology in combination with choline-O-acetyltransferase (ChAT) im- munohistochemistry and acetylcholinesterase (AChE) pha~acohist~hemist~. Following propidium iodide or Evans Blue infusion into the interpeduncular nucleus, brains were processed for co-localization of transported fluorescent label and ChAT and AChE. Control infusions of tracers were made into the ventral tegmental area. In order to delimit the course of putative cholinergic afferents to the interpeduncular nucleus from extra-ha~nular sources, knife cuts su~ounding the habenular nuclei were performed. Somata containing propidium iodide that were highly immunoreactive for ChAT were found primarily in the vertical and horizontal limbs of the diagonal band, the magnocellular preoptic area, and the dorsolateral tegmental nucleus, also referred to as the laterodorsal tegmental nucleus. A few such co-labeled somata were also detected in the medial septal nucleus, substantia innominata, nucleus basalis, and pedunculopontine tegmental nucleus. A good correlation was observed between intensely-staining, AChE-containing and ChAT-positive neurons projecting to the interpeduncular nucleus from the aforementioned structures.
    [Show full text]