Electrostatic Effects in Soft Matter and Biophysics NATO Science Series

Total Page:16

File Type:pdf, Size:1020Kb

Electrostatic Effects in Soft Matter and Biophysics NATO Science Series Electrostatic Effects in Soft Matter and Biophysics NATO Science Series A Series presenting the results of scientific meetings supported under the NArO Science Programme. The Series is published by 10S Press, Amsterdam, and Kluwer Academic Publishers in conjunction with the NATO Scientific Affairs Division Sub-Series 1. Life and Behavioural Sciences 10S Press II. Mathematics, Physics and Chemistry Kluwer Academic Publishers III. Computer and Systems Science 10S Press IV. Earth and Environmental Sciences Kluwer Academic Publishers The NATO Science Series continues the series of books published formerly as the NATO ASI Series. The NATO Science Programme offers support for collaboration in civil science between scientists of countries of the Euro-Atlantic Partnership Council. The types of scientific meeting generally supported are "Advanced Study Institutes" and "Advanced Research Workshops", and the NATO Science Series collects together the results of these meetings. The meetings are co-organized bij scientists from NATO countries and scientists from NATO's Partner countries - countries of the CIS and Central and Eastern Europe. Advanced Study Institutes are high-Ievel tutorial courses offering in-depth study of latest advances in a field. Advanced Research Workshops are expert meetings aimed at critical assessment of a field, and identification of directions for future aetion. As a consequence of the restrueturing of the NATO Science programme in 1999, the NATO Science Series was re-organized to the four sub-series noted above. Please consult the following web sites for information on previous volumes published in the Series. http://www.nato.intlscience http://www.wkap.nl http://www.iospress.nl http://www.wtv-books.de/nato-pco.htm Series II: Mathematics, Physics and Chemistry - Voi. 46 Electrostatic Effects in Soft Matter and Biophysics edited by Christian Holm Max-Planck-Institut fur Polymerforschung, Mainz, Germany Patrick Kekicheff Institut Charles Sadron, C.N.R.S., Strasbourg, France and Rudolf Podgornik Department of Physics, University of Ljubljana, Ljubljana, Slovenia SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Proceedings of the NATO Advanced Research Workshop on Electrostatic Effects in Soft Matter and Biophysics Les Houches, France 1-13 October 2000 A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4020-0197-0 ISBN 978-94-010-0577-7 (eBook) DOI 10.1007/978-94-010-0577-7 Printed on acid-free paper AII Rights Reserved ©2001 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2001 Softcover reprint of the hardcover 1st edition 2001 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Preface Recently theoretical interest in soft matter has finally caught up with its undisputed practical and technological relevance (high-polymers and elastomers, polyelectrolyte hydrogels, food processing and storage, waste management, new tailored materials, etc.). But even more importantly charged soft matter appears to be at the heart of biotechnologies that are widely believed to be the most important technologies of this century and that already figure in many countries' technological strategies. Recent impetus in the elucidation of the structure of synthetic genosomes, com­ plexes of negatively charged DNA and positively charged lipids, reveals all the subtleties that one has to master in order to be able to study and understand materials that are both soft and charged. Soft charged matter is dominated by the interplay of thermal fluctua­ tions and long-range electrostatic effects on different length and time scales which results in complicated phase diagrams. The range of expertise that one needs to study charged soft matter is so wide, encompassing contin­ uum mechanics, statistical mechanics, field theory, molecular simulations on the theoretical side and sophisticated experimental techniques such as direct force measurements, laser tweezers, light, X-ray and neutron scat­ tering, atomic force microscopy, that it is quite unusual for any university department to be proficient in all its facets. The idea to organize the NATO Advanced Study Institute "Electrostatic Effects in Soft Matter and Biophysics" grew out of a workshop organized by W. Gelbart, A. Parsegian and P. Pincus in Santa Barbara at the ITP in 1998 with a similar theme. While there it was devoted to active researchers, mainly theorists, already familiar with the subject, we felt that it was time to do our share in educating young people to foster the development of this exciting and rapidly growing field. Our aim was to bring together theorists, computer simulators and ex­ perimentalists from research areas as diverse as macromolecular charged colloids and biological materials like DNA. We tried to cover most ba­ sic investigative tools on soft charged materials: analytical methods and approaches, computational tools and tricks of the trade, as well as experi­ mental methods in their different ranges of applicability. The lectures were divided into three thematic blocks: The first block consisted of modern analytical methods used to describe electrostatic interactions between charged soft bodies with fixed charges vi PREFACE immersed in a solution of mobile charge carriers. H. Wennerstrom intro­ duced us to the intermolecular interactions specifically concentrating on the dielectric description in the condensed phase and the Lifshitz theory. R. Kjellander and R. Netz covered in depth the introduction to integral equation theories for the electric double layer and the mean-field Poisson­ Boltzmann equation and all its varied consequences respectively. They also introduced us to the various modern theoretical approaches that go beyond the mean-field approximation. B. Shklovskii introduced us to his approach to electrostatic correlations based on the Wigner crystal model and showed us how different physical problems can be treated with this theory. R. Podgornik reviewed the work on the equation of state in charged macromolecular arrays motivated by recent experimental findings on or­ dered DNA arrays and ordered multilamellar lipid arrays. B. Gelbart and A. Khokhlov reviewed some recent experimental and theoretical insights into DNA condensation and complexation, cationic histone proteins, and chromatin, and told us about new analytical and experimental approaches to understand these biologically important structures. J.-F. Joanny showed us how many problems in the physics of polyelectrolytes and polyam­ pholytes in dilute and semi-dilute solutions can be treated with simple scaling theories. The second block consisted of an introduction to simulational methods of molecular dynamics and Monte Carlo approaches to soft matter sys­ tems with long-range Coulombic interactions. B. Jonsson introduced us to protein electrostatics and compared theoretical approaches to Monte Carlo simulations. We also learned about correlation effects between plates and spheres and the collapse of DNA-like systems due to correlation interaction­ s. K. Kremer prepared a grand tour of polymer simulations, showed us how poor solvent modifies the behavior of polyelectrolytes and gave examples for deviations between theory and simulations for stiff rod polyelectrolytes. The last thematic block treated experimental methods. In depth cover­ age of light, neutron, and X-rays scattering was performed by M. Caffrey, M. Rawiso, and C. Williams. They emphasized new type of experiments like real-time measurements, neutron spin echo, standing X-ray waves, reflectivity, photon correlation spectroscopy, X-ray speckles, and use of X-ray microbeams. A comparison between the main techniques of direct force measurements was presented by P. Kekicheff.These include tech­ niques based on osmotic equilibria, surface force balances, surface force apparatus, atomic force microscope and force measurement techniques on individual freely moving particles (total internal reflection microscopy, etc). The advantages but also the limitations of each technique were underlined and discussed in different systems. In addition new methods applicable to charged systems (colloidal dispersions, polyelectrolytes, DNA assemblies) PREFACE vii were presented (video microscopy, fluorescent microscopy, etc) by D. Grier in conjunction with structural and chemical inhomogeneities, defects and microphases either already present or induced upon confinement or under stress. The chapters in this book do not necessarily follow the courses presented at the school. The authors rather focus on a specific part of the lectures' content, giving adequate background material, trying to provide a reference chapter for further reading. Exactly for this purpose we also added an in­ troductory chapter on the Poisson-Boltzmann description of the cell model, because it lies at the basis of many theoretical advances, and which was not treated in this way in the school. Unfortunately other urgent activities did not allow M. Rawiso to prepare a full version of his contribution in time, but he included a guide to the literature of his lectures. We think that all participants will agree that the Les Houches School provided a unique learning environment for all of us. We had enjoyable mountain trips with the daring experience of how long a return trip through
Recommended publications
  • Localized Enzyme-Assisted Self-Assembly in the Presence of Hyaluronic Acid for Hybrid Supramolecular Hydrogel Coating
    polymers Communication Localized Enzyme-Assisted Self-Assembly in the Presence of Hyaluronic Acid for Hybrid Supramolecular Hydrogel Coating Jennifer Rodon Fores 1 , Alexis Bigo-Simon 1 ,Déborah Wagner 1, Mathilde Payrastre 1, Camille Damestoy 1, Lucille Blandin 1, Fouzia Boulmedais 1, Julien Kelber 1, Marc Schmutz 1 , Morgane Rabineau 2,3, Miryam Criado-Gonzalez 1,2,3,* , Pierre Schaaf 1,2,3,* and Loïc Jierry 1,* 1 Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess, CEDEX 2, BP 84047, 67034 Strasbourg, France; [email protected] (J.R.F.); [email protected] (A.B.-S.); [email protected] (D.W.); [email protected] (M.P.); [email protected] (C.D.); [email protected] (L.B.); [email protected] (F.B.); [email protected] (J.K.); [email protected] (M.S.) 2 Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 rue Eugène Boeckel, CEDEX, 67085 Strasbourg, France; [email protected] 3 Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France * Correspondence: [email protected] (M.C.-G.); [email protected] (P.S.); [email protected] (L.J.); Tel.: +91-25-8-74-97 (M.C.-G.); +33-3-68-85-33-87 (P.S.); +33-3-68-41-41-47(L.J.) Abstract: Hydrogel coating is highly suitable in biomaterial design. It provides biocompatibility and avoids protein adsorption leading to inflammation and rejection of implants. Moreover, hydrogels can be loaded with biologically active compounds. In this field, hyaluronic acid has been largely studied as an additional component since this polysaccharide is naturally present in extracellular matrix.
    [Show full text]
  • Gero Decher, Jean-Claude Voegel La Recherche, No
    An Introduction to Polyelectrolyte Multilayers Layer-by-Layer Adsorption (LbL): An Enabling Technology for the Nano- construction of Multifunctional Films on Solvent Accessible Surfaces. G. Decher / Institut Charles Sadron Institut Charles Sadron 1 Differences between chemistry in bulk and at interfaces Some trivia: • Surface functional groups accessible only from the solution side. ( SN1 might be favored over SN2 ; reactivities different from bulk) • Typical monolayer thicknesses of 0.5 nm to 5 nm. • Typical surface areas of 0.20 nm2 per molecule, 5 1014 molecules per cm2. • At a mass of 400 g/mol, 1 cm2 of a densely packed monolayer corresponds to 0.33 µg of material. • 5g (semi-preparative scale), would cover an area of 1500 m2. • Monomolecular layers of polymer may be thinner and less dense and typically consist of 0.1 to 1.5 mg of material per 1 m2. • Less than 0.02 mg for chemical analysis and physical characterization Advantage: We only need tiny amounts from colleagues doing synthesis Institut Charles Sadron 4 Build-to-Order Assembled Films Build-to-Order (BTO) is the capability to quickly build standard or mass-customized products upon receipt of spontaneous orders without forecasts. Layer-by-Layer assembly allows to design functional surfaces and surface-based nano-devices in a "build-to-order" fashion. It exceeds simple self-organization under equilibrium conditions by making it possible to arrange many different materials at will with nanoscale precision. Institut Charles Sadron 5 The multilayer films that can do everything . Pierre Schaaf, Gero Decher, Jean-Claude Voegel La Recherche, No. 389, SEPT.
    [Show full text]
  • Gelation-Driven Component Selection in the Generation of Constitutional Dynamic Hydrogels Based on Guanine-Quartet Formation
    Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation Nampally Sreenivasachary and Jean-Marie Lehn* Laboratoire de Chimie Supramole´culaire, Institut de Science et d’Inge´nierie Supramole´culaires (ISIS), Universite´Louis Pasteur, 8 Alle´e Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France Contributed by Jean-Marie Lehn, March 1, 2005 The guanosine hydrazide 1 yields a stable supramolecular hydrogel Such processes form the basis of the recently developed dynamic based on the formation of a guanine quartet (G-quartet) in pres- combinatorial chemistry (5, 6), in which molecular recognition ence of metal cations. The effect of various parameters (concen- events have been implemented toward the generation of optimal tration, nature of metal ion, and temperature) on the properties of binding agents toward artificial or biological (7) molecular recep- this gel has been studied. Proton NMR spectroscopy is shown to tors through a target-driven shift in the distribution of the library allow a molecular characterization of the gelation process. Hydra- constituents toward the best binder(s). Changes in library constit- zide 1 and its assemblies can be reversibly decorated by acylhy- uents may also be caused by redistribution of components induced drazone formation with various aldehydes, resulting in formation by metal ion binding (8, 9) or environmental factors such as of highly viscous dynamic hydrogels. When a mixture of aldehydes temperature and pH (N. Giuseppone and J.-M.L., unpublished is used, the dynamic system selects the aldehyde that leads to the data). most stable gel. Mixing hydrazides 1, 9 and aldehydes 6, 8 in 1:1:1:1 The amplification of a given constituent of a CDL under the ratio generated a constitutional dynamic library containing the pressure of a self-organization process, such as the formation of an four acylhydrazone derivatives A, B, C, and D.
    [Show full text]
  • ADVISORY NOTE Strasbourg, France, October 8Th 2009
    ADVISORY NOTE Strasbourg, France, October 8th 2009 Details on SHIP-In R&D project revealed, a world-class project for French Research supported by the Alsace BioValley Cluster The SHIP-In research-and-development project has a single goal: developing new and innovative cellular systems for the biopharmaceutical industry. It received the label of the Alsace BioValley cluster in Alsace, France, in November 2008 and is co-sponsored by France’s Cancer Bio Santé and Medicen research poles. The pharmaceutical industry’s development of new therapeutic molecules requires the development and utilization of experimental cellular models that are both efficient and reliable. For a long time, the only possibility was to use stem cells extracted from human embryos. Apart from the difficulty of ensuring their availability, the use of such cells is also circumscribed by stringent ethical and regulatory constraints, which considerably hamper and slow the discovery of new medicines. Today, a new scientific approach offers an alternative to the use of embryonic stem cells, which is to start with adult human cells and reprogram them as multi-purpose cells. The SHIP-In project consists in optimizing this new technology to cater for the demands of the biopharmaceutical industry. The aim is to provide pharmaceutical and cosmetics companies with an unlimited supply of human cells which meet quality criteria that are not available today. Eventually, SHIP-In should facilitate the discovery of new molecules and generally speed up the therapeutic innovation process. “SHIP-In presents a unique opportunity for participating in the development of scientific advances that have been unanimously hailed at a world level,” declared Nicolas Carboni, the Director of the Alsace BioValley cluster, a partner in the project.
    [Show full text]
  • A Year at the Cnrs
    2017 A YEAR AT THE CNRS in Alsace 2017 A YEAR AT THE CNRS IN ALSACE is a regional addition to the activity report sommaire 6 > 10 11 12 > 13 2017, a year at the CNRS THE LIVING WORLD SOCIÉTÉSSOCIETIES MATIÈREMATTER CNRS délégation Alsace 23 rue du Lœss - BP 20 67037 Strasbourg cedex 03 88 10 63 01 2 > 3 2017 in figures www.alsace.cnrs.fr 3 Editorial Patrice Soullie, Publisher Antoine Petit Regional Delegate Editorial director Patrice Soullie Chief editor Céline Delalex-Bindner Scientific committee Dominique Badariotti Frédéric Leroux 4 > 5 Rémi Barillon Frédéric Masson Highlights Christine Brunel Sylviane Muller Pierre-Alain Duc Jean-Serge Rémy Vincente Fortier Vincent Roucoules 18 > 19 Jean-Luc Galzi Bertrand Séraphin Science without borders Christian Gauthier Coordination, writing and iconography William Rowe-Pirra Layout and realisation Olivier Fély 20 Graphic design Céline Hein List of laboratories > Acknowledgements : , 14 15 Anne Bresson Pascaline Toutois 1614 17 Photo de couverture : Cover page: An artistic interpretation of the SAGA complex emerging from the nucleoplasmic sea while 21 grabbing a chromatin thread. Glossary ENGINEERING AND EARTHTERRE AND ET © Jonathon Broughton THE UNIVERSE Table of contents pictures : © CNRS Photothèque DIGITAL SCIENCES ENVIRONNEMENTENVIRONMENT Download this document online at : www.alsace.cnrs.fr | French version available Legal deposit : september 2018 - ISSN : 2270-4876 ÉCO VALO This pictogram indicates that the CNRS is economically involved. A number of facts published in this report, results of scientific equipment*, came to be thanks to the support of the European Union, the Région Grand Est, the Conseils departmentaux du Bas-Rhin et du Haut-Rhin, the Eurométropole de Strasbourg and the Mulhouse Alsace Agglomeration, Somes words are defined as well as numerous nonprofit partners.
    [Show full text]
  • Multiple and Time-Scheduled in Situ DNA Delivery Mediated by ß
    Multiple and time-scheduled in situ DNA delivery mediated by ␤-cyclodextrin embedded in a polyelectrolyte multilayer N. Jessel*†, M. Oulad-Abdelghani‡, F. Meyer*, P. Lavalle*, Y. Haıˆkel*, P. Schaaf§, and J.-C. Voegel* *Institut National de la Sante´et de la Recherche Me´dicale (INSERM), Unite´595, Faculte´deMe´ decine, 11 Rue Humann, 67085 Strasbourg Cedex, France and Faculte´de Chirurgie Dentaire de l’Universite´Louis Pasteur (ULP), 67000 Strasbourg Cedex, France; ‡Institut de Ge´ne´ tique et de Biologie Mole´culaire et Cellulaire (IGBMC), Institut Clinique de la Souris (ICS), Centre National de la Recherche Scientifique (CNRS)͞INSERM͞ULP, Colle`ge de France, BP10142, 67404 Strasbourg, France; and §Institut Charles Sadron (CNRS͞ULP), 6 Rue Boussingault, 67083 Strasbourg Cedex, France Edited by Pierre Chambon, Institut de Ge´ne´ tique et de Biologie Mole´culaire et Cellulaire, Strasbourg, France, and approved March 17, 2006 (received for review September 21, 2005) The basic premise of gene therapy is that genes can be used to iting specific properties in terms of control of cell activation produce in situ therapeutic proteins. The controlled delivery of (8–11) and may also play a role in the development of local drug DNA complexes from biomaterials offers the potential to enhance delivery systems (12). Peptides and proteins, chemically bound, gene transfer by maintaining an elevated concentration of DNA adsorbed, or embedded in LBL films, have been shown to retain within the cellular microenvironment. Immobilization of the DNA their biological activities (14–16). Cyclodextrins (CDs) consti- to the substrate to which cells adhere maintains the DNA in the cell tute a group of cyclic oligosaccharides that have been shown to microenvironment for subsequent cellular internalization.
    [Show full text]
  • Southern Brazilian Journal of Chemistry
    1 /-, C'J l~N(/'(J SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY ISSN 0104-5431 \ "- I '\i rt· R '\i \ f IO~ A I. FOR l \ 1 I- 0 R ll H R :\ P II) PI IH I< \ fl O ~ OJ- ORl(,I'\ \I SCIF"ITIFI( \Rl l(LFS DFALI'\(, \\ ITII CIU '\.ll~d R\ \ '°' D R I· L \ ff D I ~ I t RD IS ( I PI I r\i A R \ -\ R f. \ S ~l '.\1BER :\lNFlEF'\ I) f, ( • \ 1HE R 2 0 1 I EDITOR LA VINEL G. IONESCU, SCIENCO, Consultoria Cientifka, Viamao, RS, BRA.SIL ASSISTANT EDITOR LUIS ALCIDES BRANDINI DE BONI, Tchequimica LTDA, Porto Alegre, RS. Brasil. EDITORIAL BOARD F ARUK NOME AGUILERA, Departamento de Quimica, Universidade FederaJ de Santa Catarina, Florian6polis, SC, Brasil D. BALASlJBRAMANIAN, Centre for Cellular and Molecular Biology, Hyderabad, INDIA HECTOR E. BERTORELLO, Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, ARGENTINA AECIO P. CHAGAS, Instituto de Quimica, UNICAMP, Campinas, SP, BRASIL JUAN JOSE COSA, Departamento de Quimica y Fisica, Facultad de Ciencias Exactas. Universidad Nacional de Rio Cuarto, Rio Cuarto, ARGENTINA GLENN A. CROSBY, Department of Chemistry, Washington State University, Pullman, WA, USA VITTORIO DEGIORGIO, Dipartimento di Elettronica, Sezione di Fisica Applicata, Universita di Pavia, Pavia IT ALIA JOSE C. TEIXEIRA DIAS, Departamento de Quimica, Universidade de Coimbra, Coimbra, PORTUGAL OMAR A. EL SEOUD, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, SP, BRASIL FERNANDO GALEMBECK, Instituto de Quimica, UNICAMP, Campinas, SP, BRASIL NISSIM GARTI, Casali Institute of Applied Science, Hebrew University of Jerusalem, Jerusalem, ISRAEL GASPAR GONZALEZ, Centro de Pesquisa, CENPES-PETROBRAS, Ilha do Fundao, Rio de Janeiro, RJ , BRASIL YOSHITAKA GUSHIKEM, Instituto de Quimica, UNICAMP, Campinas, SP, BRASIL WILLIAM HASE, Department of Chemistry, Texas Tech University, Lubbock, Texas, USA I.
    [Show full text]
  • J.Chem.Tenn, Fall 2006
    j.chem.tenn FALL 2006 www.chem.utk.edu The Newsletter of the Department of Chemistry THE UNIVERSITY of TENNESSEE A Renewed Vision Greetings, It has been some time since you have seen the J. Chem. Tenn. and for that I apologize. The Department has under- gone many changes since the last publication of J. Chem. Tenn. and I, in the spirit of renewal, would like to take the time to reconnect with all of you. I have begun another term as Department Head with a new vision strengthened by our faculty, staff, and students. Most of you may be pon- dering the question; “How is the Department doing these Professor Craig Barnes days?” Pretty well in fact but always striving to do better. Head of the Department of Chemistry The success of a research active department like ours de- pends on a number of factors: the quality of its faculty, its students, graduate and undergraduate alike, and its support more and better ways every day. These are the major rea- staff. We have been able to replace all faculty who have sons why the Department hired a full-time staff member, retired in the last five years. This is a good sign since this Mr. Josh Streufert to bring to life a major new recruiting has not always been the case in the past. While renewing effort that has begun in the department. More discussion on and maintaining our faculty is a strong show of confidence recruiting and outreach will be found inside. by the university administration in the Department we an- All of the things described represent a few of the chal- ticipate that faculty retirements will continue at this pace for lenges we have faced over the past couple of years.
    [Show full text]
  • Drug Delivery
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 9590-9592, October 1995 Biophysics Drug delivery: Piercing vesicles by their adsorption onto a porous medium MARIE-ALICE GUEDEAU-BOUDEVILLE*, LUDOVIC JULLIENt, AND JEAN-MARC DI MEGLIOt Laboratoire de Physique de la Matiere Condensee, Unite de Recherche Associee 792 du Centre National de la Recherche Scientifique, College de France, 11 place Marcelin Berthelot, 75231, Paris Cedex 05, France Communicated by Pierre-Gilles de Gennes, Collge de France, Paris, France, June 26, 1995 ABSTRACT Experimental evidence is presented that sup- ports the possibility of building a "molecular drill." By the Vesicle adsorption of a vesicle onto a porous substrate (specifically, a lycopode grain), it was possible to increase the permeability of the vesicle by locally stretching its membrane. Molecules contained within the vesicle, which could not cross the mem- brane, were delivered to the porous substrate upon adsorp- tion. This general process could provide another method for drug delivery and targeting. Pore ubstrate Much effort has been devoted to developing additional ways to FIG. 1. Basic principle of the molecular drill. The bilayer of the deliver and target drugs. The general application of any vesicle strongly adsorbs on the porous substrate, and, as a conse- method is, however, especially difficult because drugs differ quence, the central part of the membrane inside the pore is placed widely in their sizes and functions. All of the following under tension and becomes permeable. constricting conditions must be met: (i) penetration of the drug inside the body; (ii) preservation of the drug and its activity; (0.126 ,tM L-a-phosphatidylcholine/0.036 ,uM dicetyl phos- (iii) transport of the drug to a specific site; and (iv) delivery of phate/0.018 ,tM cholesterol; all chemicals were from Sigma) the drug at this site.
    [Show full text]
  • Post-Doctoral Fellowship (18 Months) at IPCMS, Strasbourg (Starting St November 1 , 2016)
    Post-doctoral fellowship (18 months) at IPCMS, Strasbourg (Starting st November 1 , 2016) Biodendrimers for cancer early diagnosis imaging and assessment of inflammation processes post-implantation of smart implants Framework INTERREG project “NANOTRANSMED: Innovations in Nanomedicine, from diagnosis to implants” Principal investigator Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS UMR CNRS Unistra 7504 Partners Institut Charles Sadron, Strasbourg; INSERM UMR 1121 Biomatériaux et Bioingénierie, Strasbourg; Universitätsklinikum Freiburg, Germany; Universitätsmedizin Mainz, Germany; Universitätspital Basel, Switzerland; IS2M, Mulhouse; Heidelberg Universität, Germany; E-MRS, Strasbourg; Alsace Biovalley, Strasbourg; EUCOR, Le Campus Européen; Institut Carnot MICA. Starting date November 1st, 2016 Project abstract Nanoscience and Nanotechnologies applications to biomedical and clinical purposes raise strong expectations, in particular in three specific medical domains which are early diagnosis, targeted drug delivery and regenerative surgery. Such medical advances require a strong multidisciplinary research on technological innovations in micro- and nano-technologies, nano-biosystems nanomaterials and bioengineering. Using a so-called "multifunctional and cooperative" approach based on the chemistry of dendritic macromolecules, we want to meet the challenges posed by the early diagnosis of disease and the monitoring of post-implantation inflammation processes, in any case, for improving patient’s care. Indeed, this multifunctional approach will confer to a unique Nanomedicine tool, increased in vivo stability, reduced toxicity, specific targeting ability and anti- bacterial properties. These new circulating dendritic probes will directly be used by Basel and Freiburg Hospitals conducting pre-clinical studies. In parallel, innovative dendritic coatings will be useful in many dental, orthopedic or vascular (heart valves, pacemakers and cardiac defibrillators) implants and developed in collaboration with INSERM UMR 1121.
    [Show full text]
  • Oral Programme
    Hybrid Materials 2011| Oral Programme Sunday 6 March 2011 11:00 Registration 14:00 Welcome by the Conference Chairs Erasme Auditorium 14:15 Plenary Lecture 1 – Dynamic materials towards functional adaptive materials J.-M. Lehn, Nobel Laureate, ISIS, Université de Strasbourg and Collège de France, France Erasme Auditorium Symposium A Schuman Room Symposium B Erasme Auditorium Symposium C Tivoli Room Session Chair: M. Vallet-Regí Session Chair: A. Mueller Session Chair: C.J. Brinker 15:00 A01 – Nanocrystalline apatites as models of bone 15:00 Featured Lecture BF1 – Inorganic-organic hybrids - 15:00 C01 – Chloromethylation – a new versatile route for post- mineral: study of bisphosphonates adsorption and ORMOCER®s – multifunctional materials for cost reduction and synthetic functionalization of metal organic frameworks response of osteoblast cells better performance of processing M. Popall, Fraunhofer-Institut (MOFs) M.G. Goesten*, E.V. Ramos-Fernandez, J. Gascon, P. Pascaud*1, R. Bareille2, S. Schlaubitz2, J. Amédée2, C. für Silicatforschung, Germany F. Kapteijn, TU Delft, The Netherlands Rey1, S. Sarda1, 1Université de Toulouse, CIRIMAT, Equipe « Phosphates, Pharmacotechnie et Biomatériaux », Toulouse, France, 2INSERM, Unité 577, « Biomatériaux et Réparation tissulaire », Université Victor Segalen Bordeaux 2, France 15:20 A02 – Towards an understanding of peptide-mineral 15:30 B01 – Luminescent nanothermometers for long-term absolute 15:20 C02 – Induced shape selectivity through breathing 1 1 interactions: a predictive approach temperature measurements C.D.S Brites , P.P. Lima , N.J.O. modulation: complexity behind CO2 capture on NH2-MIL- M.J.L. Limo*, C.C.P. Perry, Nottingham Trent University, Silva1, A. Milan1,2, F. Palacio1,2, L.D.
    [Show full text]
  • Institut Charles Sadron Supervisors : Thierry Charitat and Pierre
    STUDY OF PHOSPHOLIPID LAYERS USING FRAPP SETUP Institut Charles Sadron Supervisors : Thierry Charitat and Pierre Muller In collaboration with Julien Lamolinairie (M2 student) HELSTROFFER SWEN- FESSLER FLORENT M1 Physics - May 2020 N O INTRODUCTION : Lipid bilayers in biology I T C U D O R T N I Source : https://www.ck12.org/ Source : Wikipedia Fundamental constituents Interest for physicists to study their mechanical, of biological membranes. rheological and tribological properties. 2 N O INTRODUCTION : Long term stakes of the project I T C U D O R T Understand the tribological and rheological N I properties of phospholipid multilayers PHOSPHOLIPID MULTILAYERS We focused on the velocimetry and diffusion parts of the NanoTribo-FRAPP experimental setup in ICS. 3 S E MATERIALS AND METHODS : I T I L Generalities A R E N E G Hydrophilic head Hydrophobic tail Example : the DSPC molecule : Source : Wikipedia Amphiphilic characteristics lead to special conformations when placed in an aqueous medium. (1,2-distearoyl-sn-glycero-3phosphocholine) 4 N MATERIALS AND METHODS : Sample preparation O I T I S O The deposition of a molecularly thin film on a solid substrate. P E Depending on the number of dippings, one obtains a succession of layers. D T T E G Dipper Wilhelmy plate Teflon tank D Movable barrier O L B - R I U M G N A L Phospholipids Pure water 5 N MATERIALS AND METHODS : Trilayer preparation O I T I S O P E D T 1 2 3 4 T E G D Position of the dipper as a function of area Control of the surface pressure O L B - T I U M 4 G 3 2 N A L 1 Source : L.
    [Show full text]