Sensorimotor Processing of Vertical Disparity

Total Page:16

File Type:pdf, Size:1020Kb

Sensorimotor Processing of Vertical Disparity SENSORIMOTOR PROCESSING OF VERTICAL DISPARITY ROBERT SCOTT ALLISON A thesis submitted to the Faculty of Graduate Studies in partial fulfilment of the requirements for the degree of Doctor of Philosophy Graduate Programme in Biology York University Toronto, Ontario March 1998 Natioral Library Bibliothèque nationale 191 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, rue Wellington OttawaON K1AON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seIl reproduire, prêter, distribuer ou copies of ths thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/^, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otheIUrise de celle-ci ne doivent être imprimés reproduced without the author' s ou autrement reproduits sans son permission. autorisation. SENSORIMOTOR PROCESSING OF VERTICAL DZSPARITY by Robert S. Allison a dissertation subrnitted to the Faculty of Graduate Studies of York University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Permission has been granted to the LIBRARY OF YORK UNIVERSITY to lend or sel1 copies of this dissertation. to the NATIONAL LIBRARY OF CANADA to microfilm this dissertation and to tend or seil copies of the film, and to UNIVERSITY MICROFILMS to publish an abstract of this dissertation. The author reserves other publication rights. and neither the dissertation nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission. Several recent computational theories of binocular vision have proposed that vertical disparities play a critical role in calibrating and scaling stereoscopic depth. In these theories. vertical disparities specify "viewing system" pararneters such as the viewing distance and the relative alignment and magnification of the images in the two eyes. 1hypothesised that vertical disparities are temporally integrated and therefore processed more slowly than horizontal disparities. This averaging would allow robust estimation of slowly changing pararneters. The temporal characteristics of vertical and horizontal disparity processing in human vision were investigated in three sets of experiments. First. scleral search coils were used to measure the gain and phase of vertical vergence as a function of stimulus disparity and temporal frequency. The half images in a large. textured. stereoscopic display were oscillated in counter-phase to evoke vertical vergence. At low frequencies and amplitudes. the gain of vertical vergence was near one and phase lag was srnall. Gain declined and phase lag increased with increasing stimulus frequency. The dynamics of vertical vergence tailor it ro compensate for disturbances in vertical eye alignment. Second, the temporal characteristics of the slant or inclination percepts evoked by linear transformations of disparity (shear or scale dispari ties) were studied. Stimuli contained combinations of horizontal and vertical size or shear disparities that were introduced stepwise or modulated sinusoidally. Subjects matched perceived slant or inclination with that of a visual cornparison surface. There were no clear differences in the effects of exposure time or temporal frequency on slant or inclination percepts induced by horizontal disparity and those induced by vertical disparity. Considerable individual differences were found and several subjects experienced slant reversal. particularly with oscillating stimuli. Perceived slant induced by oscillations of dilation disparity was in the direction of the vertical component. Percepts of slant and inclination also depend on monocular gradients of texture and form. In the third set of experiments, 1 measured the temporal dependencies of perspective-disparity cue integration. Observers viewed a dichoptic pattern undergoing smooth temporal modulations or step changes in simulated slant and inclination specified by gradients of disparity and/or by perspective. Perspective and disparity were cornbined in four ways: disparity alone, perspective aione, perspective concordant with disparity, or perspective in conflict with disparity. Large pattemed displays providing strong linear perspective were seen according to perspective. With a static irregular texture. conflict was typically resolved according to disparity. This dominance of disparity built over tirne with initial depth typically seen according to perspective. With moving displays. however. perspective dominated the percept of surface slant or inclination. The hypothesis that pattems of vertical disparities are processed more slowly than equivalent pattems of horizontal disparities was only partiy confirmed. Vertical vergence is more sluggish than horizontal vergence. However, perceived slant and inclination showed sirnilar temporal limitations for gradients of both horizontal and vertical disparity. These limitations were related to disparity-perspective conflict. The temporal characteristics of the resolution of disparity-perspective conflict indicates that kinetic perspective is especially salient for human vision. This conclusion has important implications for experiments studying temporal factors in stereopsis in the presence of unchanging monocular cues. 1 would like to thank my supervisor Dr. Ian Howard for his suppon and encouragement. 1 greatly appreciate having the opportunity to work under his expert supervision. It would also like to thank the members of rny supervisory cornmittee, Drs. Ono, Harris and Steel for their suppon and constructive advice throughout the course of this research. Dr. Brian Rogers was a frequent visitor to our lab throughout this period and his expertise and collaboration in these experiments were greatly appreciated. 1 appreciate the generous suppon of NSERC and CRESTECH and am especially grateful to Dr. Ron Kruk and CAE Ltd. for their partnership in a CRESTECH Co-operative Research Award. 1 would like to thank Xueping Fang, Holly Bridge and Jim Zacher for their assistance with these experiments and for their many helpful comments. 1 am also grateful to Drs. Masayuki Sato, Hirohiko Kaneko. Byron Pierce, Masahiro Ishii. Christine Portfors, Mn. Toni Howard and Mr. Rob Gray for many discussions of my work and their related experiments. 1 would also like to express rny appreciation to the subjects who volunteered their time and to Drs. Tirnney, Davey and Wilcox for taking the time to examine my thesis. 1 would also like to thank Heather. Eric. Alan, Stephen. Gang. and Dalia for making the lab an enjoyable and intellectually stimulating place to work. 1 would like to thank the students and faculty associated with the York Centre for Vision Research as well as Teresa Manini and Jeff Laurence for their friendship and assistance. I would like especially like to thank my wife Jovie for her unconditional suppon and love that made it possible for me to complete this study. ABSTRACT ...................................................................................................................... IV ACKNOWLEDGEMENTS ..............................................................................................VI TABLE OF CONTENTS ................................................................................................. VII LIST OF FIGURES ......................................................................................................... X LIST OF TABLES ......................................................................................................XII LIST OF SYMBOLS AND ABBREVIATIONS ............................................................ XJII INTRODUCTION .......................................................................................................1 1 .1 Binocular Correspondence ......................................................................................I 1 -2 Patterns and Foms of Disparity .............................................................................. 7 1 2.1 Absolute and Zero-Order Disparities ............................................................ 12 1 .2.2 First-Order Disparity Patterns ....................................................................... 13 1.2.2.1 Slant about a Vertical Axis .................................................... 16 1.2.2.2 Inclination about a Horizontai Axis ....................................... 23 1.2.3 Higher-order Dispariries ................................................................................ 29 1.3 Binocular Vision and Vertical Dispaity ............................................................... 29 1.3.1 Fusion and Diplopia ...................................................................................... 30 1.3.2 Binocular Visual Direction ............................................................................ 32 1.3.3 Dichoptic Stimulation by Dissimilar Images ............................................. 31 1 .3.4 Vergence ........................................................................................................ 35 1.3.5
Recommended publications
  • Longitudinal Investigation of Disparity Vergence in Young Adult Convergence Insufficiency Patients
    New Jersey Institute of Technology Digital Commons @ NJIT Theses Electronic Theses and Dissertations Summer 2019 Longitudinal investigation of disparity vergence in young adult convergence insufficiency patients Patrick C. Crincoli New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/theses Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Crincoli, Patrick C., "Longitudinal investigation of disparity vergence in young adult convergence insufficiency patients" (2019). Theses. 1683. https://digitalcommons.njit.edu/theses/1683 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution
    [Show full text]
  • Binocular Disparity - Difference Between Two Retinal Images
    Depth II + Motion I Lecture 13 (Chapters 6+8) Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 depth from focus: tilt shift photography Keith Loutit : tilt shift + time-lapse photography http://vimeo.com/keithloutit/videos 2 Monocular depth cues: Pictorial Non-Pictorial • occlusion • motion parallax relative size • accommodation shadow • • (“depth from focus”) • texture gradient • height in plane • linear perspective 3 • Binocular depth cue: A depth cue that relies on information from both eyes 4 Two Retinas Capture Different images 5 Finger-Sausage Illusion: 6 Pen Test: Hold a pen out at half arm’s length With the other hand, see how rapidly you can place the cap on the pen. First using two eyes, then with one eye closed 7 Binocular depth cues: 1. Vergence angle - angle between the eyes convergence divergence If you know the angles, you can deduce the distance 8 Binocular depth cues: 2. Binocular Disparity - difference between two retinal images Stereopsis - depth perception that results from binocular disparity information (This is what they’re offering in “3D movies”...) 9 10 Retinal images in left & right eyes Figuring out the depth from these two images is a challenging computational problem. (Can you reason it out?) 11 12 Horopter: circle of points that fall at zero disparity (i.e., they land on corresponding parts of the two retinas) A bit of geometric reasoning will convince you that this surface is a circle containing the fixation point and the two eyes 13 14 point with uncrossed disparity point with crossed
    [Show full text]
  • Relationship Between Binocular Disparity and Motion Parallax in Surface Detection
    Perception & Psychophysics 1997,59 (3),370-380 Relationship between binocular disparity and motion parallax in surface detection JESSICATURNERand MYRON L, BRAUNSTEIN University ofCalifornia, Irvine, California and GEORGEJ. ANDERSEN University ofColifornia, Riverside, California The ability to detect surfaces was studied in a multiple-cue condition in which binocular disparity and motion parallax could specify independent depth configurations, On trials on which binocular disparity and motion parallax were presented together, either binocular disparity or motion parallax could indicate a surface in one of two intervals; in the other interval, both sources indicated a vol­ ume of random points. Surface detection when the two sources of information were present and compatible was not betterthan detection in baseline conditions, in which only one source of informa­ tion was present. When binocular disparity and motion specified incompatible depths, observers' ability to detect a surface was severely impaired ifmotion indicated a surface but binocular disparity did not. Performance was not as severely degraded when binocular disparity indicated a surface and motion did not. This dominance of binocular disparity persisted in the presence of foreknowledge about which source of information would be relevant. The ability to detect three-dimensional (3-D) surfaces action ofdepth cues in determining the perceived shape has been studied previously using static stereo displays of objects has been a subject of considerable attention. (e.g., Uttal, 1985), motion parallax displays (Andersen, Biilthoffand Mallot (1988) discussed four ways in which 1996; Andersen & Wuestefeld, 1993), and structure­ depth information from different cues may be combined: from-motion (SFM) displays (Turner, Braunstein, & An­ accumulation, veto, disambiguation, and cooperation.
    [Show full text]
  • Recovery of 3-D Shape from Binocular Disparity and Structure from Motion
    Perception & Psychophysics /993. 54 (2). /57-J(B Recovery of 3-D shape from binocular disparity and structure from motion JAMES S. TI'ITLE The Ohio State University, Columbus, Ohio and MYRON L. BRAUNSTEIN University of California, Irvine, California Four experiments were conducted to examine the integration of depth information from binocular stereopsis and structure from motion (SFM), using stereograms simulating transparent cylindri­ cal objects. We found that the judged depth increased when either rotational or translational motion was added to a display, but the increase was greater for rotating (SFM) displays. Judged depth decreased as texture element density increased for static and translating stereo displays, but it stayed relatively constant for rotating displays. This result indicates that SFM may facili­ tate stereo processing by helping to resolve the stereo correspondence problem. Overall, the re­ sults from these experiments provide evidence for a cooperative relationship betweel\..SFM and binocular disparity in the recovery of 3-D relationships from 2-D images. These findings indicate that the processing of depth information from SFM and binocular disparity is not strictly modu­ lar, and thus theories of combining visual information that assume strong modularity or indepen­ dence cannot accurately characterize all instances of depth perception from multiple sources. Human observers can perceive the 3-D shape and orien­ tion, both sources of information (along with many others) tation in depth of objects in a natural environment with im­ occur together in the natural environment. Thus, it is im­ pressive accuracy. Prior work demonstrates that informa­ portant to understand what interaction (if any) exists in the tion about shape and orientation can be recovered from visual processing of binocular disparity and SFM.
    [Show full text]
  • Binocular Vision
    BINOCULAR VISION Rahul Bhola, MD Pediatric Ophthalmology Fellow The University of Iowa Department of Ophthalmology & Visual Sciences posted Jan. 18, 2006, updated Jan. 23, 2006 Binocular vision is one of the hallmarks of the human race that has bestowed on it the supremacy in the hierarchy of the animal kingdom. It is an asset with normal alignment of the two eyes, but becomes a liability when the alignment is lost. Binocular Single Vision may be defined as the state of simultaneous vision, which is achieved by the coordinated use of both eyes, so that separate and slightly dissimilar images arising in each eye are appreciated as a single image by the process of fusion. Thus binocular vision implies fusion, the blending of sight from the two eyes to form a single percept. Binocular Single Vision can be: 1. Normal – Binocular Single vision can be classified as normal when it is bifoveal and there is no manifest deviation. 2. Anomalous - Binocular Single vision is anomalous when the images of the fixated object are projected from the fovea of one eye and an extrafoveal area of the other eye i.e. when the visual direction of the retinal elements has changed. A small manifest strabismus is therefore always present in anomalous Binocular Single vision. Normal Binocular Single vision requires: 1. Clear Visual Axis leading to a reasonably clear vision in both eyes 2. The ability of the retino-cortical elements to function in association with each other to promote the fusion of two slightly dissimilar images i.e. Sensory fusion. 3. The precise co-ordination of the two eyes for all direction of gazes, so that corresponding retino-cortical element are placed in a position to deal with two images i.e.
    [Show full text]
  • Motion Parallax Is Asymptotic to Binocular Disparity
    Motion Parallax is Asymptotic to Binocular Disparity by Keith Stroyan Mathematics Department University of Iowa Iowa City, Iowa Abstract Researchers especially beginning with (Rogers & Graham, 1982) have noticed important psychophysical and experimental similarities between the neurologically different motion parallax and stereopsis cues. Their quantitative analysis relied primarily on the "disparity equivalence" approximation. In this article we show that retinal motion from lateral translation satisfies a strong ("asymptotic") approximation to binocular disparity. This precise mathematical similarity is also practical in the sense that it applies at normal viewing distances. The approximation is an extension to peripheral vision of (Cormac & Fox's 1985) well-known non-trig central vision approximation for binocular disparity. We hope our simple algebraic formula will be useful in analyzing experiments outside central vision where less precise approximations have led to a number of quantitative errors in the vision literature. Introduction A translating observer viewing a rigid environment experiences motion parallax, the relative movement on the retina of objects in the scene. Previously we (Nawrot & Stroyan, 2009), (Stroyan & Nawrot, 2009) derived mathematical formulas for relative depth in terms of the ratio of the retinal motion rate over the smooth pursuit eye tracking rate called the motion/pursuit law. The need for inclusion of the extra-retinal information from the pursuit eye movement system for depth perception from motion
    [Show full text]
  • The Figure Is in the Brain of the Beholder: Neural Correlates of Individual Percepts in The
    The Figure is in the Brain of the Beholder: Neural Correlates of Individual Percepts in the Bistable Face-Vase Image A Thesis Presented to The Division of Philosophy, Religion, Psychology, and Linguistics Reed College In Partial Fulfillment of the Requirements for the Degree Bachelor of Arts Phoebe Bauer May 2015 Approved for the Division (Psychology) Michael Pitts Acknowledgments I think some people experience a degree of unease when being taken care of, so they only let certain people do it, or they feel guilty when it happens. I don’t really have that. I love being taken care of. Here is a list of people who need to be explicitly thanked because they have done it so frequently and are so good at it: Chris: thank you for being my support system across so many contexts, for spinning with me, for constantly reminding me what I’m capable of both in and out of the lab. Thank you for validating and often mirroring my emotions, and for never leaving a conflict unresolved. Rennie: thank you for being totally different from me and yet somehow understanding the depths of my opinions and thought experiments. Thank you for being able to talk about magic. Thank you for being my biggest ego boost and accepting when I internalize it. Ben: thank you for taking the most important classes with me so that I could get even more out of them by sharing. Thank you for keeping track of priorities (quality dining: yes, emotional explanations: yes, fretting about appearances: nu-uh). #AshHatchtag & Stella & Master Tran: thank you for being a ceaseless source of cheer and laughter and color and love this year.
    [Show full text]
  • UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society
    UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society Title Voluntary versus Involuntary Perceptual Switching: Mechanistic Differences in Viewing an Ambiguous Figure Permalink https://escholarship.org/uc/item/333348w4 Journal Proceedings of the Annual Meeting of the Cognitive Science Society, 27(27) ISSN 1069-7977 Authors Rambusch, Jana Ziemke, Tom Publication Date 2005 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Voluntary versus Involuntary Perceptual Switching: Mechanistic Differences in Viewing an Ambiguous Figure Michelle Umali ([email protected]) Center for Neurobiology & Behavior, Columbia University 1051 Riverside Drive, New York, NY, 10032, USA Marc Pomplun ([email protected]) Department of Computer Science, University of Massachusetts at Boston 100 Morrissey Blvd., Boston, MA 02125, USA Abstract frequency, blink frequency, and pupil size, which have been robustly correlated with cognitive function (see Rayner, Here we demonstrate the mechanistic differences between 1998, for a review). Investigators utilizing this method have voluntary and involuntary switching of the perception of an examined the regions within ambiguous figures that receive ambiguous figure. In our experiment, participants viewed a attention during a specific interpretation, as well as changes 3D ambiguous figure, the Necker cube, and were asked to maintain one of two possible interpretations across four in eye movement parameters that may specify the time of different conditions of varying cognitive load. These switch. conditions differed in the instruction to freely view, make For example, Ellis and Stark (1978) reported that guided saccades, or fixate on a central cross. In the fourth prolonged fixation duration occurs at the time of perceptual condition, subjects were instructed to make guided saccades switching.
    [Show full text]
  • Frontoparietal Activity and Its Structural Connectivity in Binocular Rivalry
    Author's personal copy BRAIN RESEARCH 1305 (2009) 96– 107 available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Frontoparietal activity and its structural connectivity in binocular rivalry Juliane C. Wilckea,b,⁎, Robert P. O'Sheac,d, Richard Wattsb,e aDepartment of Psychology, University of Canterbury, Christchurch, New Zealand bDepartment of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand cDepartment of Psychology, University of Otago, Dunedin, New Zealand dPsychology, School of Health and Human Sciences, Southern Cross University, Coffs Harbour, NSW, Australia eVan der Veer Institute for Parkinson's and Brain Research, Christchurch, New Zealand ARTICLE INFO ABSTRACT Article history: To understand the brain areas associated with visual awareness and their anatomical Accepted 20 September 2009 interconnections, we studied binocular rivalry with functional magnetic resonance imaging Available online 25 September 2009 (fMRI) and diffusion tensor imaging (DTI). Binocular rivalry occurs when one image is viewed by one eye and a different image by the other; it is experienced as perceptual alternations Keywords: between the two images. Our first experiment addressed problems with a popular Visual awareness comparison condition, namely permanentsuppression,bycomparingrivalrywith Conscious perception binocular fusion instead. We found an increased fMRI signal in right frontal, parietal, and Binocular rivalry occipital regions during rivalry viewing. The pattern of neural activity differed from findings Binocular fusion of permanent suppression comparisons, except for adjacent activity in the right superior fMRI parietal lobule. This location was near fMRI signal changes related to reported rivalry DTI tractography alternations in our second experiment, indicating that neighbouring areas in the right parietal cortex may be involved in different components of rivalry.
    [Show full text]
  • M Pathway and Areas 44 and 45 Are Involved in Stereoscopic Recognition Based on Binocular Disparity
    Japanese Journal of Physiology, 52, 191–198, 2002 M Pathway and Areas 44 and 45 Are Involved in Stereoscopic Recognition Based on Binocular Disparity Tsuneo NEGAWA, Shinji MIZUNO*, Tomoya HAHASHI, Hiromi KUWATA†, Mihoko TOMIDA, Hiroaki HOSHI*, Seiichi ERA, and Kazuo KUWATA Departments of Physiology, * Radiology, and † Nursing Course, Gifu University School of Medicine, Gifu, 500–8705 Japan Abstract: We characterized the visual path- was reported that these regions were inactive ways involved in the stereoscopic recognition of during the monocular stereopsis. To separate the the random dot stereogram based on the binocu- specific responses directly caused by the stereo- lar disparity employing a functional magnetic res- scopic recognition process from the nonspecific onance imaging (fMRI). The V2, V3, V4, V5, in- ones caused by the memory load or the inten- traparietal sulcus (IPS) and the superior temporal tion, we designed a novel frequency labeled sulcus (STS) were significantly activated during tasks (FLT) sequence. The functional MRI using the binocular stereopsis, but the inferotemporal the FLT indicated that the activation of areas 44 gyrus (ITG) was not activated. Thus a human M and 45 is correlated with the stereoscopic recog- pathway may be part of a network involved in the nition based on the binocular disparity but not stereoscopic processing based on the binocular with the intention artifacts, suggesting that areas disparity. It is intriguing that areas 44 (Broca’s 44 and 45 play an essential role in the binocular area) and 45 in the left hemisphere were also ac- disparity. [Japanese Journal of Physiology, 52, tive during the binocular stereopsis.
    [Show full text]
  • Symmetric Networks with Geometric Constraints As Models of Visual Illusions
    S S symmetry Article Symmetric Networks with Geometric Constraints as Models of Visual Illusions Ian Stewart 1,*,† and Martin Golubitsky 2,† 1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK 2 Department of Mathematics, Ohio State University, Columbus, OH 43210, USA; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 17 May 2019; Accepted: 13 June 2019; Published: 16 June 2019 Abstract: Multistable illusions occur when the visual system interprets the same image in two different ways. We model illusions using dynamic systems based on Wilson networks, which detect combinations of levels of attributes of the image. In most examples presented here, the network has symmetry, which is vital to the analysis of the dynamics. We assume that the visual system has previously learned that certain combinations are geometrically consistent or inconsistent, and model this knowledge by adding suitable excitatory and inhibitory connections between attribute levels. We first discuss 4-node networks for the Necker cube and the rabbit/duck illusion. The main results analyze a more elaborate model for the Necker cube, a 16-node Wilson network whose nodes represent alternative orientations of specific segments of the image. Symmetric Hopf bifurcation is used to show that a small list of natural local geometric consistency conditions leads to alternation between two global percepts: cubes in two different orientations. The model also predicts brief transitional states in which the percept involves impossible rectangles analogous to the Penrose triangle. A tristable illusion generalizing the Necker cube is modelled in a similar manner.
    [Show full text]
  • Depth Perception, Part II
    Depth Perception, part II Lecture 13 (Chapter 6) Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 nice illusions video - car ad (2013) (anamorphosis, linear perspective, accidental viewpoints, shadows, depth/size illusions) https://www.youtube.com/watch?v=dNC0X76-QRI 2 Accommodation - “depth from focus” near far 3 Depth and scale estimation from accommodation “tilt shift photography” 4 Depth and scale estimation from accommodation “tilt shift photography” 5 Depth and scale estimation from accommodation “tilt shift photography” 6 Depth and scale estimation from accommodation “tilt shift photography” 7 Depth and scale estimation from accommodation “tilt shift photography” 8 more on tilt shift: Van Gogh http://www.mymodernmet.com/profiles/blogs/van-goghs-paintings-get 9 Tilt shift on Van Gogh paintings http://www.mymodernmet.com/profiles/blogs/van-goghs-paintings-get 10 11 12 countering the depth-from-focus cue 13 Monocular depth cues: Pictorial Non-Pictorial • occlusion • motion parallax relative size • accommodation shadow • • (“depth from focus”) • texture gradient • height in plane • linear perspective 14 • Binocular depth cue: A depth cue that relies on information from both eyes 15 Two Retinas Capture Different images 16 Finger-Sausage Illusion: 17 Pen Test: Hold a pen out at half arm’s length With the other hand, see how rapidly you can place the cap on the pen. First using two eyes, then with one eye closed 18 Binocular depth cues: 1. Vergence angle - angle between the eyes convergence divergence If you know the angles, you can deduce the distance 19 Binocular depth cues: 2. Binocular Disparity - difference between two retinal images Stereopsis - depth perception that results from binocular disparity information (This is what they’re offering in 3D movies…) 20 21 Retinal images in left & right eyes Figuring out the depth from these two images is a challenging computational problem.
    [Show full text]