A Step Towards an Easy Interconversion of Various Number
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Positional Notation Or Trigonometry [2, 13]
The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity. -
Zero Displacement Ternary Number System: the Most Economical Way of Representing Numbers
Revista de Ciências da Computação, Volume III, Ano III, 2008, nº3 Zero Displacement Ternary Number System: the most economical way of representing numbers Fernando Guilherme Silvano Lobo Pimentel , Bank of Portugal, Email: [email protected] Abstract This paper concerns the efficiency of number systems. Following the identification of the most economical conventional integer number system, from a solid criteria, an improvement to such system’s representation economy is proposed which combines the representation efficiency of positional number systems without 0 with the possibility of representing the number 0. A modification to base 3 without 0 makes it possible to obtain a new number system which, according to the identified optimization criteria, becomes the most economic among all integer ones. Key Words: Positional Number Systems, Efficiency, Zero Resumo Este artigo aborda a questão da eficiência de sistemas de números. Partindo da identificação da mais económica base inteira de números de acordo com um critério preestabelecido, propõe-se um melhoramento à economia de representação nessa mesma base através da combinação da eficiência de representação de sistemas de números posicionais sem o zero com a possibilidade de representar o número zero. Uma modificação à base 3 sem zero permite a obtenção de um novo sistema de números que, de acordo com o critério de optimização identificado, é o sistema de representação mais económico entre os sistemas de números inteiros. Palavras-Chave: Sistemas de Números Posicionais, Eficiência, Zero 1 Introduction Counting systems are an indispensable tool in Computing Science. For reasons that are both technological and user friendliness, the performance of information processing depends heavily on the adopted numbering system. -
Duodecimal Bulletin Vol
The Duodecimal Bulletin Bulletin Duodecimal The Vol. 4a; № 2; Year 11B6; Exercise 1. Fill in the missing numerals. You may change the others on a separate sheet of paper. 1 1 1 1 2 2 2 2 ■ Volume Volume nada 3 zero. one. two. three.trio 3 1 1 4 a ; (58.) 1 1 2 3 2 2 ■ Number Number 2 sevenito four. five. six. seven. 2 ; 1 ■ Whole Number Number Whole 2 2 1 2 3 99 3 ; (117.) eight. nine. ________.damas caballeros________. All About Our New Numbers 99;Whole Number ISSN 0046-0826 Whole Number nine dozen nine (117.) ◆ Volume four dozen ten (58.) ◆ № 2 The Dozenal Society of America is a voluntary nonprofit educational corporation, organized for the conduct of research and education of the public in the use of base twelve in calculations, mathematics, weights and measures, and other branches of pure and applied science Basic Membership dues are $18 (USD), Supporting Mem- bership dues are $36 (USD) for one calendar year. ••Contents•• Student membership is $3 (USD) per year. The page numbers appear in the format Volume·Number·Page TheDuodecimal Bulletin is an official publication of President’s Message 4a·2·03 The DOZENAL Society of America, Inc. An Error in Arithmetic · Jean Kelly 4a·2·04 5106 Hampton Avenue, Suite 205 Saint Louis, mo 63109-3115 The Opposed Principles · Reprint · Ralph Beard 4a·2·05 Officers Eugene Maxwell “Skip” Scifres · dsa № 11; 4a·2·08 Board Chair Jay Schiffman Presenting Symbology · An Editorial 4a·2·09 President Michael De Vlieger Problem Corner · Prof. -
Bits, Data Types, and Operations
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Agenda 1. Data Types 2. Unsigned & Signed Integers 3. Arithmetic Operations Chapter 2 4. Logical Operations 5. Shifting Bits, Data Types, 6. Hexadecimal & Octal Notation and Operations 7. Other Data Types COMPSCI210 S1C 2009 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1. Data Types Computer is a binary digital system. How do we represent data in a computer? Digital system: Binary (base two) system: At the lowest level, a computer is an electronic machine. • finite number of symbols • has two states: 0 and 1 • works by controlling the flow of electrons Easy to recognize two conditions: 1. presence of a voltage – we’ll call this state “1” 2. absence of a voltage – we’ll call this state “0” Basic unit of information is the binary digit, or bit. Values with more than two states require multiple bits. • A collection of two bits has four possible states: Could base state on value of voltage, 00, 01, 10, 11 but control and detection circuits more complex. • A collection of three bits has eight possible states: • compare turning on a light switch to 000, 001, 010, 011, 100, 101, 110, 111 measuring or regulating voltage • A collection of n bits has 2n possible states. COMPSCI210 S1C 2009 3 COMPSCI210 S1C 2009 4 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. -
The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g. -
Introduction to Numerical Computing Number Systems in the Decimal System We Use the 10 Numeric Symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to Represent Numbers
Statistics 580 Introduction to Numerical Computing Number Systems In the decimal system we use the 10 numeric symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to represent numbers. The relative position of each symbol determines the magnitude or the value of the number. Example: 6594 is expressible as 6594 = 6 103 + 5 102 + 9 101 + 4 100 Example: · · · · 436.578 is expressible as 436:578 = 4 102 + 3 101 + 6 100 + 5 10−1 + 7 10−2 + 8 10−3 · · · · · · We call the number 10 the base of the system. In general we can represent numbers in any system in the polynomial form: z = ( akak− a a : b b bm )B · · · 1 · · · 1 0 0 1 · · · · · · where B is the base of the system and the period in the middle is the radix point. In com- puters, numbers are represented in the binary system. In the binary system, the base is 2 and the only numeric symbols we need to represent numbers in binary are 0 and 1. Example: 0100110 is a binary number whose value in the decimal system is calculated as follows: 0 26 + 1 25 + 0 24 + 0 23 + 1 22 + 1 21 + 0 20 = 32 + 4 + 2 · · · · · · · = (38)10 The hexadecimal system is another useful number system in computer work. In this sys- tem, the base is 16 and the 16 numeric and arabic symbols used to represent numbers are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Example: Let 26 be a hexadecimal number. -
The Chinese Rod Numeral Legacy and Its Impact on Mathematics* Lam Lay Yong Mathematics Department National University of Singapore
The Chinese Rod Numeral Legacy and its Impact on Mathematics* Lam Lay Yong Mathematics Department National University of Singapore First, let me explain the Chinese rod numeral system. Since the Warring States period {480 B.C. to 221 B.C.) to the 17th century A.D. the Chinese used a bundle of straight rods for computation. These rods, usually made from bamboo though they could be made from other materials such as bone, wood, iron, ivory and jade, were used to form the numerals 1 to 9 as follows: 1 2 3 4 5 6 7 8 9 II Ill Ill I IIIII T II Note that for numerals 6 to 9, a horizontal rod represents the quantity five. A numeral system which uses place values with ten as base requires only nine signs. Any numeral of such a system is formed from among these nine signs which are placed in specific place positions relative to each other. Our present numeral system, commonly known as the Hindu-Arabic numeral system, is based on this concept; the value of each numeral determines the choice of digits from the nine signs 1, 2, ... , 9 anq their place positions. The place positions are called units, tens, hundreds, thousands, and so on, and each is occupied by at most one digit. The Chinese rod system employs the same concept. However, since its nine signs are formed from rod tallies, if a number such as 34 were repre sented as Jll\IU , this would inevitably lead to ambiguity and confusion. To * Text of Presidential Address delivered at the Society's Annual General Meeting on 20 March 1987. -
Inventing Your Own Number System
Inventing Your Own Number System Through the ages people have invented many different ways to name, write, and compute with numbers. Our current number system is based on place values corresponding to powers of ten. In principle, place values could correspond to any sequence of numbers. For example, the places could have values corre- sponding to the sequence of square numbers, triangular numbers, multiples of six, Fibonacci numbers, prime numbers, or factorials. The Roman numeral system does not use place values, but the position of numerals does matter when determining the number represented. Tally marks are a simple system, but representing large numbers requires many strokes. In our number system, symbols for digits and the positions they are located combine to represent the value of the number. It is possible to create a system where symbols stand for operations rather than values. For example, the system might always start at a default number and use symbols to stand for operations such as doubling, adding one, taking the reciprocal, dividing by ten, squaring, negating, or any other specific operations. Create your own number system. What symbols will you use for your numbers? How will your system work? Demonstrate how your system could be used to perform some of the following functions. • Count from 0 up to 100 • Compare the sizes of numbers • Add and subtract whole numbers • Multiply and divide whole numbers • Represent fractional values • Represent irrational numbers (such as π) What are some of the advantages of your system compared with other systems? What are some of the disadvantages? If you met aliens that had developed their own number system, how might their mathematics be similar to ours and how might it be different? Make a list of some math facts and procedures that you have learned. -
Positional Notation Consider 101 1015 = ? Binary: Base 2
1/21/2019 CS 362: Computer Design Positional Notation Lecture 3: Number System Review • The meaning of a digit depends on its position in a number. • A number, written as the sequence of digits dndn‐1…d2d1d0 in base b represents the value d * bn + d * bn‐1 + ... + d * b2 + d * b1 + d * b0 Cynthia Taylor n n‐1 2 1 0 University of Illinois at Chicago • For a base b, digits will range from 0 to b‐1 September 5th, 2017 Consider 101 1015 = ? • In base 10, it represents the number 101 (one A. 26 hundred one) = B. 51 • In base 2, 1012 = C. 126 • In base 8, 1018 = D. 130 101‐3=? Binary: Base 2 A. ‐10 • Used by computers B. 8 • A number, written as the sequence of digits dndn‐1…d2d1d0 where d is in {0,1}, represents C. 10 the value n n‐1 2 1 0 dn * 2 + dn‐1 * 2 + ... + d2 * 2 + d1 * 2 + d0 * 2 D. ‐30 1 1/21/2019 Binary to Decimal Decimal to Binary • Use polynomial expansion • Repeatedly divide by 2, recording the remainders. • The remainders form the binary digits of the number. 101102 = • Converting 25 to binary 3410=?2 Hexadecimal: Base 16 A. 010001 • Like binary, but shorter! • Each digit is a “nibble”, or half a byte • Indicated by prefacing number with 0x B. 010010 • A number, written as the sequence of digits dndn‐ C. 100010 1…d2d1d0 where d is in {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents the value D. -
1. Understanding Decimal, Binary, Octal and Hexadecimal Numbers
Objectives: 1. Understanding decimal, binary, octal and hexadecimal numbers. 2. Counting in decimal, binary, octal and hexadecimal systems. 3. Convert a number from one number system to another system. 4. Advantage of octal and hexadecimal systems. 1. Understanding decimal, binary, octal and hexadecimal numbers Decimal number systems: Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9 --------10-base system) The decimal system is a "positional-value system" in which the value of a digit depends on its position. Examples: 453→4 hundreds, 5 tens and 3 units. 4 is the most weight called "most significant digit" MSD. 3 carries the last weight called "least significant digit" LSD. number of items that a decimal number represent: 9261= (9× )+(2× )+(6× )+(1× ) The decimal fractions: 3267.317= (3× )+(2× )+(6× )+(7× )+ (3× ) + (6× ) + (1× ) Decimal point used to separate the integer and fractional part of the number. Formal notation→ . Decimal position values of powers of (10). Positional values "weights" 2 7 7 8 3 . 2 3 4 5 MSD LSD Binary numbers: . Base-2 system (0 or 1). We can represent any quantity that can be represented in decimal or other number systems using binary numbers. Binary number is also positional–value system (power of 2). Example: 1101.011 1 1 0 1 . 0 1 1 MSD LSD Notes: . To find the equivalent of binary numbers in decimal system , we simply take the sum of products of each digit value (0,1)and its positional value: Example: = (1× ) + (0× ) + (1× ) + (1× )+ (1× )+ (0× ) +(1× ) = 8 + 0 + 2 + 1 + + 0 + = In general, any number (decimal, binary, octal and hexadecimal) is simply the sum of products of each digit value and its positional value. -
A Ternary Arithmetic and Logic
Proceedings of the World Congress on Engineering 2010 Vol I WCE 2010, June 30 - July 2, 2010, London, U.K. A Ternary Arithmetic and Logic Ion Profeanu which supports radical ontological dualism between the two Abstract—This paper is only a chapter, not very detailed, of eternal principles, Good and Evil, which oppose each other a larger work aimed at developing a theoretical tool to in the course of history, in an endless confrontation. A key investigate first electromagnetic fields but not only that, (an element of Manichean doctrine is the non-omnipotence of imaginative researcher might use the same tool in very unusual the power of God, denying the infinite perfection of divinity areas of research) with the stated aim of providing a new perspective in understanding older or recent research in "free that has they say a dual nature, consisting of two equal but energy". I read somewhere that devices which generate "free opposite sides (Good-Bad). I confess that this kind of energy" works by laws and principles that can not be explained dualism, which I think is harmful, made me to seek another within the framework of classical physics, and that is why they numeral system and another logic by means of which I will are kept far away from public eye. So in the absence of an praise and bring honor owed to God's name; and because adequate theory to explain these phenomena, these devices can God is One Being in three personal dimensions (the Father, not reach the design tables of some plants in order to produce them in greater number. -
Number Systems and Number Representation Aarti Gupta
Number Systems and Number Representation Aarti Gupta 1 For Your Amusement Question: Why do computer programmers confuse Christmas and Halloween? Answer: Because 25 Dec = 31 Oct -- http://www.electronicsweekly.com 2 Goals of this Lecture Help you learn (or refresh your memory) about: • The binary, hexadecimal, and octal number systems • Finite representation of unsigned integers • Finite representation of signed integers • Finite representation of rational numbers (if time) Why? • A power programmer must know number systems and data representation to fully understand C’s primitive data types Primitive values and the operations on them 3 Agenda Number Systems Finite representation of unsigned integers Finite representation of signed integers Finite representation of rational numbers (if time) 4 The Decimal Number System Name • “decem” (Latin) => ten Characteristics • Ten symbols • 0 1 2 3 4 5 6 7 8 9 • Positional • 2945 ≠ 2495 • 2945 = (2*103) + (9*102) + (4*101) + (5*100) (Most) people use the decimal number system Why? 5 The Binary Number System Name • “binarius” (Latin) => two Characteristics • Two symbols • 0 1 • Positional • 1010B ≠ 1100B Most (digital) computers use the binary number system Why? Terminology • Bit: a binary digit • Byte: (typically) 8 bits 6 Decimal-Binary Equivalence Decimal Binary Decimal Binary 0 0 16 10000 1 1 17 10001 2 10 18 10010 3 11 19 10011 4 100 20 10100 5 101 21 10101 6 110 22 10110 7 111 23 10111 8 1000 24 11000 9 1001 25 11001 10 1010 26 11010 11 1011 27 11011 12 1100 28 11100 13 1101 29 11101 14 1110 30 11110 15 1111 31 11111 ..