Tail Risk of Smart Beta Portfolios: an Extreme Value Theory Approach

Total Page:16

File Type:pdf, Size:1020Kb

Tail Risk of Smart Beta Portfolios: an Extreme Value Theory Approach An EDHEC-Risk Institute Publication Tail Risk of Smart Beta Portfolios: An Extreme Value Theory Approach July 2014 Institute 2 Printed in France, July 2014. Copyright EDHEC 2014. The opinions expressed in this study are those of the authors and do not necessarily reflect those of EDHEC Business School. Tail Risk of Smart Beta Portfolios: An Extreme Value Theory Approach — July 2014 Table of Contents Executive Summary .................................................................................................5 1. Introduction ............................................................................................................9 2. Smart Beta Indices .......................................................................................... 15 3. A Conditional EVT Model .................................................................................21 4. Empirical Analysis ............................................................................................31 Conclusion ...............................................................................................................43 Appendix ..................................................................................................................47 References ...............................................................................................................57 About EDHEC-Risk Institute ................................................................................61 EDHEC-Risk Institute Publications and Position Papers (2011-2014) ........65 An EDHEC-Risk Institute Publication 3 Tail Risk of Smart Beta Portfolios: An Extreme Value Theory Approach — July 2014 About the Authors Lixia Loh is a senior research engineer at EDHEC-Risk Institute–Asia. Prior to joining EDHEC Business School, she was a Research Fellow at the Centre for Global Finance at Bristol Business School (University of the West of England). Her research interests include empirical finance, financial markets risk, and monetary economics. She has published in several academic journals, including the Asia-Pacific Development Journal and Macroeconomic Dynamics, and is the author of a book, Sovereign Wealth Funds: States Buying the World (Global Professional Publishing, 2010). She holds an M.Sc. in international economics, banking and finance from Cardiff University and a Ph.D. in finance from the University of Nottingham. Stoyan Stoyanov is professor of finance at EDHEC Business School and head of research at EDHEC Risk Institute–Asia. He has ten years of experience in the field of risk and investment management. Prior to joining EDHEC Business School, he worked for over six years as head of quantitative research for FinAnalytica. He has designed and implemented investment and risk management models for financial institutions, co-developed a patented system for portfolio optimisation in the presence of non-normality, and led a team of engineers designing and planning the implementation of advanced models for major financial institutions. His research focuses on probability theory, extreme risk modelling, and optimal portfolio theory. He has published over thirty articles in leading academic and practitioner-oriented scientific journals such as Annals of Operations Research, Journal of Banking and Finance, and the Journal of Portfolio Management, contributed to many professional handbooks and co-authored three books on probability and stochastics, financial risk assessment and portfolio optimisation. He holds a master in science in applied probability and statistics from Sofia University and a PhD in finance from the University of Karlsruhe. 4 An EDHEC-Risk Institute Publication Executive Summary An EDHEC-Risk Institute Publication 5 Tail Risk of Smart Beta Portfolios: An Extreme Value Theory Approach — July 2014 Executive Summary Cap-weighted indices, although widely used the comparison. Under this hypothesis, the as passive investment vehicles, have two improved performance may be at the cost important drawbacks with far-reaching of an increase in tail thickness. consequences for investors — they represent concentrated portfolios and they are To study the tail risk systematically across also exposed to risk factors that are not different weighting schemes and stock well rewarded. Both drawbacks indicate selection criteria, we need a solid indexing significant inefficiencies for long-term methodology that can produce diversified investors. factor-tilted indices consistently across different geographical universes. The Smart Index providers offer factor indices that Beta 2.0. methodology — as put forward by aim at tilting the portfolio towards better EDHEC Risk Institute and applied for the rewarded factors. Although clearly an production of the ERI Scientific Beta indices improvement over cap-weighting, the — allows the challenges affecting the industry index solutions are often based smart beta indices provided by traditional on ad-hoc stock-selection and weight industry vendors to be addressed.2 It allocation criteria prone to data-mining separates two main steps in the index 1 - See Amenc et al. (2012) risks. Because of the dangers of data-mining, construction process and offers investors and the references therein. 2 - See Amenc and Goltz investors are advised to stick to simple factor the chance to make an informed decision (2013) for further details. An implementation of definitions rather than rely on proprietary about the factor tilt and the diversification the methodology with and complex factors (see Gelderen and method. The diversification method deals complete and transparent documentation is available Huij (2013)). with the over-concentration issue and at http://www.scientificbeta. com. the factor tilt method leads to exposure Empirical research1 has demonstrated to better rewarded factors. Thus, the two that smart beta indices offer improved main components in the construction performance and also sometimes process of factor indices are: (i) achieving lower volatility than the cap-weighted a factor tilt through stock selection and benchmarks. It is, thus, of practical and (ii) efficiently extracting the risk premia also of theoretical interest to check if through improved diversification, via the smart beta indices exhibit higher extreme application of a smart weighting scheme. risk or similar extreme risk as that of the The two components are distinct; investors cap-weighted indices. The importance of can explicitly choose which factor to tilt this question stems from the fact that the towards, while the diversification method superior risk-adjusted performance of smart reduces the impact of specific or unrewarded beta indices is usually demonstrated by risks. The stock-selection criteria considered comparing their Sharpe ratios to that of are size, liquidity, momentum, volatility, the corresponding cap-weighted index. If, value, and dividend yield and the weighting however, it turns out that smart beta schemes are Efficient Minimum Volatility, returns have a substantially heavier left Efficient Maximum Sharpe Ratio, Maximum tail unaccounted for by volatility, then Deconcentration, Maximum Decorrelation Sharpe ratios may be misleading when and Diversified Risk Weighted. We examine comparing risk-adjusted performance the tail risk of these strategies with and because a dimension of risk would be lost in without a factor tilt for the following 6 An EDHEC-Risk Institute Publication Tail Risk of Smart Beta Portfolios: An Extreme Value Theory Approach — July 2014 Executive Summary Scientific Beta universes: USA (500 stocks), Autoregressive Conditional Heteroskedastic Eurozone (300 stocks), UK (100 stocks), (GARCH) model and, second, the remaining Japan (500 stocks), Developed Asia-Pacific tail risk is estimated from the residual ex-Japan (400 stocks), and World Developed process using EVT. From a risk management (2,000 stocks). The data used cover the full perspective, it is important to segregate the sample period from June 2003 to December two components because the dynamics of 2013 and also two sub-sample periods, the volatility contributes to the unconditional pre-crisis period from June 2003 to June tail thickness phenomenon. Generally, the 2007 and the turbulent period from July GARCH part is responsible for capturing the 2007 to December 2013. dynamics of volatility while EVT provides a model for the behaviour of the extreme To compare extreme risk across different tail of the distribution. smart beta indices, we use a statistical methodology based on extreme value We carry out the comparison by, first, looking theory (EVT) and conditional value-at-risk at the differences in tail risk of absolute and (CVaR) at 1% tail probability as a downside relative returns by varying the weighting risk measure. EVT has been used for a long scheme using all stocks in the corresponding 3 - Relative returns are time in areas other than finance to study universe.3 Our main finding is that the defined as the difference between the returns of the the probabilities of extreme events, and in CVaR across strategies is primarily driven strategy and the returns of the corresponding the area of risk measurement it has been by the average volatility or the average cap-weighted benchmark. used to describe the probabilistic behaviour tracking error for the case of absolute and of tail losses. On the other hand, both the relative returns, respectively. The results more common value-at-risk (VaR) and show that adopting a different weighting CVaR are risk measures used to estimate scheme
Recommended publications
  • Capturing Tail Risk in a Risk Budgeting Model
    DEGREE PROJECT IN MATHEMATICS, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Capturing Tail Risk in a Risk Budgeting Model FILIP LUNDIN MARKUS WAHLGREN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Capturing Tail Risk in a Risk Budgeting Model FILIP LUNDIN MARKUS WAHLGREN Degree Projects in Financial Mathematics (30 ECTS credits) Master's Programme in Industrial Engineering and Management KTH Royal Institute of Technology year 2020 Supervisor at Nordnet AB: Gustaf Haag Supervisor at KTH: Anja Janssen Examiner at KTH: Anja Janssen TRITA-SCI-GRU 2020:050 MAT-E 2020:016 Royal Institute of Technology School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci Abstract Risk budgeting, in contrast to conventional portfolio management strategies, is all about distributing the risk between holdings in a portfolio. The risk in risk budgeting is traditionally measured in terms of volatility and a Gaussian distribution is commonly utilized for modeling return data. In this thesis, these conventions are challenged by introducing different risk measures, focusing on tail risk, and other probability distributions for modeling returns. Two models for forming risk budgeting portfolios that acknowledge tail risk were chosen. Both these models were based on CVaR as a risk measure, in line with what previous researchers have used. The first model modeled re- turns with their empirical distribution and the second with a Gaussian mixture model. The performance of these models was thereafter evaluated. Here, a diverse set of asset classes, several risk budgets, and risk targets were used to form portfolios. Based on the performance, measured in risk-adjusted returns, it was clear that the models that took tail risk into account in general had su- perior performance in relation to the standard model.
    [Show full text]
  • Tail Risk Premia and Return Predictability∗
    Tail Risk Premia and Return Predictability∗ Tim Bollerslev,y Viktor Todorov,z and Lai Xu x First Version: May 9, 2014 This Version: February 18, 2015 Abstract The variance risk premium, defined as the difference between the actual and risk- neutral expectations of the forward aggregate market variation, helps predict future market returns. Relying on new essentially model-free estimation procedure, we show that much of this predictability may be attributed to time variation in the part of the variance risk premium associated with the special compensation demanded by investors for bearing jump tail risk, consistent with idea that market fears play an important role in understanding the return predictability. Keywords: Variance risk premium; time-varying jump tails; market sentiment and fears; return predictability. JEL classification: C13, C14, G10, G12. ∗The research was supported by a grant from the NSF to the NBER, and CREATES funded by the Danish National Research Foundation (Bollerslev). We are grateful to an anonymous referee for her/his very useful comments. We would also like to thank Caio Almeida, Reinhard Ellwanger and seminar participants at NYU Stern, the 2013 SETA Meetings in Seoul, South Korea, the 2013 Workshop on Financial Econometrics in Natal, Brazil, and the 2014 SCOR/IDEI conference on Extreme Events and Uncertainty in Insurance and Finance in Paris, France for their helpful comments and suggestions. yDepartment of Economics, Duke University, Durham, NC 27708, and NBER and CREATES; e-mail: [email protected]. zDepartment of Finance, Kellogg School of Management, Northwestern University, Evanston, IL 60208; e-mail: [email protected]. xDepartment of Finance, Whitman School of Management, Syracuse University, Syracuse, NY 13244- 2450; e-mail: [email protected].
    [Show full text]
  • Comparative Analyses of Expected Shortfall and Value-At-Risk Under Market Stress1
    Comparative analyses of expected shortfall and value-at-risk under market stress1 Yasuhiro Yamai and Toshinao Yoshiba, Bank of Japan Abstract In this paper, we compare value-at-risk (VaR) and expected shortfall under market stress. Assuming that the multivariate extreme value distribution represents asset returns under market stress, we simulate asset returns with this distribution. With these simulated asset returns, we examine whether market stress affects the properties of VaR and expected shortfall. Our findings are as follows. First, VaR and expected shortfall may underestimate the risk of securities with fat-tailed properties and a high potential for large losses. Second, VaR and expected shortfall may both disregard the tail dependence of asset returns. Third, expected shortfall has less of a problem in disregarding the fat tails and the tail dependence than VaR does. 1. Introduction It is a well known fact that value-at-risk2 (VaR) models do not work under market stress. VaR models are usually based on normal asset returns and do not work under extreme price fluctuations. The case in point is the financial market crisis of autumn 1998. Concerning this crisis, CGFS (1999) notes that “a large majority of interviewees admitted that last autumn’s events were in the “tails” of distributions and that VaR models were useless for measuring and monitoring market risk”. Our question is this: Is this a problem of the estimation methods, or of VaR as a risk measure? The estimation methods used for standard VaR models have problems for measuring extreme price movements. They assume that the asset returns follow a normal distribution.
    [Show full text]
  • Modeling Financial Sector Joint Tail Risk in the Euro Area
    Modeling financial sector joint tail risk in the euro area∗ Andr´eLucas,(a) Bernd Schwaab,(b) Xin Zhang(c) (a) VU University Amsterdam and Tinbergen Institute (b) European Central Bank, Financial Research Division (c) Sveriges Riksbank, Research Division First version: May 2013 This version: October 2014 ∗Author information: Andr´eLucas, VU University Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands, Email: [email protected]. Bernd Schwaab, European Central Bank, Kaiserstrasse 29, 60311 Frankfurt, Germany, Email: [email protected]. Xin Zhang, Research Division, Sveriges Riksbank, SE 103 37 Stockholm, Sweden, Email: [email protected]. We thank conference participants at the Banque de France & SoFiE conference on \Systemic risk and financial regulation", the Cleveland Fed & Office for Financial Research conference on \Financial stability analysis", the European Central Bank, the FEBS 2013 conference on \Financial regulation and systemic risk", LMU Munich, the 2014 SoFiE conference in Cambridge, the 2014 workshop on \The mathematics and economics of systemic risk" at UBC Vancouver, and the Tinbergen Institute Amsterdam. Andr´eLucas thanks the Dutch Science Foundation (NWO, grant VICI453-09-005) and the European Union Seventh Framework Programme (FP7-SSH/2007- 2013, grant agreement 320270 - SYRTO) for financial support. The views expressed in this paper are those of the authors and they do not necessarily reflect the views or policies of the European Central Bank or the Sveriges Riksbank. Modeling financial sector joint tail risk in the euro area Abstract We develop a novel high-dimensional non-Gaussian modeling framework to infer con- ditional and joint risk measures for many financial sector firms.
    [Show full text]
  • Hedging and Evaluating Tail Risks Via Two Novel Options Based on Type II Extreme Value Distribution
    S S symmetry Article Hedging and Evaluating Tail Risks via Two Novel Options Based on Type II Extreme Value Distribution Hang Lin 1,2,* , Lixin Liu 1 and Zhengjun Zhang 2 1 School of Statistics, University of International Business and Economics, Beijing 100029, China; [email protected] 2 Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] * Correspondence: [email protected] Abstract: Tail risk is an important financial issue today, but directly hedging tail risks with an ad hoc option is still an unresolved problem since it is not easy to specify a suitable and asymmetric pricing kernel. By defining two ad hoc underlying “assets”, this paper designs two novel tail risk options (TROs) for hedging and evaluating short-term tail risks. Under the Fréchet distribution assumption for maximum losses, the closed-form TRO pricing formulas are obtained. Simulation examples demonstrate the accuracy of the pricing formulas. Furthermore, they show that, no matter whether at scale level (symmetric “normal” risk, with greater volatility) or shape level (asymmetric tail risk, with a smaller value in tail index), the greater the risk, the more expensive the TRO calls, and the cheaper the TRO puts. Using calibration, one can obtain the TRO-implied volatility and the TRO-implied tail index. The former is analogous to the Black-Scholes implied volatility, which can measure the overall symmetric market volatility. The latter measures the asymmetry in underlying losses, mirrors market sentiment, and provides financial crisis warnings. Regarding the newly proposed TRO Citation: Lin, H.; Liu, L.; Zhang, Z.
    [Show full text]
  • Tail Risk of Equity Market Indices: an Extreme Value Theory Approach
    An EDHEC-Risk Institute Publication Tail Risk of Equity Market Indices: An Extreme Value Theory Approach February 2014 Institute 2 Printed in France, February 2014. Copyright EDHEC 2014. The opinions expressed in this survey are those of the authors and do not necessarily reflect those of EDHEC Business School. Tail Risk of Equity Market Indices: An Extreme Value Theory Approach — February 2014 Table of Contents Executive Summary .................................................................................................5 1. Introduction ............................................................................................................9 2. Extreme Value Theory .......................................................................................13 3. A Conditional EVT Model .................................................................................19 4. Risk Estimation with EVT .................................................................................23 5. Back-testing and Statistical Tests .................................................................27 6. Data and Empirical Results .............................................................................31 7. Conclusions .........................................................................................................43 Appendices ..............................................................................................................47 References ...............................................................................................................55
    [Show full text]
  • Portfolio Tail Risk: a Multivariate Extreme Value Theory Approach
    entropy Article Portfolio Tail Risk: A Multivariate Extreme Value Theory Approach Miloš Božovi´c Faculty of Economics, University of Belgrade, Kameniˇcka6, 11000 Belgrade, Serbia; [email protected] Received: 31 October 2020; Accepted: 15 December 2020; Published: 17 December 2020 Abstract: This paper develops a method for assessing portfolio tail risk based on extreme value theory. The technique applies separate estimations of univariate series and allows for closed-form expressions for Value at Risk and Expected Shortfall. Its forecasting ability is tested on a portfolio of U.S. stocks. The in-sample goodness-of-fit tests indicate that the proposed approach is better suited for portfolio risk modeling under extreme market movements than comparable multivariate parametric methods. Backtesting across multiple quantiles demonstrates that the model cannot be rejected at any reasonable level of significance, even when periods of stress are included. Numerical simulations corroborate the empirical results. Keywords: tail risk; extreme value theory; principal component analysis; value at risk; expected shortfall JEL Classification: G17; G32; C52; C53 1. Introduction Events of the Global Financial Crisis, the Eurozone sovereign debt crisis, and the ongoing COVID-19 pandemics increase the investors’ awareness of the need to assess the risk of extreme losses and the necessity of protection against future market meltdowns. To quantify financial risks, investors and regulators commonly resort to risk measures based on quantiles of distributions of losses or returns, such as Value at Risk (VaR) or Expected Shortfall (ES). However, the most significant problem with conventional approaches to assessing the quantile-based risk measures is their poor performance in characterizing the “tail” behavior of the distribution of returns.
    [Show full text]
  • Introduction to Tail Risk Parity
    An Introduction to Tail Risk Parity Balancing Risk to Achieve Downside Protection Ashwin Alankar, Senior Portfolio Manager, AllianceBernstein Michael DePalma, CIO Quantitative Strategies, AllianceBernstein Myron Scholes, Nobel Laureate, Frank E. Buck Professor of Finance, Emeritus, Stanford University Much of the real world is controlled as much by the “tails” of distributions as by means or averages: by the exceptional, not the mean; by the catastrophe, not the steady drip; by the very rich, not the “middle class.” We need to free ourselves from “average” thinking. Philip W. Anderson, Nobel Prize Recipient, Physics For institutional investor or home office use only. Not for inspection by, distribution or quotation to, the general public. Executive Summary . Tail Risk Parity (TRP) adapts the risk-balancing techniques of Risk Parity in an attempt to protect the portfolio at times of economic crisis and reduce the cost of the protection in the absence of a crisis. In measuring expected tail loss we use a proprietary “implied expected tail loss (ETL)” measure distilled from options-market information. Whereas Risk Parity focuses on volatility, Tail Risk Parity defines risk as expected tail loss—something that hurts investors more than volatility. Risk Parity is a subset of Tail Risk Parity when asset returns are normally distributed and/or volatility adequately captures tail-loss risk. Hence, when the risk of tail events is negligible, Tail Risk Parity allocations will resemble Risk Parity allocations. Tail Risk Parity seeks to reduce tail losses significantly while retaining more upside than Risk Parity or other mean-variance optimization techniques. It is very difficult to construct portfolios under symmetric risk measures (such as volatility as used in Risk Parity) that don’t penalize both large losses and, unfortunately, large gains.
    [Show full text]
  • An Introduction to Tail Risk Parity
    An Introduction to Tail Risk Parity Balancing Risk to Achieve Downside Protection Ashwin Alankar—Senior Portfolio Manager, AllianceBernstein Michael DePalma—CIO of Quantitative Strategies, AllianceBernstein Myron Scholes, Nobel Laureate, Frank E. Buck Professor of Finance, Emeritus, Stanford University Much of the real world is controlled as much by the “tails” of distributions as by means or averages: by the exceptional, not the mean; by the catastrophe, not the steady drip; by the very rich, not the “middle class.” We need to free ourselves from “average” thinking. Philip W. Anderson, Nobel Prize Recipient, Physics For institutional investor or home office use only. Not for inspection by, distribution or quotation to, the general public. Executive Summary Tail Risk Parity adapts the risk-balancing techniques of Risk Parity in an attempt to protect the portfolio at times of economic crisis when correlations spike and reduce the cost of the protection in the absence of a crisis. In measuring expected tail loss, we use a proprietary “implied expected tail loss (ETL)” measure distilled from options-market information. Whereas Risk Parity focuses on volatility, Tail Risk Parity defines risk as expected tail loss—the risk of suffering large losses. Risk Parity is a special case of Tail Risk Parity when asset returns are normally distributed and/or volatility adequately captures tail loss risk. By focusing on the drawdowns themselves, the Tail Risk Parity approach subsumes the costly drawdowns or jumps to which the Risk Parity approach is susceptible. Tail Risk Parity seeks to reduce tail losses significantly while retaining more upside than Risk Parity or other mean-variance optimization techniques.
    [Show full text]
  • Investment Behavior Analysis Based on Tail Risk Management
    INVESTMENT BEHAVIOR ANALYSIS BASED ON TAIL RISK MANAGEMENT A Paper Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Yu Sun In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Statistics May 2018 Fargo, North Dakota NORTH DAKOTA STATE UNIVERSITY Graduate School Title INVESTMENT BEHAVIOR ANALYSIS BASED ON TAIL RISK MANAGEMENT By Yu Sun The supervisory committee certifies that this paper complies with North Dakota State University’s regula- tions and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Rhonda Magel Chair Dr. Ruilin Tian Co-Chair Dr. Simone Ludwig Approved: 11 May 2018 Dr. Rhonda Magel Date Department Chair ABSTRACT As behavioral finance is becoming more prevalent in academic area, a study is worth conducting to pinpoint investors’ preference through managing tail risk of asset portfolios. This study investigates investors’ investment behaviors by modeling their investment personalities based on tail risk management. We incorporate CVaR approach to model traditional and non-traditional investment behaviors by reshaping the tails of portfolio return. To be specific, we build model to maximize left-tail CVaR, minimize right-tail CVaR, minimize left-tail CVaR models, and a mixed model that maximize left-tail CVaR and minimize right- tail CVaR simultaneously based on various group of rational and irrational investors. Our work incorporates empirical historical data and Monte Carlo simulation to compare these models with the classical Markowitz approach via different dimensions. We make contributions to fill the gap by making a more comprehensively study that incorporates investors’ psychological factors and exploring economic information regarding asset pricing puzzle and long-run risk.
    [Show full text]
  • Fundamental Review of the Trading Book: a Revised Market Risk Framework
    Basel Committee on Banking Supervision Consultative Document Fundamental review of the trading book: A revised market risk framework Issued for comment by 31 January 2014 October 2013 This publication is available on the BIS website (www.bis.org). © Bank for International Settlements 2013. All rights reserved. Brief excerpts may be reproduced or translated provided the source is stated. ISBN 92-9131-971-6 (print) ISBN 92-9197-971-6 (online) Contents Executive summary ........................................................................................................................................................................... 1 Section 1: Overall revisions to the market risk framework ............................................................................................... 7 1.1 The trading book/banking book boundary .......................................................................................................... 7 1.2 Treatment of credit ...................................................................................................................................................... 10 1.3 Factoring in market liquidity .................................................................................................................................... 13 1.4 Choice of market risk metric and calibration to stress conditions ............................................................ 18 1.5 Treatment of hedging and diversification..........................................................................................................
    [Show full text]
  • Tail Risk Adjusted Sharpe Ratio
    Working Paper I Cross asset Investment Strategy WP-71-2018 Tail Risk Adjusted Sharpe Ratio RESEARCH STRATEGY & ANALYSIS Document for the exclusive attention of professional clients, investment services providers and any other professional of the financial industry Tail Risk Adjusted Sharpe Ratio Abstract Didier Maillard The Sharpe Ratio has become a standard measure of Professor Emeritus at portfolio management performance, taking into account CNAM, Senior Advisor the risk side. In that framework, the consideration of risk on Research – Amundi is reduced to returns volatility. The Sharpe Ratio does not encompass extreme risk, especially on the downside. didier.maillard-ext@amundi. com In this paper, we provide four methods for constructing Tail Risk Adjusted Sharpe Ratios (TRASR), using asymmetric measures of risk: semi variance, Value-at-Risk, Conditional Value-at-Risk (or Expected Shortfall) and expected utility derived measures of risks. We also have an exploration of the Aumann & Serrano’s Economic Index of Riskiness. The adjustment translates into an adjusted volatility, which allows us to keep the Sharpe Ratio format and to compare the impacts of the adjustments. For that, we use the Cornish-Fisher transformation to model tail risk, duly controlling for skewness and kurtosis. Keywords: Risk, variance, volatility, skewness, kurtosis, portfolio performance JEL Classification: C02, C51, G11, G32 Acknowledgement: The author thanks Fabrice Barthélémy and Charles-Olivier Amédée-Manesme for valuable insights and discussions. He retains sole responsibility for the content. 3 About the author Didier Maillard Didier Maillard is Senior Advisor to Amundi on Research. He his Professor Emeritus at Conservatoire national des arts et metiers (CNAM), where he held a Chair of Banking.
    [Show full text]