Mercury Bioaccumulation Tag Lesson Plan

Total Page:16

File Type:pdf, Size:1020Kb

Mercury Bioaccumulation Tag Lesson Plan Mercury Bioaccumulation Tag Grade Level Summary present in coal and when coal is 5-8 Students will learn about the health burned, it is released into the air. This is the largest anthropogenic source of Subject Areas effects of mercury. Students will model Science the processes of bioaccumulation and mercury in the environment in the Health biomagnification in a food chain. United States. Other anthropogenic sources of mercury include Duration Objectives: manufacturing and industrial 15 min for introduction processes. Natural releases of 15 min for activity Students will: 15 min for wrap-up Understand how mercury mercury include volcanoes. accumulates in an organism and Setting magnifies in a food chain. Mercury released into the air Discussion: Classroom eventually settles in water or onto Activity: Outdoors Describe the health effects of mercury. land, where it can be washed into water. Once deposited, certain Skills Gathering data Materials: organisms transform it into methylmercury, a highly toxic form that Interpreting data Rope or cones to mark boundaries Applying data builds up in fish and shellfish. See Colored paper tokens (at least 4 Figure 1 for a representation of this colors), cut into 2x2 inch size Vocabulary process. Mercury Cups of 4 varying sizes Food chain Pen/paper Bioaccumulation Methylmercury is a neurotoxin, Biomagnification meaning it affects the brain. The National Science Content group most at risk for adverse health Related Websites Standards: effects from methylmercury are www.epa.gov/mercury Unifying Concepts and Processes developing fetuses, infants, and www.epa.gov/children -Systems, order, and organization children. Methylmercury impairs -Evidence, models, and explanation neurological development and impacts -Change, constancy, & cognitive thinking ability, memory, measurement attention, language, fine motor skills, Life Science and visual spatial skills. -Structure and function in living Methylmercury can have similar systems impacts on adults, slowing -Populations and ecosystems neurological processes. Science in Personal and Social Perspectives Methylmercury is taken up by tiny -Personal health aquatic plants (plankton) and animals -Populations, resources, and (zooplankton). These organisms are environments eaten by larger organisms, such as -Risks and benefits fish, and the concentration of methylmercury increases at each level Background: of the food chain. For example, a Mercury is a naturally occurring element large fish will have a higher (Hg) found in the Earth’s crust. concentration of methylmercury than a Common uses of mercury have fish lower on the food chain. Top-level included thermometers and compact consumers have higher fluorescent light bulbs. Mercury is also concentrations than low-level consumers and producers. For an 1 Figure 1: How Mercury Enters the Environment (US. EPA) representation of this concept, see Figure 2. The Activity process of taking in the contaminant, such as 1. Tell students they are going to model how methylmercury and storing in the body is called methylmercury accumulates and magnifies bioaccumulation. As the concentrations increase in an aquatic food chain. with each level in the food chain, this process is 2. Mark off the boundary areas. Use an area called biomagnification. Bioaccumulation occurs large enough for students to move quickly. within the organism, while biomagnification occurs Distribute colored tokens around the entire within the food chain. Factors such as water pH, area. mercury concentration in the water, water 3. Give each student a cup and tell them what temperature, and biodiversity all affect whether and each size represents. Smallest cups to what extent bioaccumulation occurs. represent plankton, the next size up represents small fish, the next size up Procedure: represents large fish, and the largest cup Warm-Up: represents eagles. See Table 1 for how Discuss with students what mercury is, where it is large each group should be for a class size found, sources of, how it enters the environment, of 30 and adjust accordingly. (Note: When and what its health effects are. If needed, review or adjusting for your class size, make sure discuss what a food chain is. Show and discuss that the population of each level decreases various land and aquatic food chains. Introduce the as you go up the food chain. There should concepts of bioaccumulation and biomagnification. be more plankton than small fish, more small fish than big fish, and more big fish Figure 2: Mercury becomes more concentrated up the food chain (U.S. EPA) 2 Table 1: Suggested Distribution of Organisms for tag large fish. Upon being tagged, the large fish must transfer the contents of his/ a Class Size of 30 her cup to the bird of prey. Continue until Organism Number of Students there are no large fish left. (NOTE: A bird Zooplankton 14 of prey may only tag one large fish at a Small fish 9 time). 11. After all the large fish have been eaten, ask Large fish 5 the birds of prey to tally their tokens, noting Bird of Prey 2 how many of each color. TOTAL 30 12. Bring the students back to their seats. Ask them how the game went. Did it accurately than birds of prey). model a food chain? Why or why not? 4. Inform students that the bounded area is a body 13. Tell them that the red tokens were not food: of water. The tokens in the area represent food. this was methylmercury that had entered On your mark, the plankton (the smallest cups) the environment. Ask students to review will go and feed. Plankton feed by picking up over their tallies from the game. On the tokens and placing them inside their cups. board, list all the plankton and how many 5. After all the plankton have fed, ask them to red tokens each had, followed by small fish, quickly tally their tokens, noting how many of large fish, and birds of prey. each color, and replacing the tokens in their 14. Ask students to compare the tallies. Which cups. organism had the highest levels of 6. On your next mark, the small fish will feed on the methylmercury? Why? (Answer: The birds plankton. Plankton will need to gather inside the of prey have the highest levels of bounded area. Small fish start on the outside of methylmercury. This is because as you the area. On your mark, small fish will go up to move up the food chain, the same amount the plankton and tag them. Once a plankton is of methylmercury is transferred to a tagged by a small fish, he/she must transfer the decreasing population, thus increasing the contents of the his/her cup to the small fish cup concentration in each organism.) and exit the area. This represents that the plankton has been eaten by the small fish. Wrap Up (NOTE: A small fish may only tag one plankton Discuss the activity with the following at a time). Continue until there are no plankton questions: left. 1. Where did the methylmercury come from? 7. After there are no plankton left, ask the small The methylmercury was in the aquatic fish to quickly tally their tokens, noting how many environment. It was mixed in with the food of each color and replacing the tokens in their source. Plankton take in the cups. methylmercury with their food and when 8. Small fish gather inside the bounded area. they are eaten, the methylmercury is stored Large fish gather on the outside. On your mark, in the next organism. large fish will feed on small fish. A large fish 2. What assumptions did this activity make? tags a small fish and the small fish must transfer This activity assumes that all organisms in his/her tokens to the large fish and exit the area. an ecosystem gets eaten. In an aquatic (NOTE: A large fish may only tag one small fish ecosystem, not all organisms would be at a time). exposed to methylmercury. As students 9. After all the small fish are eaten, ask the large may already know, ecosystems are made fish to tally their tokens, noting how many of up of complex food webs. Methylmercury each color. may not be present on all food chains in the 10. On the final round, the large fish gather in the food web. It also assumes that the bounded area and the birds of prey gather on conditions of the ecosystem are ideal for the outside. On your mark, the birds of prey will methylmercury to form and to be taken up 3 with food (i.e.: the pH, temperature are right). Extensions: Furthermore, this only represents a food chain. 1. Assign students contaminants to research 3. What other top level consumers could we that have the potential to bioaccumulate in substitute for the birds of prey? Top level an ecosystem. Examples include DDT and consumers in this ecosystem include: humans, other pesticides, heavy metals, and natural bears, etc. It is important to note that humans toxins. What are the health effects of those do eat high on the food chain and thus are at contaminants? How are they similar or risk for any health effects. different to do the health effects of 4. What health effects would the birds of prey mercury? have? What health effects might we see in 2. Ask students to research fish advisories in humans if they ate the large fish? If the birds of their area. What type(s) of fish are prey were exposed to a high concentration of generally safe to eat? What type(s) of fish mercury, they could experience death or severe should you limit consumption? neurological impacts. Methylmercury can cause diminished reproductive success, and can be EPA Resources and Related Links: detected in eggs laid by birds with high Mercury. http://www.epa.gov/mercury/ concentrations of methylmercury in their systems.
Recommended publications
  • Trophic Transfer of Mercury in a Subtropical Coral Reef Food Web
    Trophic Transfer of Mercury in a Subtropical Coral Reef Food Web _______________________________________________________________________ A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfillment Of the Requirement for the Degree of Master of Science ________________________________________________________________________ By Christopher Tyler Lienhardt 2015 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science ____________________________ Christopher Tyler Lienhardt Approved: July 2015 ____________________________ Darren G. Rumbold, Ph.D. Committee Chair / Advisor ____________________________ Michael L. Parsons, Ph.D. ____________________________ Ai Ning Loh, Ph. D. The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. i Acknowledgments This research would not have been possible without the support and encouragement of numerous friends and family. First and foremost I would like to thank my major advisor, Dr. Darren Rumbold, for giving me the opportunity to play a part in some of the great research he is conducting, and add another piece to the puzzle that is mercury biomagnification research. The knowledge, wisdom and skills imparted unto me over the past three years, I cannot thank him enough for. I would also like to thank Dr. Michael Parsons for giving me a shot to be a part of the field team and assist in the conducting of our research. I also owe him thanks for his guidance and the nature of his graduate courses, which helped prepare me to take on such a task.
    [Show full text]
  • Biomagnification of Methylmercury in a Marine Plankton Ecosystem
    EGU2020-1695, updated on 01 Oct 2021 https://doi.org/10.5194/egusphere-egu2020-1695 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Biomagnification of methylmercury in a marine plankton ecosystem Peipei Wu1, Emily Zakem2,3, Stephanie Dutkiewicz2, and Yanxu Zhang1 1School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China ([email protected]) 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, USA 3Department of Biological Sciences, University of Southern California, Los Angeles,USA Methylmercury is greatly bioconcentrated and biomagnified in marine plankton ecosystems, and these communities form the basis of marine food webs. Therefore, evaluating the potential exposure of methylmercury to higher trophic levels, including humans, requires a better understanding of its distribution in the ocean and the factors that control its biomagnification. In this study, a coupled physical/ecological model was used to simulate the trophic transfer of monomethylmercury (MMHg) in a marine plankton ecosystem. The model includes phytoplankton, a microbial community, herbivorous zooplankton (HZ), and carnivorous zooplankton (CZ). The model captured both shorter food chains in oligotrophic regions, with small HZ feeding on small phytoplankton, and longer chains in higher nutrient conditions, with larger HZ feeding on larger phytoplankton and larger CZ feeding on larger HZ. In the model, trophic dilution occurred in the food webs that involved small zooplankton, as the grazing fluxes of small zooplankton were insufficient to accumulate more MMHg in themselves than in their prey. The model suggested that biomagnification was more prominent in large zooplankton and that the microbial community played an important role in the trophic transfer of MMHg.
    [Show full text]
  • Ecology (Pyramids, Biomagnification, & Succession
    ENERGY PYRAMIDS & Freshmen Biology FOOD CHAINS/FOOD WEBS May 4 – May 8 Lecture ENERGY FLOW •Energy → powers life’s processes •Energy = ATP! •Flow of energy determines the system’s ability to sustain life FEEDING RELATIONSHIPS • Energy flows through an ecosystem in one direction • Sun → autotrophs (producers) → heterotrophs (consumers) FOOD CHAIN VS. FOOD WEB FOOD CHAINS • Energy stored by producers → passed through an ecosystem by a food chain • Food chain = series of steps in which organisms transfer energy by eating and being eaten FOOD WEBS •Feeding relationships are more complex than can be shown in a food chain •Food Web = network of complex interactions •Food webs link all the food chains in an ecosystem together ECOLOGICAL PYRAMIDS • Used to show the relationships in Ecosystems • There are different types: • Energy Pyramid • Biomass Pyramid • Pyramid of numbers ENERGY PYRAMID • Only part of the energy that is stored in one trophic level can be passed on to the next level • Much of the energy that is consumed is used for the basic functions of life (breathing, moving, reproducing) • Only 10% is used to produce more biomass (10 % moves on) • This is what can be obtained from the next trophic level • All of the other energy is lost 10% RULE • Only 10% of energy (from organisms) at one trophic level → the next level • EX: only 10% of energy/calories from grasses is available to cows • WHY? • Energy used for bodily processes (growth/development and repair) • Energy given off as heat • Energy used for daily functioning/movement • Only 10% of energy you take in should be going to your actual biomass/weight which another organism could eat BIOMASS PYRAMID • Total amount of living tissue within a given trophic level = biomass • Represents the amount of potential food available for each trophic level in an ecosystem PYRAMID OF NUMBERS •Based on the number of individuals at each trophic level.
    [Show full text]
  • Toxic Chemical Contaminants
    4 NaturalNatural RegionsRegions ofof thethe GulfGulf ofof MaineMaine TOXIC CHEMICAL CONTAMINANTS STATE OF THE GULF OF MAINE REPORT Gulf of Maine Census Marine Life May 2013 TOXIC CHEMICAL CONTAMINANTS STATE OF THE GULF OF MAINE REPORT TABLE OF CONTENTS 1. Issue in Brief ................................................................................................... 1 2. Driving Forces and Pressures .......................................................................4 2.1 Human .................................................................................................4 2.2 Natural .................................................................................................6 3. Status and Trends ..........................................................................................7 4. Impacts ........................................................................................................ 15 4.1 Biodiversity and Ecosystem Impacts ................................................ 15 4.2 Human Health ....................................................................................17 4.3 Economic Impacts ............................................................................. 18 5. Actions and Responses ............................................................................... 19 5.1 Legislation and Policy........................................................................ 19 5.2 Contaminant Monitoring ...................................................................20 6. Indicator Summary ......................................................................................23
    [Show full text]
  • Higher and More Variable Methylmercury Biomagnification
    Ecotoxicology and Environmental Safety 92 (2013) 191–198 Contents lists available at SciVerse ScienceDirect Ecotoxicology and Environmental Safety journal homepage: www.elsevier.com/locate/ecoenv Higher and more variable methylmercury biomagnification factors for floodplain than the contiguous river (South River, Virginia USA) Jincheng Wang a, Michael C. Newman a,n, Xiaoyu Xu a, Lian Liang b a Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Rt. 1208 Greate Road, Gloucester Point, VA 23062, USA b Cebam Analytical, Inc., 18804 North Creek Parkway, Suite 110, Bothell, WA 98011, USA article info abstract Article history: Extending previous trophic transfer studies of the mercury-contaminated South River watershed, Received 13 February 2012 predictive models were built for mercury biomagnification in floodplain food webs at two more Received in revised form locations (North Park and Grand Cavern). Four of five models built to date based on methylmercury and 25 April 2012 d15N met the a priori requirement for useful prediction (prediction r2E0.80). An additional factor Accepted 29 April 2012 included in models was organism thermoregulatory strategy (poikilothermy or homeothermy). The Available online 21 March 2013 methylmercury food web biomagnification factors (FWMFs, fold increase per trophic level) for the Keywords: North Park and Grand Cavern locations were 17.4 (95% CI of 9.5–31.6) and 6.2 (95% CI of 3.5–11.0) Mercury respectively. FWMF calculated in 2009 were 9.3 (95% CI of 5.4–16.2) for the Augusta Forestry Center Biomagnification and 25.1 (95% CI of 12.6–50.1) for Grottoes Town Park.
    [Show full text]
  • Development of Bioaccumulation Factors for Protection of Fish and Wildlife in the Great Lakes
    National Sediment Bioaccumulation Conference Development of Bioaccumulation Factors for Protection of Fish and Wildlife in the Great Lakes Philip M. Cook and Dr. Lawrence P. Burkhard U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota ioaccumulation factor (BAF) development for ap­ factors that must be considered when predicting bioaccu­ plication to the Great Lakes, and in particular for mulation from measured or predicted concentrations of the recent Great Lakes Water Quality Initiative chemicals in the water and sediments of the ecosystem. (GLWQI) effort of U.S. EPA and the respective Great Lakes The bioavailability considerations that remain, after in­ states, illustrates the importance of the linkage between corporating the influence of organism lipid, organic car­ sediments and the water column and its influence on bon in water and sediments, and trophic level into BAFfds B f exposure of all aquatic biota. This presentation included and BSAFs to reduce uncertainty for site-specific a discussion of the development and application of bioavailability conditions, are shown on the z-axis. Ba­ bioaccumulation factors for fish, both water-based BAFs sically, this residual bioavailability factor is the chemical and biota-sediment accumulation factors (BSAFs), with distribution between water and sediment which can vary emphasis on the role of sediments in bioaccumulation of between ecosystems or vary temporally and spatially persistent, hydrophobic non-polar organic chemicals by within an ecosystem. Chemical properties which influ­ both benthic and pelagic organisms. Choices of bioaccu­ ence bioaccumulation are shown on the x-axis. The mulation factors are important because they will strongly octanol-water partition coefficient (Kow) is the primary influence predictions of toxic effects in aquatic organ­ indicator of chemical hydrophobicity and bioaccumula­ isms, especially when chemical residue-based dose-re­ tion potential.
    [Show full text]
  • Lakes: Ann, Gilchrist, Grove, Leven, Reno, Villard, Smith)
    Status and Trend Monitoring Summary for Selected Pope and Douglas County, Minnesota Lakes 2000 (Lakes: Ann, Gilchrist, Grove, Leven, Reno, Villard, Smith) Minnesota Pollution Control Agency Environmental Outcomes Division Environmental Monitoring and Analysis Section Andrea Plevan and Steve Heiskary September 2001 Printed on recycled paper containing at least 10 percent fibers from paper recycled by consumers. This material may be made available in other formats, including Braille, large format and audiotape. MPCA Status and Trend Monitoring Summary for 2000 Pope County Lakes Part 1: Purpose of study and background information on MN lakes The Minnesota Pollution Control Agency’s (MPCA) core lake-monitoring programs include the Citizen Lake Monitoring Program (CLMP), the Lake Assessment Program (LAP), and the Clean Water Partnership (CWP) Program. In addition to these programs, the MPCA annually monitors numerous lakes to provide baseline water quality data, provide data for potential LAP and CWP lakes, characterize lake conditions in different regions of the state, examine year-to-year variability in ecoregion reference lakes, and provide additional trophic status data for lakes exhibiting trends in Secchi transparency. In the latter case, we attempt to determine if the trends in Secchi transparency are “real,” i.e., if supporting trophic status data substantiate whether a change in trophic status has occurred. The lake sampling efforts also provide a means to respond to citizen concerns about protecting or improving the lake in cases where no data exists to evaluate the quality of the lake. For efficient sampling, we tend to select geographic clusters of lakes (e.g., focus on a specific county) whenever possible.
    [Show full text]
  • Distribution, Occupancy, and Mercury Load in Texas Alligator Snapping
    Distribution, occupancy, and mercury bioaccumulation of alligator snapping turtles in Texas David Rosenbaum1, Christopher M. Schalk1, Daniel Saenz2 1Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX; email: rosenbaudc@jac ks.sfasu.edu 2U.S. Forest Service, Southern Research Station, Nacogdoches, TX Introduction Methods Distribution Increasing anthropogenic habitat alteration and fragmentation in TX During spring and summer 2020-2021, we will Fig. 3: Distribution of M. are expected to further negatively impact freshwater systems. temminckii in TX. Points survey M. temminckii at sites in major river drainages indicate survey sites in of Texas that the species has been reported from the original survey that Animal species in these systems that have low dispersal capabilities, (Fig. 3). At each site,15 fish-baited traps will be set will be resampled from. are long-lived, and are dependent on the adult cohort for population Green-colored counties for 3 consecutive days, for a total of 45 trap nights indicate detection from stability, are vulnerable to anthropogenic factors including habitat per site (sensu Rudolph et al. 2002). 1999-2001, in the original alteration, accumulation of contaminants, and overexploitation. survey, while white Traps will be selectively placed in microhabitats • sizecounties indicate no The alligator snapping turtle (Macrochelys temminckii) exhibits these detection. Blue counties predicted to be favored by M. temminckii (see lower • ageare++ additional potential traits and is in decline throughout its range. Although not federally right quadrant of Fig. 2). survey sites for 2020- protected, it is legally protected as an S2 (imperiled) SGCN in Texas. 2021. Its last statewide distribution study occurred from 1999-2002.
    [Show full text]
  • Bioaccumulation
    BIOACCUMULATION Teacher’s Instructions: - recall food webs and food chains by asking students randomly if they can explain the concepts behind them - i.e. food chain is a path of how energy moves through organisms and a food web is many food chains hooked together - look at the food chain from Lake Winnipeg or create one that could exist in Lake Winnipeg - examples: emerald zooplankton walleye shiner emerald rainbow zooplankton walleye shiner smelt - discuss bioaccumulation by reading the Background information and use the food chain above as an example of showing how contaminants move and collect in a food chain - do the following activity Activity: - time: 30-45 minutes - materials: - each student needs: - 40 coloured tokens (such as marbles, centicubes, beads, etc.), 4 of which must be red or tagged red, the rest can be any color other than red; - 1 small paper cup; - you will need - 1 hula hoop for every 4 students; - 1 armband or headband for every 5 students (for predators) - 1 larger paper or plastic cup (about twice the size of the small cup) for every 5 students (for predators) 1 of 8 BIOACCUMULATION - procedure: - select (or have the students select) one predator and prey relationship from the food chain created above (the prey should consume something small such as minnows or zooplankton as token will represent the prey’s food) -divide the class into predators and prey (there should be about 4 times more prey than predators) - select a playing area to be a “lake”, the area should have a boundary (a gym floor works well and
    [Show full text]
  • The Influence of Ecological Processes on the Accumulation of Persistent Organochlorines in Aquatic Ecosystems
    master The influence of ecological processes on the accumulation of persistent organochlorines in aquatic ecosystems Olof Berglund DISTRIBUTION OF THIS DOCUMENT IS IKLOTED FORBGN SALES PROHIBITED eX - Department of Ecology Chemical Ecology and Ecotoxicology Lund University, Sweden Lund 1999 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. The influence of ecologicalprocesses on the accumulation of persistent organochlorinesin aquatic ecosystems Olof Berglund Akademisk avhandling, som for avlaggande av filosofie doktorsexamen vid matematisk-naturvetenskapliga fakulteten vid Lunds Universitet, kommer att offentligen forsvaras i Bla Hallen, Ekologihuset, Solvegatan 37, Lund, fredagen den 17 September 1999 kl. 10. Fakultetens opponent: Prof. Derek C. G. Muir, National Water Research Institute, Environment Canada, Burlington, Canada. Avhandlingen kommer att forsvaras pa engelska. Organization Document name LUND UNIVERSITY DOCTORAL DISSERTATION Department of Ecology Dateofi=" Sept 1,1999 Chemical Ecology and Ecotoxicology S-223 62 Lund CODEN: SE-LUNBDS/NBKE-99/1016+144pp Sweden Authors) Sponsoring organization Olof Berglund Title and subtitle The influence of ecological processes on the accumulation of persistent organochlorines in aquatic ecosystems Abstract Several ecological processes influences the fate, transport, and accumulation of persistent organochlorines (OCs) in aquatic ecosystems. In this thesis, I have focused on two processes, namely (i) the food chain bioaccumulation of OCs, and (ii) the trophic status of the aquatic system. To test the biomagnification theory, I investigated PCB concentrations in planktonic food chains in lakes. The concentra­ tions of PCB on a lipid basis did not increase with increasing trophic level. Hence, I could give no support to the theory of bio­ magnification.
    [Show full text]
  • AP Environmental Curriculum
    BEXLEY CITY SCHOOLS AP ENVIRONMENTAL SCIENCE |Curriculum Map and Pacing Guide COURSE DESCRIPTION: Course SCI371 This course is equivalent to lab-based college introductory course in environmental science. Laboratory 1 year, 1 credit work occur in and outside the classroom. Students learn scientific principles, concepts and Grades 11-12 methodologies required to understand the interrelationships of the natural world and required to Prerequisite: Completion of identify and analyze environmental problems (natural and man-made), to evaluate the relative risk Chemistry, Biology and Algebra II; associated with these problems, and required to examine alternative solutions for resolving or teacher recommendation based preventing problems. on grade B or better in Chemistry QUARTER 1 Topic: Water Resources; Water Pollution; Soil; Geology and Nonrenewable Mineral Resources Key Terms: Water Resources: Aral Sea, Dam, drought, aquifers, California Water Project, Desalination, distillation, drainage basin, flood irrigation, floodplain, gray water, groundwater, hydrologic cycle, hydrological poverty, land subsidence, lateral recharge, natural recharge, Reservoir, non-consumptive use, Ogallala aquifer, reliable surface runoff, reverse osmosis, sinkholes, surface runoff, surface water, Three Gorges Dam, user-pays approach, water table, watershed, xeriscaping, zone of saturation; Water Pollution: advanced (tertiary) sewage, treatment, biological pollution, bio-solids, bleaching, chemical analysis, Chesapeake Bay, chlorination, crude oil, cultural eutrophication,
    [Show full text]
  • Bioaccumulation of Persistent Organic Pollutants in the Deepest Ocean Fauna
    BRIEF COMMUNICATION PUBLISHED: 13 FEBRUARY 2017 | VOLUME: 1 | ARTICLE NUMBER: 0051 Bioaccumulation of persistent organic pollutants in the deepest ocean fauna Alan J. Jamieson1 *†, Tamas Malkocs2, Stuart B. Piertney2, Toyonobu Fujii1 and Zulin Zhang3 The legacy and reach of anthropogenic influence is most organisms have reported higher concentrations than in nearby clearly evidenced by its impact on the most remote and surface-water species11,12. However, although these studies are inaccessible habitats on Earth. Here we identify extraordi- described as ‘deep sea’, they rarely extend beyond the continental nary levels of persistent organic pollutants in the endemic shelf (< 2,000 m), so contamination at greater distances from shore amphipod fauna from two of the deepest ocean trenches and at extreme depths is hitherto unknown. (>10,000 metres). Contaminant levels were considerably We measured the concentrations of key PCBs and PBDEs in higher than documented for nearby regions of heavy indus- multiple endemic and ecologically equivalent Lysianassoid amphi- trialization, indicating bioaccumulation of anthropogenic con- pod Crustacea from across two of the deepest hadal trenches — the tamination and inferring that these pollutants are pervasive oligotrophic Mariana Trench in the North Pacific, and the more across the world’s oceans and to full ocean depth. eutrophic Kermadec in the South Pacific. Two endemic amphi- The oceans comprise the largest biome on the planet, with the pods (Hirondellea dubia and Bathycallisoma schellenbergi) were deep ocean operating as a potential sink for the pollutants and sampled from the Kermadec between 7,227 and 10,000 m, and one litter that are discarded into the seas1.
    [Show full text]